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Abstract: Nereistoxin (NTX) is a marine toxin isolated from an annelid worm that lives along the
coasts of Japan. Its insecticidal properties were discovered decades ago and this stimulated the
development of a variety of insecticides such as Cartap that are readily transformed into NTX. One
unusual feature of NTX is that it is a small cyclic molecule that contains a disulfide bond. In spite of
its size, it acts as an antagonist at insect and mammalian nicotinic acetylcholine receptors (nAChRs).
The functional importance of the disulfide bond was assessed by determining the effects of inserting
a methylene group between the two sulfur atoms, creating dimethylaminodithiane (DMA-DT). We
also assessed the effect of methylating the NTX and DMA-DT dimethylamino groups on binding to
three vertebrate nAChRs. Radioligand receptor binding experiments were carried out using washed
membranes from rat brain and fish (Torpedo) electric organ; [3H]-cytisine displacement was used to
assess binding to the predominantly high affinity alpha4beta2 nAChRs and [125I]-alpha-bungarotoxin
displacement was used to measure binding of NTX and analogs to the alpha7 and skeletal muscle
type nAChRs. While the two quaternary nitrogen analogs, relative to their respective tertiary amines,
displayed lower α4β2 nAChR binding affinities, both displayed much higher affinities for the Torpedo
muscle nAChR and rat alpha7 brain receptors than their respective tertiary amine forms. The binding
affinities of DMA-DT for the three nAChRs were lower than those of NTX and MeNTX. An AChBP
mutant lacking the C loop disulfide bond that would potentially react with the NTX disulfide bond
displayed an NTX affinity very similar to the parent AChBP. Inhibition of [3H]-epibatidine binding
to the AChBPs was not affected by exposure to NTX or MeNTX for up to 24 hr prior to addition of
the radioligand. Thus, the disulfide bond of NTX is not required to react with the vicinal disulfide
in the AChBP C loop for inhibition of [3H]-epibatidine binding. However, a reversible disulfide
interchange reaction of NTX with nAChRs might still occur, especially under reducing conditions.
Labeled MeNTX, because it can be readily prepared with high specific radioactivity and possesses
relatively high affinity for the nAChR-rich Torpedo nAChR, would be a useful probe to detect and
identify any nereistoxin adducts.

Keywords: acetylcholine binding protein; α-bungarotoxin; annelid; cholinergic; insecticide; nereis-
toxin; nicotinic acetylcholine receptor; toxin
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1. Introduction

Over 80 years ago, a neurotoxin was isolated from a large (~40 cm) annelid worm
(Lumbriconereis heteropoda) that occurs along the coasts of Japan. The discovery of this toxin
resulted from use of the worm as a fish bait. It was noticed by fisherman that flies eating
the dead worms would often become paralyzed and die. Fishermen who had handled this
annelid worm would occasionally develop a headache, nausea, and respiratory difficulties.
Nereistoxin (NTX, Figure 1), the active substance, was isolated by Nitta [1] and 28 years
later its structure was reported by Okaichi and Hashimoto [2]. It was found to be a nicotinic
acetylcholine receptor (nAChR) antagonist when applied to frog skeletal muscle [3]. Under
some conditions, when applied to mammalian skeletal muscle, NTX also initially caused a
small, transient membrane depolarization [4]. Administration of a relatively low dose of
NTX to experimental mammals caused respiratory depression and at higher doses central
nervous system effects [5]. NTX possesses a disulfide bond within its five-membered
dithiolane ring. Its interaction with retinal ganglia nAChRs under reducing conditions
was consistent with formation of an intermolecular disulfide bond with a vicinal disulfide
occurring within the C-loop of the nAChR α subunit that is part of the ACh binding
site [6–8].
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Figure 1. Structures of nereistoxin (NTX, 4-dimethylamino-1,2-dithiolane) and cartap, one of the
nereistoxin-based insecticides. Cartap primarily acts as a pro-insecticide, being converted into the
more active NTX.

NTX is relatively toxic to insects, especially lepidopteran larvae such as that of the rice
stem boring insect. Consequently, numerous analogs of NTX including cartap (Figure 1)
have been used as insecticides. The myriad nAChRs of insects are primarily expressed
within their central nervous systems. NTX suppresses electrical signaling within the insect
central nervous system and acts as an antagonist at insect nAChRs [9]. Difficulties in
the expression of insect nAChRs in cultured cells have slowed scientific analysis of the
mechanism of NTX action on these insect nAChRs. More readily expressed chimeric
nAChRs constructed with insect and chicken neuronal nAChR DNA sequences were
blocked by NTX in a manner suggesting non-competitive antagonism; this was interpreted
as being consistent with ion channel blockade [10]. A more recent investigation also
suggested that NTX may largely exert its insecticidal action by blocking insect nAChR
ion channels [11].

Vertebrate skeletal muscle neuromuscular junction and autonomic ganglionic nAChRs
are essential for synaptic transmission. At the frog neuromuscular junction and the related
marine ray Torpedo electric organ, the site most sensitive to NTX blockade is the ACh
binding site rather than the ion channel [3,4]. While the effects of NTX on mammalian
skeletal muscle nAChRs have been reported, little has been published concerning its direct
actions on mammalian brain nAChRs. A primary goal of this study was to assess NTX
interaction with α4β2 and α7 nAChRs, the two major subtypes expressed in the brain.

The molecular mechanism(s) by which NTX acts as an antagonist at vertebrate nAChRs
is not clear. NTX is much smaller and more flexible than most nAChR antagonists, such as
dihydro-β-erythroidine, methyllycaconitine, and peptide toxins from elapid and marine
snails. In addition to investigating N-methylnereistoxin (MeNTX) to assess the impor-
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tance of ionization and increased bulkiness of the amino group, we also investigated two
NTX analogs (5-dimethylamino-1,3-dithiane (DMA-DT) and 5-trimethylamino-1,3-dithiane
(TMA-DT)) which have a methylene group inserted between the two NTX sulfur atoms
and therefore lack the disulfide bond (Figure 2). They were used to assess whether the
presence of the potentially reactive disulfide bond in NTX is necessary for its activity.
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Figure 2. Comparison of the structures of the N-quaternized analogs with nereistoxin. The ring of
the tertiary amine dithiane analog MA-DT is identical with that of TMA-DT.

2. Results
2.1. Effects of NTX on α4β2 Neuronal Receptors

First, the binding properties of NTX and its analogs with rat brain α4β2 nAChRs were
considered. We focused on measurements of binding affinity for these receptors, since it has
already been demonstrated that NTX acts mainly as an antagonist [3–5]. NTX displayed its
highest affinity (IC50 = 60 µM) for the α4β2 subtype, which is also very sensitive to nicotine
relative to the other nAChRs investigated here. Methylation of the NTX dimethylamino
group, producing MeNTX, led to a small decrease in affinity (increased IC50) for this
receptor (Figure 3 and Table 1).
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Figure 3. Equilibrium [3H]-cytisine displacement experiments measuring affinity of NTX (Left) and
MeNTX (Right) for rat brain α4β2 nAChRs. These two curves are from individual experiments,
each using 48 tubes containing equal amounts of membrane but measuring binding at 10 different
concentrations of NTX or MeNTX, as well as total binding and non-specific binding. All 12 conditions
were measured in quadruplicate. Standard error bars are shown for each concentration.
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Table 1. Median inhibitory concentrations for NTX compound inhibition of radioligand binding to
the two major mammalian brain nAChRs and to Torpedo muscle nAChRs. IC50 estimates (µM) are
accompanied by a standard error (SEM). The number of experiments (n) is noted within parentheses.
In each experiment, ten different concentrations of each compound were assessed in quadruplicate.
Total binding in absence of the nereistoxin compound and non-specific binding were also assayed
in quadruplicate. 1 Determined by displacement of [3H]-cytisine; 2 Determined by displacement of
[125I]-α-BTX.

Rat Brain Rat Brain Torpedo

Compound α4β2 1 α7 2 Electric Organ 2

IC50 ± SEM (µM)

NTX 60 ± 22 (6) 390 ± 8.6 (4) 230 ± 71 (3)
MeNTX 120 ± 13 (3) 45 ± 2.3 (2) 9.3 ± 4.9 (4)

DMA-DT 160 ± 96 (3) 640 ± 220 (2) >500 (1)
TMA-DT 290 ± 60 (4) 90 ± 4.3 (2) 150 (1)

The effects of quaternizing the dimethylamino group of nereistoxin were similar to
what is observed for this nAChR subtype when nicotine is methylated at the equivalent
pyrrolidinyl ring nitrogen [12]. The calculated equilibrium inhibition constant for NTX
binding was approximately 1,000× higher than the IC50 of nicotine at this receptor, using
the same experimental conditions. NTX and MeNTX inhibited ACh activation of human
α4β2 nAChRs expressed in a cultured cell line (Figure 4).
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Figure 4. Inhibition of human α4β2 nAChR mediated cell response to 5 µM acetylcholine by NTX
(Left) and MeNTX (Right). The receptor was expressed in TsA201 cells and responses were measured
in a FlexStation using a flourescent dye sensing membrane potential. Standard error bars are shown
for each concentration.

Using a cell line expressing human α4β2 nAChRs and the sensitive FlexStation assay
(see Methods), we failed to detect a membrane depolarizing action of MeNTX that was
reported for NTX (Figure 5). Even at 300 µM concentration, MeNTX failed to activate
this nAChR.

2.2. Effects on α7Neuronal Receptors

MeNTX had an approximately 9-fold greater affinity for the α7 receptor than did
NTX, in contrast with the lower potency of MeNTX relative to NTX observed in the α4β2
binding experiments (Figure 6). While TMA-DT was not as good an antagonist as MeNTX,
its higher binding affinity relative to DMA-DT was also likely due to its cationic property
(Table 1).
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Figure 5. Failure of MeNTX to activate TsA201 cells expressing human α4β2 nAChRs. Activation is
expressed relative to stimulation by 5 µM ACh.

Mar. Drugs 2021, 19, x  5 of 11 
 

 

 
Figure 5. Failure of MeNTX to activate TsA201 cells expressing human α4β2 nAChRs. Activation is 
expressed relative to stimulation by 5 µM ACh. 

2.2. Effects on α7Neuronal Receptors 
MeNTX had an approximately 9-fold greater affinity for the α7 receptor than did 

NTX, in contrast with the lower potency of MeNTX relative to NTX observed in the α4β2 
binding experiments (Figure 6). While TMA-DT was not as good an antagonist as MeNTX, 
its higher binding affinity relative to DMA-DT was also likely due to its cationic property 
(Table 1). 

  

Figure 6. A representative [125I]-αBTX binding displacement experiment measuring affinity of NTX (Left) and MeNTX 
(Right) interaction with the predominant homomeric α7 nAChR. MeNTX displayed approximately 10X higher affinity 
than NTX at this nAChR. Each displacement curve is from a single experiment; average estimates obtained from several 
identical experiments are found in Table 1. 

2.3. Torpedo Electric Organ nAChR Binding  
MeNTX had an approximately 20-fold greater affinity for this muscle receptor rela-

tive to NTX. This was the greatest increase in binding affinity observed in our analysis of 
the three different nAChRs. Disruption of the disulfide bond in TMA-DT reduced affinity 
relative to NTX. If NTX binds to this receptor in an essentially irreversible manner, it 
would be expected that sensitivity to NTX inhibition would be related to NTX pre-incu-
bation time. Our initial binding data for 30 min preincubation with NTX (Figure 7, Left) 
was similar to data from simultaneous addition of NTX with [125I-BTX (Figure 7, Right). 
MeNTX was much more potent in inhibiting BTX binding, regardless of whether it was 
added 30 min before BTX or concomitantly. 

-10 -8 -6 -4 -2
0

20

40

60

80

100

120

Log [MeNTX], M

Pe
rc

en
t A

ct
iv

at
io

n 
(%

)

Figure 6. A representative [125I]-αBTX binding displacement experiment measuring affinity of
NTX (Left) and MeNTX (Right) interaction with the predominant homomeric α7 nAChR. MeNTX
displayed approximately 10X higher affinity than NTX at this nAChR. Each displacement curve is
from a single experiment; average estimates obtained from several identical experiments are found in
Table 1.

2.3. Torpedo Electric Organ nAChR Binding

MeNTX had an approximately 20-fold greater affinity for this muscle receptor relative
to NTX. This was the greatest increase in binding affinity observed in our analysis of the
three different nAChRs. Disruption of the disulfide bond in TMA-DT reduced affinity
relative to NTX. If NTX binds to this receptor in an essentially irreversible manner, it would
be expected that sensitivity to NTX inhibition would be related to NTX pre-incubation time.
Our initial binding data for 30 min preincubation with NTX (Figure 7, Left) was similar
to data from simultaneous addition of NTX with [125I-BTX (Figure 7, Right). MeNTX was
much more potent in inhibiting BTX binding, regardless of whether it was added 30 min
before BTX or concomitantly.
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Figure 7. Single [125I]-αBTX binding displacement experiments measuring affinity of NTX and
MeNTX interaction with the Torpedo fish electric organ fetal type neuromuscular nAChR. (Left):
30 min preincubation with NTX; (Right): Simultaneous addition of NTX with BTX. Additional data
from other binding experiments were used to obtain the average IC50 estimates in Table 1.

2.4. Binding of NTX and MeNTX to Molluscan ACh Binding Proteins

Since the molluscan AChBPs contain very similar ACh binding sites to those of
nAChRs, we measured the abilities of the nereistoxins to inhibit the binding of the potent
agonist [3H]-epibatidine (Figure 8, Table 2). While the Lymnaea stagnalis AChBP binding
affinity of MeNTX was almost the same as for NTX, the MeNTX affinity of Ls C187S mutant
(data in Table 2 legend), was ~4-fold greater than for NTX. The affinity of Aplysia californica
AChBP for MeNTX was ~3.5-fold less than for NTX. However, the affinity of Ac AChBP
Y55W mutant for MeNTX was greatly enhanced relative to that for NTX. While the binding
affinities of the nereistoxins for the AChBPs varied, they were in the same concentration
range as for the nAChRs.
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Table 2. NTX compound inhibition of [3H]-epibatidine binding to molluscan acetylcholine binding
proteins. IC50 estimates (µM) are accompanied by a standard error (SEM). The number of experiments
(n) is noted within parentheses. In each experiment, at least eleven compound concentrations were
assessed in quadruplicate. The L. stagnalis C187S mutant NTX IC50 = 160 ± 42 (3) µM and MeNTX
IC50 = 41 ± 20 (3) µM.

Compound Ls BP Ac BP Ac BP Y55W

IC50 ± SEM (µM)

NTX 140 ± 24 (2) 71 ±1.9 (3) 110 ± 25 (3)
MeNTX 163 ± 8.7 (3) 260 ± 71 (3) 74 ± 5.2 (3)

DMA-DT 22 ± 2.4 (3) 28 ± 0.27 (3) 41.4 ± 4.4 (3)
TMA-DT 3.7 ± 0.39 (3) 20 ± 2.0 (3) 18.0 ± 2.8 (3)

Abbreviations: Ls BP = Lymnaea stagnalis AChBP; Ac BP = Aplysia californica BP; Ac BP Y55W = A. californica
BPY55W mutant.

3. Discussion

The three major goals of this investigation were to assess: (1) the affinities of NTX for
the major mammalian brain (α4β2 and α7) and marine ray electric organ (Torpedo californica)
nAChRs, (2) the effect of quaternization of the dimethylamino group, and (3) the effect of
inserting a methylene spacer moiety between the two sulfur atoms.

We compare the IC50 estimates for each compound and receptor rather than Ki esti-
mates, since we have not demonstrated that binding is reversible and competitive. The
use of the Cheng-Prusoff equation to derive Ki’s from IC50s assumes reversible competi-
tion. Delpech et al. [13] actually found that increasing NTX concentrations progressively
reduced the peak responses of their chimeric chicken-insect nAChRs, even at high ACh
concentrations. They interpreted these results as indicating a non-competitive antagonism
by NTX. However, these results could also be obtained if NTX irreversibly binds to the ACh
sites. In fact, they indicated that the NTX inhibition was irreversible at high concentrations
or after prolonged exposure.

Relative to the other two nAChRs, the α4β2 subtype displayed the highest affinity for
NTX. N-methylation of NTX, creating the permanently charged analog MeNTX reduced
affinity for this nAChR. The NTX dimethylamino pKa has been reported to be 7.2 [14].
Since it has been shown that the ionized form of nicotine is the active form on rat [15],
amphibian [16] and ray [17] electric organ nAChRs, one would anticipate that the cationic
forms of NTX and DMA-DT toxins would have much greater affinity for the ACh binding
site. The quaternary methyl analogs are entirely cationic in the physiological pH range and
would be expected to bind more tightly than the unprotonated molecule due to electrostatic
interaction with the electronegative environment of the ACh binding site. Methylation of
the 1’ tertiary amino group N in the pyrrolidinyl ring in nicotine reduces its affinity for the
α4β2 receptor but not the α7 receptor [12]. Most NTX and DMA-DT molecules would be
predicted to be non-ionized in our experiments, which were carried out at pH 7.4, slightly
above the pKa of nereistoxin and presumably DMA-DT. Since the brain α7 and muscle
nAChRs displayed much higher (8- and 22-fold, respectively) affinities for binding MeNTX,
one can tentatively conclude that the added methyl group enhances the cation-pi bonding
interaction of these compounds with these nAChRs.

In the absence of additional data, the lower affinity of the DMA-DT relative to NTX
for all three nAChRs can be interpreted several ways. The greater size of its ring (6 instead
of 5 membered) may be a major factor, as the well-known cation-pi “cage” may not readily
accommodate the larger size. Another possibility is that a disulfide structure is optimal.

Like MeNTX, TMA-DT displayed higher affinity than DMA-DT for the two α-bungaro-
toxin binding receptors. This was consistent with the relatively high affinity of 1’-methylni-
cotinium binding to rat brain α7 nAChRs (12).

An extensive literature exists regarding the reactivity of the vicinal disulfide in the
C loop [6–8,18–20]. Of the three disulfide bonds within the α-subunit, only this vicinal
disulfide is readily reduced by dithiothreitol under physiological conditions [18]. It is now
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thought that the vicinal Cys192-Cys193 disulfide bond is a key contributor to an extensive
system of H-bonding interactions that stabilize the active receptor conformation in the ACh
binding region [19]. The Cohen laboratory has studied the ability of quaternary ammonium
compounds tethered to the vicinal thiol groups to act as agonists or antagonists at the
Torpedo nAChR. They found that shorter choline-like tethered compounds tended to be
antagonists, but once the length of the molecule was more like in ACh the compound acted
as an agonist. Interestingly, a compound with the length expected to possess a distance
similar to the distance between the dimethylamino group of NTX and one of its sulfurs
acted like an antagonist [20].

The molluscan AChBPs have been extremely useful for visualizing what likely happens
at the ACh binding sites in nAChRs due to their very similar structure and the high
resolution of their crystal structures [21,22]. In general, small ligands for this site allow
closure of the C loop and a general closure of the other loops around the ligand as well,
which allows activation of the receptor and the opening of its ion channel. On the other
hand, larger ligands tend to be partial agonists or full antagonists depending on how much
they allow the C loop to cap the ligand [22]. NTX is roughly the size of ACh, so it is
surprising that it is an antagonist. The binding experiments with the molluscan AChBPs
failed to detect any effect of 24 hr preincubation of NTX and MeNTX on their inhibition of
[3H]-epibatidine binding. The toxins also inhibited epibatidine binding to the L. stagnalis BP
C187S mutant (See Table 2 legend for this data), which lacks one of the sulfurs required for
formation of the C loop disulfide bond. Overall, although there were differences between
Ls and Ac BP relative affinities for NTX and MeNTX, the BPs displayed binding affinities
for NTX and MeNTX that were similar to those observed for the three vertebrate nAChRs.
It was interesting that the Ac BP Y55W mutant displayed a higher affinity for MeNTX than
NTX, in contrast with Ac BP. This mutant was made and tested because it more closely
resembles vertebrate α7 nAChRs, which have a tryptophan at the homologous position.

Our results with dithianes DMA-DT and TMA-DT suggest NTX action does not
require disulfide bond interchange and covalent bond formation between the NTX and
loop C vicinal disulfide bond. Nevertheless, it is possible that such a disulfide interchange
mechanism may be facultative (and primarily occur under reducing conditions) rather than
being essential, i.e., that such an exchange contributes to the stability of the NTX-receptor
complex but is not necessary for the antagonist activity of NTX. We suggest that the most
direct test of the disulfide interchange hypothesis of NTX action would be to measure
irreversible binding of radiolabeled MeNTX to Torpedo nAChRs. Such a radioligand could
be easily prepared by methylation of NTX using a tritiated methylhalide. After exposure
to the radiolabeled MeNTX, the membrane preparation would be subjected to detergent
solubilization, proteolytic or cyanogen bromide cleavage and SDS-gel electrophoresis to
isolate and characterize the reaction sites.

We have not yet deciphered the mechanism by which this small molecule can be
an nAChR antagonist. We suggest that NTX and its analogs are affecting the binding of
the radioligands by direct competition for the ACh binding sites, as NTX displays very
low affinity for the phencyclidine binding site within the electric organ muscle nAChR
ion channel [23]. This is also based on data demonstrating that binding to the nAChR
ion channel site where phencyclidine, histrionicotoxin and some other channel blockers
bind does not inhibit binding of α-BTX at the ACh binding sites [24]. We did observe that
NTX inhibited [3H]-TCP (radiolabelled analog of phencyclidine) binding to the Torpedo
membranes, but this only occurred at NTX concentrations that were ~10X higher than were
required to inhibit α-BTX binding (results not shown). Since most competitive antagonists
are relatively large rigid molecules, elucidating the molecular mechanism by which NTX,
an extremely small molecule, acts as an nAChR antagonist merits further investigation.
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4. Materials and Methods
4.1. NTX Compounds

NTX oxalate was a gift from Takeda Chemical Industries, Ltd. (See Acknowledge-
ments) and was also purchased from Wako Chemical Company. MeNTX (Table 1) was
prepared by reacting methyl iodide (3-fold molar excess) with NTX free base; the prod-
uct was isolated as the hydrogen iodide salt. The NTX analog 5-dimethylamino-dithiane
(DMA-DT, Table 1) was prepared from 1,3-dithian-5-one [14,25]. The MeNTX analog 5-
trimethylamino-1,3-dithiane hydrogen iodide (TMA-DT) was prepared by reacting methyl
iodide with DMA-DT free base, as was MeNTX prepared from NTX. NMR and MS analyses
of the three NTX analogs were in agreement with the published data. The purities of NTX
and its three analogs were assessed by C18RP HPLC with 10% acetonitrile −90% water
−0.1% TFA development.

4.2. Radioligand Binding Assays

[3H]-Cytisine (Perkin-Elmer) and [125I]-α-BTX (General Electric) were used in binding
experiments with whole rat brain and Torpedo electric organ membranes prepared according
to procedures described in detail elsewhere [12,26–29]. Rat brain membranes (100 µg of
protein) expressing human α4β2 nAChRs were incubated with 0.5 nM [3H]-cytisine in a
final volume of 500 µL binding saline for 4 h at 5 ◦C. The experiments with α7 nAChRs rat
brain membranes involved incubation with 0.2 nM [125I]-α-Btx for 3 h at 37 ◦C to assure that
equilibrium was reached. Ten different concentrations of the experimental compound were
usually tested in quadruplicate. Nonspecific binding was measured in the presence of 1 mM
(S)-nicotine hydrogen tartrate (Sigma-Aldrich). Data were fitted using GraphPad Prism
software (Version 4 GraphPad Software, San Diego, CA, USA) by nonlinear regression
analyses to a sigmoidal one-site model with variable slope. Compound affinity for the
Torpedo californica electric organ membrane nAChR was assessed by inhibition of 0.5 nM
[125I]-α-BTX binding to 20 µg washed membrane/tube over a 3 hr incubation period at
25 ◦C.

4.3. Radioligand Binding Assay for AChBPs

The AChBP proteins were expressed and purified according to Hansen et al. [30]. De-
termination of compound affinity for an AChBP utilized a modification of the Scintillation
Proximity Assay reported previously [31,32]. Briefly, the AChBP constructs (0.5–1.0 nM
final concentration of binding sites) were combined with polyvinyltoluene anti-mouse SPA
scintillation beads (0.17 mg/mL final concentration, Perkin Elmer), monoclonal anti-FLAG
M2 antibody from mouse 1:8000 dilution (Sigma), and 0.1 M NaPO4 buffer, pH 7.0. This
cocktail was distributed to a 96-well plate and incubated with either vehicle (total binding),
unknown sample (10 µM final concentration), or a saturating concentration (10 µM) of the
known competitive ligand methyllycaconitine to determine the nonspecific binding. The
radioligand (±)-[3H]-epibatidine (Perkin Elmer, 5 nM final concentration) was added to
each well with varying the concentrations of competing ligand and allowed to incubate at
room temperature for 1 hr. Plates were read on a 1450 MicroBeta TriLux liquid scintillation
counter (Wallac) and the output normalized. All measurements were conducted in dupli-
cate a minimum of 3 times. The IC50 values were calculated using GraphPad Prism version
4.02 (GraphPad Software, 2006, San Diego, CA, USA, www.graphpad.com).

4.4. Nicotinic Receptor FlexStation Functional Assays

TsA201 cells expressing human α4β2 were maintained in media consisting of Dul-
becco’s Modified Eagle medium supplemented with 10% FBS, 100 units/mL penicillin
and 100 µg/mL streptomycin, 2 mM L-glutamine, 0.5 mg/mL zeocin, and 0.6 mg/mL
geneticin. Cells were grown in 75 cm2 culture flasks, which were housed in a humidified
incubator (Fisher Scientific, Atlanta, GA, USA at 37 ◦C in an atmosphere of 5% CO2. They
were grown to around 80–90% confluence after harvesting with 0.25% trypsin and being
split weekly at a subcultivation ratio of between 1:6 and 1:10.

www.graphpad.com
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Our experimental protocol was based on the initial study of Fitch et al. [33]. Cells
were seeded at a density of roughly 5 × 104 to 105 cells/well in 96-well flat-bottom black
wall culture plates coated with 50 µg /mL poly-D-lysine hydrobromide (Sigma-Aldrich,
70–150 kDa) and grown overnight in 100 µL culture medium. A proprietary membrane
potential dye obtained from Molecular Devices (San Diego, CA, USA) was prepared by
dissolving one bottle of dye into 30 mL of Hanks Saline (pH = 7.4) containing 20 mM
HEPES buffer. The cells were incubated with 100 µL of dye for 30 min at 37 ◦C prior to the
robotically controlled concentration-response experiment. Serial dilutions of a compound
for dose-response analysis were prepared in 96-well plates by evaporation of a methanolic
stock solution and then reconstituted in the appropriate volume of Hanks saline. Fluid
transfer and readings were performed by a FlexStation fluorimeter (Molecular Devices).
Excitation and emission wavelengths were set to 530 nm and 565 nm with a cutoff of
550 nm. The first 17 s were used as a basal reading. At 18 s, a test compound was added to
determine the EC50, followed by addition of 25 µL KCl (40 mM final concentration) at 160 s
to serve as a fluorescence calibrant. NTX displayed no measurable depolarizing activity on
the TsA201 cells and was then tested for its ability to inhibit a 5-µM control ACh response.
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