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Abstract: Haloarchaeal carotenoids have attracted attention lately due to their potential antioxidant
activity. This work studies the effect of different concentrations of carbon sources on cell growth
and carotenoid production. Carotenoid extract composition was characterized by HPLC-MS. Antiox-
idant activity of carotenoid extracts obtained from cell cultures grown under different nutritional
conditions was determined by 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and
1,1-diphenyl-2-picrylhydrazyl (DPPH), Ferric Reducing Ability Power (FRAP) and β-carotene bleach-
ing assays. The ability of these carotenoid extracts to inhibit α-glucosidase, α-amylase, and lipase
enzymes was also assessed to determine if they could be used to reduce blood glucose and lipid
absorption. The maximum production of carotenoids (92.2 µg/mL) was observed combining 12.5%
inorganic salts and 2.5% of glucose/starch. Antioxidant, hypoglycemic, and antilipidemic studies
showed that higher carbon availability in the culture media leads to changes in the extract composi-
tion, resulting in more active haloarchaeal carotenoid extracts. Carotenoid extracts obtained from
high-carbon-availability cell cultures presented higher proportions of all-trans-bacterioruberin, 5-cis-
bacterioruberin, and a double isomeric bacterioruberin, whereas the presence 9-cis-bacterioruberin
and 13-cis-bacterioruberin decreased. The production of haloarchaeal carotenoids can be successfully
optimized by changing nutritional conditions. Furthermore, carotenoid composition can be altered
by modifying carbon source concentration. These natural compounds are very promising in food and
nutraceutical industries.

Keywords: Haloferax mediterranei; bacterioruberin; haloarchaea; hyperglycemia; obesity; carotenoids

1. Introduction

Carotenoids are natural compounds of high-biotechnological and biomedical interest.
They are well known for their beneficial effects on human health, given their antioxidant
properties [1–4].

Carotenoids can be classified depending on the length of their carbon chain in C30, C40,
and C50, meaning 30, 40, and 50 carbon units conforming their structure, respectively [5].
C50 carotenoids are mainly synthesized by halophilic archaea (also termed haloarchaea),
which are extremophilic microorganisms that belong to the Archaea domain [6,7]. Since
these microorganisms usually inhabit hypersaline environments, they require high salt
concentrations for their survival in culture media [8,9].

Haloarchaea produce C50 carotenoids as a defense mechanism against osmotic stress
and the radiation naturally present in their habitats [10]. Bacterioruberin (BR) and its
derivatives, monoanhydrobacterioruberin (MABR) and bisanhydrobacterioruberin (BABR)

Mar. Drugs 2022, 20, 659. https://doi.org/10.3390/md20110659 https://www.mdpi.com/journal/marinedrugs

https://doi.org/10.3390/md20110659
https://doi.org/10.3390/md20110659
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/marinedrugs
https://www.mdpi.com
https://orcid.org/0000-0002-7558-7278
https://orcid.org/0000-0002-6050-9357
https://orcid.org/0000-0003-2679-135X
https://doi.org/10.3390/md20110659
https://www.mdpi.com/journal/marinedrugs
https://www.mdpi.com/article/10.3390/md20110659?type=check_update&version=2


Mar. Drugs 2022, 20, 659 2 of 17

have been reported as the main components of haloarchaeal carotenoid extracts [11,12].
BR is formed by a primary isoprenoid chain which includes thirteen conjugated double
bonds and four hydroxyl groups in the terminal ends [13]. These characteristics a priori
provide BR with higher antioxidant properties than other C40 and C30 carotenoids, such as
β-carotene and staphyloxanthin [14–16]. In consequence, BR could be of great interest to the
food and nutraceutical industries due to its potential in different biomedical areas: cancer,
antiviral [17], and sperm motility treatments [18]. Recent studies have brought some light
regarding the antioxidant properties of haloarchaeal carotenoid extracts [18–20]. However,
little is known about the effect of nutritional conditions on the antioxidant properties and
potential biological activities of these extracts.

Microbial production of carotenoids has gained attention in the last years due to its
potential as a more economic and respectful to the environment approach [16,21–23]. In
particular, haloarchaeal cell cultures have a lower risk of contamination thanks to the
high concentration of salt, thus sterilization not being required. Furthermore, cell lysis
can be easily carried out by exposure to a hypotonic solution [24]. These particularities
translate into a lower cost of production [25]. Among haloarchaea, Haloferax mediterranei
stands out for its versatility in consuming carbon sources and the extensive available
bibliography regarding its metabolism [26–29]. Hfx. mediterranei has proved to be useful in
the production of bioplastics like polyhydroxyalkanoates (PHA) [30–33] and is considered
a model microorganism in a variety of fields, including the nitrogen cycle [28,34].

Lately there has been an expanding interest in the production and industrial applica-
tion of haloarchaeal C50 carotenoids [6,16,35,36]. However, there is still much work to be
done in the optimization of the cell culture media composition to enhance the production
to its maximum while reducing costs. A low concentration of salt has been demonstrated
to be key in the induction of BR synthesis in Hfx. mediterranei [29,37]. Nevertheless, little is
known about the relevance of the use of different carbon sources on the growth and the
synthesis of haloarchaeal carotenoids.

In this study, haloarchaeal carotenoids were tested as potential inhibitors of α-glucosidase,
α-amylase, and pancreatic lipase, since diabetes and obesity prevalence keeps increasing
each year and has already reached epidemic proportions [38–40]. There is a growing
concern about the consequences of the current situation since both pathologies are risk
factors for the development of cardiovascular diseases [41,42]. Among antidiabetic drugs,
α-glucosidase and α-amylase inhibitors are used for the treatment of diabetes mellitus type
2 patients or of those patients at risk of hypoglycemia or acidosis with the aim of delaying
the development of diabetes [43–45]. Inhibitors of pancreatic lipase are particularly useful
to decrease the absorption of fats in obese patients, thus helping in weight loss [46,47].

In this work, we have tested the effect of different carbon sources on Hfx. mediterranei
growth, carotenoid production, and the properties of the carotenoid extracts obtained
under the different nutritional conditions. The in vitro antioxidant properties as well as
carbohydrate-hydrolyzing enzymes and lipase inhibitory activities were assessed to explore
biomedical applications of haloarchaeal carotenoids.

2. Results and Discussion
2.1. Effect of Different Carbon Sources on Growth

Hfx. mediterranei grew very efficiently in the presence of glucose; however, the highest
concentrations (2% and 2.5% (w/v)) produced a dramatic drop in pH, probably due to
the products of glucose metabolism via the Entner–Doudoroff pathway (Figure 1B) [48].
Elevated concentrations of glucose have been proven efficient in inducing cell growth
also in other haloarchaeal species, such as Halorubrum sp. M5 [49]. Regarding starch, the
cells grew successfully, and in this case without affecting the pH value of the cell culture
(Figure 1C). These results agree with previous results that demonstrated that starch could
be metabolized by Hfx. mediterranei [50]. Furthermore, as it can be observed in Figure 1,
growth was concentration-dependent, leading to OD600 values significantly higher than
those obtained in the cell culture without an additional carbon source (Figure 1A). The
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same tendency was confirmed by the obtention of the growth-specific velocities for each
cell culture (Figure 2). With respect to oxalacetate, this intermediate of the tricarboxylic
acid (TCA) cycle was tested in three different concentrations: 0.5%, 1%, and 1.5%, and the
cells were able to grow only in the presence of 0.5%. However, the slow and diauxic growth
observed indicates that cells had difficulties in metabolizing this compound (Figure 1D).
There was a positive correlation between the concentration of the carbon source in the
culture media and the specific growth velocity, even in the cases of 2% and 2.5% of glucose
where diauxic growth was observed (Figure 2).
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Figure 1. Effect of (A) no additional carbon source (control), (B) glucose (0.5–2.5% (w/v)), (C) starch
(0.5–2.5% (w/v)), and (D) oxalacetate (0.5–1.5% (w/v)) on time course of growth (OD600 nm) of
Hfx. mediterranei.
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Figure 2. Effect of glucose (0.5–2.5% (w/v)), starch (0.5–2.5% (w/v)), and oxalacetate (0.5% (w/v)) on
growth-specific velocity in Hfx. mediterranei cell cultures. Control was a cell culture medium with
no additional carbon source. Each experimental sample was compared to the control to evaluate
statistical significance. * p < 0.05, ** p < 0.01.
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2.2. Effect of Different Carbon Sources on BR Production

Glucose was remarkably effective in inducing carotenoid production, coinciding with
previous results in other species [49,51].

The increment of carbon source concentration not only favors growth but also induces
carotenoid synthesis since carbon is the main component of the structure of carotenoid
molecules. Figures 3 and 4 show how the BR concentration was higher in those carotenoid
extracts obtained from cell cultures where there was more carbon available. The highest
concentration was obtained from the cell culture with 2.5% of glucose. However, the
results obtained with starch were very similar. Therefore, both carbon sources were greatly
effective in inducing carotenogenesis. In addition, all extracts obtained from glucose and
starch cell cultures had significantly higher BR concentrations than the extracts obtained
from the cell culture with no additional carbon source (control) did. Interestingly, the extract
obtained from Hfx. mediterranei grown in the presence of oxalacetate led to high absorbance
at 388 nm, which might indicate abundance of cis-BR-isomers [19,52]. Meléndez-Martínez
and collaborators described that when the cis-double bond is closer to the center of the BR
molecule, the absorbance at 388 nm is more intense [53].

Mar. Drugs 2022, 20, 659  5  of  18 
 

 

 

Figure 3. Effect of glucose (0.5–2.5% (w/v)), starch (0.5–2.5% (w/v)), and oxalacetate (0.5% (w/v)) on 

BR production in Hfx. mediterranei carotenoid extracts. Each experimental sample was compared to 

the control to evaluate statistical significance. ns: not significant, **** p < 0.0001. 

 

Figure 4. UV‐Vis Spectra (350–600 nm) of carotenoid extracts from Hfx. mediterranei growth with (A) 

no additional carbon source, (B) glucose (0.5–2.5% (w/v)), (C) starch (0.5–2.5% (w/v)), and (D) oxa‐

lacetate (0.5% (w/v)). 

Despite the differences in methods and expression of units, the combination of low 

salt content and high carbon availability has led to optimal production of C50 carotenoids, 

surpassing most results in the literature [19,24,25,49,54–56] with the exception of [50], in 

C
0.

5% 1%
1.

5% 2%
2.

5%
0.

5% 1%
1.

5% 2%
2.

5%
0.

5%

0

50

100

150

B
R

 c
o

n
c

e
n

tr
a

ti
o

n
 (
g

/m
L

)

Glucose Starch Oxalacetate

********

****

****

****

****

****

****

****

****

ns

350 400 450 500 550 600
0.0

0.5

1.0

1.5

Wavelenght (nm)

A
b

s
o

rb
a

n
c

e

A

350 400 450 500 550 600
0

5

10

15

20

25

Wavelenght (nm)

A
b

s
o

rb
a

n
c

e

0.5%
1%

1.5%
2%
2.5%

B

350 400 450 500 550 600
0

5

10

15

20

25

Wavelenght (nm)

A
b

s
o

rb
a

n
c

e

0.5%
1%
1.5%
2%
2.5%

C

350 400 450 500 550 600
0

1

2

3

Wavelenght (nm)

A
b

s
o

rb
a

n
c

e

D

Figure 3. Effect of glucose (0.5–2.5% (w/v)), starch (0.5–2.5% (w/v)), and oxalacetate (0.5% (w/v)) on
BR production in Hfx. mediterranei carotenoid extracts. Each experimental sample was compared to
the control to evaluate statistical significance. ns: not significant, **** p < 0.0001.

Despite the differences in methods and expression of units, the combination of low
salt content and high carbon availability has led to optimal production of C50 carotenoids,
surpassing most results in the literature [19,24,25,49,54–56] with the exception of [50], in
which a maximum of 556 mg/L of total carotenoids was achieved in the presence of a high
salt concentration. In order to compare the methods and results reported in Chen et al., 2014
with those summarized here, their maximum production of carotenoids was reached at a
constant conductivity of 25 S/m, which represents approximately a total salt concentration
of 144 g/L, which is very similar to the approximately 141 g/L of salt (12.5% SW) used in our
experiments. The quantification of pigments was carried out by measuring the absorbance
at 495 nm, which coincides with the selected wavelength for our assays (494 nm), which is
the maximum of absorbance of BR. However, there is no information about the formula
used to calculate the concentration from the absorbance value. Therefore, it is difficult
to conclude why we observed such differences in BR production, but it might be due to
the maintenance of the conductivity constant and/or variations in the formula used to
calculate the concentration of BR.
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Figure 4. UV-Vis Spectra (350–600 nm) of carotenoid extracts from Hfx. mediterranei growth with
(A) no additional carbon source, (B) glucose (0.5–2.5% (w/v)), (C) starch (0.5–2.5% (w/v)), and
(D) oxalacetate (0.5% (w/v)).

The combination of higher concentrations of the carbon source with growth parame-
ters, such as salt concentration, are key for the optimization of the production of haloar-
chaeal carotenoids. Recent results also indicate that nutrient deprivation could enhance
BR production [29]. However, our results support that carbon excess in combination with
low salinity (12.5%) and low temperature (36.5 ◦C) conditions offer Hfx. mediterranei the
necessary resources to synthesize more BR to overcome osmotic stress.

2.3. Antioxidant Activity

Haloarchaeal carotenoid extracts from the 2.5% glucose cell culture showed the high-
est activity in DPPH and ABTS tests, with IC50 of 32.4 and 0.03 µg/mL, respectively
(Table 1). In fact, all haloarchaeal carotenoid extracts were more effective than ascorbic
acid in scavenging the ABTS radical cation. The obtained IC50 values showed also that
the antioxidant potential of these carotenoid extracts was higher than those reported for
other haloarchaeal species. For example, concentrations higher than 16 µg/mL would be
required to scavenge at least 50% of ABTS radicals with carotenoid extracts from Halococcus
morrhuae, Halobacterium salinarum, and Thermus filiformis [52]. Other IC50 values reported
for this assay are: 0.8 µg/mL in Haloterrigena sp. strain SGH1 [19], 3.89 µg/mL in Haloarcula
hispanica HM1 [57], a range of 4.23–34.7 µg/mL in six different haloarchaeal strains (Te
Se-85, Te Se-86, ALT-23, TeSe-41, TeSe-51 and TeSe-89) [58], and 3–6 µg/mL in Halorubrum
sp. BS2 [59]. Interestingly, this same study on Halorubrum sp. BS1 presented values between
6 and 9 µg/mL for the 50% inhibition of the DPPH radical, which are concentrations lower
than those detected in Hfx. mediterranei extracts. These differences between assays might be
attributed to the composition of each haloarchaeal carotenoid extract which might interact
differently with the used radicals. It is also worth mentioning that the antioxidant effects of
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ascorbic acid vary between studies, which might be due to variations in the methodologies
applied. Regarding other extracts, astaxanthin has been reported to inhibit 50% DPPH
at a concentration around 400 µM [60], which is much higher than the values obtained
for Hfx. mediterranei extracts. Dunaliella salina is a well-known producer of carotenoids,
particularly β-carotene, whose extracts’ EC50 value is 8360 µg/mL [61]. Other studies
have reported an inhibition of DPPH around 50% at a concentration of 250 µg/mL of
a D. salina carotenoid extract [62]. Thus, Hfx. mediterranei extracts are between 8 and
260 times more effective in scavenging DPPH radicals than D. salina extracts. Other com-
monly commercialized microorganism as an antioxidant supplement is Spirulina platensis,
whose EC50 values have been reported to be 449 µg/mL and 5852 µg/mL for the DPPH
and ABTS tests, respectively [63]. Therefore, Hfx. mediterranei is a promising source of
antioxidant compounds.

Table 1. Radical scavenging activity and antioxidant capacity of BR methanolic extracts from Hfx.
mediterranei R-4 under different cell culture conditions.

Sample DPPH Test
IC50 (µg/mL)

ABTS Test
IC50 (µg/mL)

FRAP Test
µM Fe (II)/g

β-Carotene Bleaching Test
IC50 (µg/mL)

30 min 60 min
Control 120.0 ± 4.8 2.9 ± 0.1 18.1 ± 1.4 12.1 ± 1.4 28.1 ± 2.2

0.5% Glucose 73.8 ± 8.2 **** 0.23 ± 0.058 **** 20.0 ± 1.6 ns 14.1 ± 0.7 ** 21.0 ± 2.1 ***
1% Glucose 40.3 ± 4.1 **** 0.12 ± 0.029 **** 25.3 ± 1.3 **** 1.5 ± 0.2 **** 11.9 ± 3.9 ****

1.5% Glucose 39.4 ± 4.3 **** 0.05 ± 0.004 **** 30.7 ± 1.1 **** 0.51 ± 0.07 **** 0.75 ± 0.09 ****
2% Glucose 35.2 ± 2.9 **** 0.04 ± 0.005 **** 38.7 ± 1.1 **** 0.49 ± 0.08 **** 0.65 ± 0.01 ****

2.5% Glucose 32.4 ± 3.6 **** 0.03 ± 0.003 **** 39.5 ± 0.7 **** 0.15 ± 0.01 **** 0.47 ± 0.04 ****
0.5% Starch 54.4 ± 5.1 **** 2.0 ± 0.5 **** 19.6 ± 1.4 ns 4.1 ± 0.8 **** 10.2 ± 0.1 ****
1% Starch 53.0 ± 5.3 **** 0.10 ± 0.012 **** 21.0 ± 1.1 * 2.0 ± 0.3 **** 4.3 ± 0.4 ****

1.5% Starch 51.4 ± 6.9 **** 0.10 ± 0.004 **** 22.3 ±0.8 *** 1.4 ± 0.2 **** 2.0 ± 0.2 ****
2% Starch 47.6 ± 5.6 **** 0.05 ± 0.003 **** 24.2 ± 0.9 **** 0.28 ± 0.06 **** 1.6 ± 0.08 ****

2.5% Starch 40.6 ± 5.0 **** 0.04 ± 0.006 **** 30.5 ± 1.4 **** 0.15 ± 0.008 **** 1.1 ± 0.11 ****

Data are given as means ± S.D. (n = 3); DPPH radical scavenging activity assay, antioxidant capacity determined
by radical cation (ABTS+), β-carotene bleaching test, ferric ion reducing antioxidant power (FRAP), and relative
antioxidant capacity index (RACI). Differences between groups were evaluated by one-way ANOVA followed
by a multicomparison Dunnett’s test (α = 0.05) compared with the BR extract of the control cell culture (without
glucose or starch). **** p < 0.0001, *** p < 0.001, ** p < 0.01, * p < 0.05, ns: not statistically significant. Positive
controls: Ascorbic acid for DPPH and ABTS (IC50 values of 5.1 ± 0.8 and 1.7 ± 0.06 µg/mL, respectively); BHT
for FRAP (63.1 ± 4.3 µM Fe (II)/g); propyl gallate for the β-carotene bleaching test at 30 and 60 min (IC50 values
of 1.0 ± 0.04 and 0.09 ± 0.004 µg/mL, respectively).

When compared to the standard control (complex media without an additional carbon
source), all extracts presented lower IC50 values, indicating that the addition of carbon
sources to the media not only increased the production of carotenoids but changes the
composition of the extract, thus leading to differences in the exerted antioxidant activity.
There is a trend towards an inverse correlation between the concentration of BR present
in the extract and the IC50 from all assays. In the FRAP test, the most active haloarchaeal
carotenoid extracts were those obtained from cell cultures with concentrations of glucose
of 1.5%, 2%, and 2.5% (30.7, 38.7, and 39.6 µg/mL, respectively), reducing higher concen-
trations of Fe3+ than with the positive control BHT. These results are also supported by
a Pearson’s correlation coefficient of 0.81. Regarding the β-carotene bleaching assay, the
highest antioxidant activity was observed in extracts obtained from cell cultures containing
2.5% of glucose or starch (0.15 µg/mL in both cases after 30 min of incubation; and 0.47 and
1.1 µg/mL after 60 min, respectively). Pearson’s correlation coefficients, which evaluated
the correlation between the concentration of BR and the antioxidant activity exerted by
haloarchaeal carotenoid extracts (IC50) were 0.76, 0.71, 0.74, and 0.84 for the DPPH assay,
ABTS, and β-carotene bleaching assay at 30 and 60 min, respectively.

Relative antioxidant capacity index (RACI) can be used as a reference for determining
antioxidant capacity by combining the results of different techniques [64]. Even though
RACI is a relative index and cannot provide specific data about antioxidant properties,
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it is useful for obtaining an integrated and combined vision of the antioxidant capacity
of an extract. Therefore, data from DPPH, ABTS, FRAP, and β-carotene bleaching assays
were used to determine the RACI value for each carotenoid extract obtained from Hfx.
mediterranei cells grown under different nutritional conditions previously commented (See
Sections 2.1 and 3.1.1). The results are shown in Figure 5. RACI calculations represent the
average of the standard scores obtained from the IC50 values for the different methods
used. Thus, the lower the RACI value, the higher the antioxidant activity (Figure 5). The
results supported the results presented in previous sections. The extracts obtained from
high-carbon-availability cell cultures presented higher antioxidant capacity (RACI < 0) than
those obtained from cells grown in the presence of low concentrations of glucose or starch
(RACI > 0).
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Figure 5. Relative antioxidant capacity index (RACI) of haloarchaeal carotenoid extracts from Hfx.
mediterranei growth in the presence of glucose, starch, or neither. RACI values were developed from
data obtained from the antioxidant methods applied. Each experimental sample was compared to
the control to evaluate statistical significance. **** p < 0.0001.

2.4. Antiglycemic and Antilipidemic Activity

A correlation between oxidative stress, obesity, and type 2 diabetes has been repeatedly
reported [65,66]. α-glucosidase enzyme has been reported as a relevant therapeutic target
for the management of diabetes mellitus due to its confined effect in the intestine [67].
Many plant extracts exert this type of activity [68–72]. However, this potential biomedical
strategy has not yet been evaluated in carotenoid extracts and even less in haloarchaeal
carotenoid extracts. Consequently, the ability to inhibit α-glucosidase, α-amylase, and
lipase was evaluated in Hfx. mediterranei carotenoid extracts (Table 2). All extracts ob-
tained from 1% to 2.5% glucose or starch cell cultures were significantly more effective
than the extract of a commercial drug, acarbose (35.6 ± 0.91 and 50.2 ± 1.3 µg/mL for
α-glucosidase and α-amylase, respectively). The highest activity was observed in the ex-
tract from the 2.5% glucose cell culture, with an IC50 value of 3.2 µg/mL for α-glucosidase
and 1.3 µg/mL for α-amylase. The IC50 value for α-glucosidase was lower than those
reported for many plant species, such as Ipomoea batatas (4.5–181.9 µM) [68], Morus atropur-
purea (13.2–365.4 µM) [70], Camellia sinensis (299 µg/mL) [73], and phenolic extracts from
Spirulina sp. powder (1670 µM) [74]. Hfx. mediterranei extracts were also more effective
in inhibiting α-amylase than other natural compounds were, like phycocyanin from Spir-
ulina platensis (IC50 of 150–200 µg/mL) [75], polyphenol and fucoxanthin-rich extract from
Sargassum hemiphyllum ((IC50 of 350 µg/mL) [76], and Chaetomorpha aerea extract (IC50 of
408.9 µg/mL) [77].
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Table 2. α-amylase, α-glucosidase, and lipase inhibitory activity (IC50 (µg/mL)) of BR methanolic
extracts from Hfx. mediterranei R-4 under different cell culture conditions.

Sample α-Glucosidase Test
IC50 (µg/mL)

α-Amylase Test
IC50 (µg/mL)

Lipase Test
IC50 (µg/mL)

Control 117.2 ± 3.2 86.9 ± 8.3 78.4 ± 5.6
0.5% Glucose 73.1 ± 9.7 **** 23.7 ± 3.5 **** 80.5 ± 3.5 ns
1% Glucose 25.4 ± 4.6 **** 11.5 ± 1.3 **** 75.2 ± 5.9 ns

1.5% Glucose 11.9 ± 2.9 **** 5.1 ± 0.6 **** 68.3 ± 3.2 ns
2% Glucose 6.0 ± 1.3 **** 1.9 ± 0.07 **** 24.7 ± 0.8 ****

2.5% Glucose 3.2 ± 0.6 **** 1.3 ± 0.1 **** 5.3 ± 0.4 ****
0.5% Starch 79.8 ± 8.8 **** 18.8 ± 3.1 **** 86.0 ± 4.2 ns
1% Starch 21.0 ± 2.8 **** 12.7 ± 0.9 **** 77.8 ± 3.9 ns

1.5% Starch 13.8 ± 3.3 **** 3.4 ± 0.4 **** 70.5 ± 2.6 ns
2% Starch 7.3 ± 1.3 **** 1.8 ± 0.2 **** 46.5 ± 9.7 ****

2.5% Starch 3.6 ± 0.8 **** 1.4 ± 0.1 **** 5.3 ± 0.6 ****
Data are expressed as means ± S.D. (n = 3). Differences between groups were evaluated by one-way ANOVA
followed by a multicomparison Dunnett’s test (α = 0.05) compared with the BR extract of the control cell culture
(without glucose or starch). **** p < 0.0001. ns: not statistically significant. Positive controls: Acarbose for
α-glucosidase and α-amylase tests (IC50 values of 35.6 ± 0.91 and 50.2 ± 1.3 µg/mL, respectively) and Orlistat for
the lipase test (IC50 values of 37.5 ± 1.0 µg/mL).

Pancreatic lipase is an enzyme that plays a key role in the digestion of lipids. It is
responsible for the breakdown of triglycerides in the gastrointestinal tract so that they can
be absorbed in the form of fatty acids [78]. When inhibited, a hypolipidemic effect appears,
since fewer fats are absorbed [79]. The highest inhibitory activity has been detected in those
extracts from 2.5% glucose or starch cell cultures, with IC50 values of 5.3 µg/mL, which was
significantly lower than those observed in the internal control (78.4 µg/mL) and those from
the commercial drug Orlistat (37.5 µg/mL), respectively. Pearson’s correlation coefficient
demonstrated a clear correlation (r = 0.9) between the concentration of BR in haloarchaeal
extracts and their inhibitory lipase activity. Lipase inhibition by Hfx. mediterranei carotenoid
extracts was stronger than by others previously reported: flavonoids from Litchi chinensis
that reach a maximum of inhibition of 44.69% with a concentration of 7000 µg/mL [80],
Daisaikoto extract (IC50 = 13,400 µg/mL) [81], and Crocus cancellatus subsp. damascenus
extract (5000 µg/mL) [82].

2.5. Carotenoid Composition by HPLC-MS

The carotenoid extracts obtained from the cell cultures supplemented with 0.5–2.5%
glucose or starch were analyzed by HPLC-MS to determine their composition. The m/z
value (740.6) for BR was detected at several retention times along the elution, ranging from
3 to 8 min. These results indicated the presence of different BR isomers. In Figure 6, it can be
observed how the total amount of bacterioruberins (without taking into consideration the
different isomers) slightly increased in a positive correlation with the concentration of the
carbon source in the culture media from where they were obtained. BR constituted between
68% and 81% of the identified carotenoids, coinciding with previous results that show this
carotenoid as the major constituent of haloarchaeal carotenoid extracts [19,35,83–85].

There is very little information available regarding the identification of BR isomers.
Flores and collaborators reported the detection of different BR isomers in Haloterrigena sp.
strain SGH1, with retention times between 10.4 and 12.1 min [19]. Later, Lizama et al.,
2021 analyzed the composition of carotenoid extracts obtained from six different species
belonging to the genus Haloarcula and Halorubrum, which, instead, eluted between 4.45
and 6.31 min [58]. In addition, they identified for the first time double isomeric BR forms,
with eluted at 7 and 8 min, respectively. In our carotenoid extracts, BR eluted from 3 to
8 min, which coincides closely with the results of [58]. Given the lack of knowledge and
the differences in techniques, it is difficult to compare the results. However, what seems to
be clear is that the different isomers elute in a particular order. We identified five different
retention time zones in which BR was identified (Table 3), which agree with the isomers



Mar. Drugs 2022, 20, 659 9 of 17

reported in the bibliography [19,58]. The detection of BR between 7 and 7.9 min indicates
the presence of a double isomeric form [58].
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Figure 6. Percentage of total BR in relation to the total of carotenoids identified in each sample.
Each experimental sample was compared to the control to evaluate statistical significance. ns: not
significant, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

Table 3. Previously reported retention times for each BR isomer and BR retention times detected in
Hfx. mediterranei carotenoid extracts (present study).

BR Isomer

Retention Times (min)

Flores et al., 2020 Lizama et al., 2021 Hfx. mediterranei
(Present Results)

All trans-BR 10.4 4.45 3–4
5-cis BR 11.2 4.92 4.2–4.6
9-cis BR 11.7 5.91 4.8–5.2

13-cis BR 12.1 6.31 5.4–5.7
5-cis-26-cis-BR - 7.02 7–7.9
9-cis-26-cis-BR - 8.04 7–7.9

Once the different isomers were identified by their retention times, the percentage
that each of them represented over the total of carotenoids was calculated (See Section 3.5)
(Figure 7). All-trans-BR was the most abundant BR isomer representing between 28% and
44% of the total carotenoid content, similar to what was previously described [19], and
moderately less than reported by Mandelli and collaborators [52]. The internal control, an
extract from a cell culture without a supplementary carbon source, presented only all-trans-
BR and 9-cis-BR isomers; while the rest of the extracts, obtained from cells exposed to higher
concentrations of carbon, were composed of a mix of all isomers (all-trans-BR, 5-cis-BR,
9-cis-BR, 13-cis-BR and at least a double isomeric BR form). 5-cis-BR, 9-cis-BR, and 13-cis-BR
were found in percentages of 9.6–19.2%, 5.8–12.8%, and 2.6–14.8%, respectively, which is
in agreement previous results [19]. Therefore, the nutritional conditions influence the BR
isomers produced by Hfx. mediterranei. In fact, increasing concentrations of carbon led to
higher percentages of all-trans-BR, 5-cis-BR, and the double isomeric BR form, whereas the
presence of 9-cis-BR and 13-cis-BR was reduced. The observed tendency was comparable
in extracts obtained from both glucose- and starch-supplemented cell cultures. Thus, it
seems more related to the concentration than to the type of carbon source. A previous
study on Halococcus morrhuae and Halobacterium salinarium concluded that 13-cis-BR was
more abundant than 9-cis-BR and 5-cis-BR in their carotenoid extracts [52], which differs
from our findings in Hfx. mediterranei.



Mar. Drugs 2022, 20, 659 10 of 17Mar. Drugs 2022, 20, 659  11  of  18 
 

 

 

Figure 7. Percentage of (A) all‐trans‐BR, (B) 5‐cis‐BR, (C) 9‐cis‐BR, (D) 13‐cis‐BR, and (E) double iso‐

meric‐BR in relation to the total of carotenoids identified in each sample. Each experimental sample 

was compared to the control to evaluate statistical significance. ns: not significant, * p < 0.05, ** p < 

0.01, *** p < 0.001, **** p < 0.0001. 

Monoanhydrobacterioruberin (MABR) and bisanhydrobacterioruberin (BABR) were 

detected in the presence of 7.8–9.1% and 0.7–4.0% (Figure 8), respectively, which agrees 

with other studies  [83]. MABR abundance slightly  increased  in  the extracts  from high‐

carbon‐availability cell cultures, whereas BABR clearly decreased. Trisanhydrobacterio‐

ruberin (TABR) was also detected in all extracts, as previously reported [86]. 

Xanthophylls were detected in all extracts except the control without an additional 

carbon source. Particularly, cantaxanthin percentage increased with carbon availability in 

the culture media up to 3.9% of total carotenoids. Astaxanthin and zeaxanthin were also 

identified in percentages of 0.6–1.7% and 0.1–1.5%, respectively. They showed an inverse 

correlation with the concentration of carbon in the culture media. Previous publications 

have also described the synthesis of xanthophylls in halophilic microorganisms [36,85,87]. 

Contro
l

0.
5% 1%

1.
5% 2%

2.
5%

0.
5% 1%

1.
5% 2%

2.
5%

0

10

20

30

40

50
%

A
ll

-t
ra
n
s
-B

R
A

Glucose Starch

***

*
ns

ns
ns ns

ns

***
** **

Contro
l

0.
5% 1%

1.
5% 2%

2.
5%

0.
5% 1%

1.
5% 2%

2.
5%

0

5

10

15

20

25

%
 5

-c
is
-B

R

Glucose Starch

B

****
**** ****

****
****

**** ****
****

**** ****

Contro
l

0.
5% 1%

1.
5% 2%

2.
5%

0.
5% 1%

1.
5% 2%

2.
5%

0

5

10

15

20

25

30

%
 9

-c
is

-B
R

Glucose Starch

C

****
****

****
****

****

****

****

****
****

****

Contro
l

0.
5% 1%

1.
5% 2%

2.
5%

0.
5% 1%

1.
5% 2%

2.
5%

0

5

10

15

20

%
 1

3
-c
is
-B

R

Glucose

D

Starch

****

****

****
***

**

****

****

***

**
ns

Contro
l

0.
5% 1%

1.
5% 2%

2.
5%

0.
5% 1%

1.
5% 2%

2.
5%

0

5

10

15

20

%
 D

o
u

b
le

 i
s

o
m

e
ri

c
 B

R

Glucose Starch

E

***
***

****
****

****

***

****

**** ****
****

Figure 7. Percentage of (A) all-trans-BR, (B) 5-cis-BR, (C) 9-cis-BR, (D) 13-cis-BR, and (E) double
isomeric-BR in relation to the total of carotenoids identified in each sample. Each experimental
sample was compared to the control to evaluate statistical significance. ns: not significant, * p < 0.05,
** p < 0.01, *** p < 0.001, **** p < 0.0001.

Monoanhydrobacterioruberin (MABR) and bisanhydrobacterioruberin (BABR) were
detected in the presence of 7.8–9.1% and 0.7–4.0% (Figure 8), respectively, which agrees with
other studies [83]. MABR abundance slightly increased in the extracts from high-carbon-
availability cell cultures, whereas BABR clearly decreased. Trisanhydrobacterioruberin
(TABR) was also detected in all extracts, as previously reported [86].
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Figure 8. Percentage of (A) monanhydro-BR (MABR) and (B) bisanhydro-BR (BABR) in relation to
the total of carotenoids identified in each sample. Each experimental sample was compared to the
control to evaluate statistical significance. ns: not significant, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

Xanthophylls were detected in all extracts except the control without an additional
carbon source. Particularly, cantaxanthin percentage increased with carbon availability in
the culture media up to 3.9% of total carotenoids. Astaxanthin and zeaxanthin were also
identified in percentages of 0.6–1.7% and 0.1–1.5%, respectively. They showed an inverse
correlation with the concentration of carbon in the culture media. Previous publications
have also described the synthesis of xanthophylls in halophilic microorganisms [36,85,87].

Herein, we report for the first time the antioxidant profile of Hfx. mediterranei carotenoid
extracts obtained under different nutritional conditions. The combination of low salinity
and elevated carbon availability led to one of the highest concentrations of BR reported
in the literature. These results have shown how carbon source concentration can modify
the composition and, in consequence, the properties of Haloferax mediterranei carotenoid
extracts, which is of great relevance in the optimization process of the production of these
compounds for further biotechnological or biomedical application. Furthermore, haloar-
chaeal carotenoids have proven to be very successful in the inhibition of enzymes involved
in the digestion of carbohydrates and lipids, which opens a new window for their applica-
tion in biomedicine. These findings are key to improve haloarchaeal carotenoid production
and their use as nutraceuticals.

3. Materials and Methods
3.1. Culture Growth Conditions
3.1.1. Cultivation in the Presence of Different Concentrations of Carbon Sources

Hfx. mediterranei strain R-4 (ATCC33500) was used for all experiments. Cells were
grown in a complex medium containing 12.5% (w/v) of inorganic salts [29,88], 0.5% (v/w)
yeast extract, and 0.5–2.5% (w/v) of a carbon source (glucose (BioChemica, CAS: 50-99-7),
soluble starch (Merck, CAS:9005-84-9) or oxalacetic acid (Alfa Aesar CAS: 328-42-7)). pH
was buffered using 30 mM Tris-HCl (pH 7.3). Growth conditions included 36.5 ◦C and
shaking at 170 rpm (Infors HT Multitron Standard) based on the data reported by [24].
Cultures were incubated until three days had passed after the maximum of absorbance was
reached (stationary phase of growth). Since BR is a secondary metabolite, the stationary
phase is where the majority of BR is synthesized. Then, the cells were centrifuged at
7800 rpm for 30 min to remove the supernatant. The cells were washed twice with a 10%
(w/v) inorganic salts solution. Growth-specific velocity (µ) Equation (1) and duplication
time (Dt) Equation (2) were calculated for each growth condition as follows:

µ = ln (X − X0)/(t − t0), (1)

Dt = ln(2)/µ (2)
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3.1.2. Growth Determination

Growth was determined by measuring the turbidity of the culture at 600 nm using a
UV-Vis spectrophotometer (Agilent, Santa Clara, CA, USA).

3.2. Carotenoid Extraction and BR Quantification

Cell pellets were suspended in pure acetone in a ratio of 1 mL of acetone per 10 mL of
cell culture. Then, they were incubated at 4 ◦C overnight and then centrifuged (7800 rpm,
30 min) to obtain the carotenoid extract. BR concentration was calculated using the follow-
ing expression [24]:

mg·L−1 = (OD494/2540) × 104 (3)

BR extracts were stored at −20 ◦C in a solution.
Absorption UV–visible spectra were obtained at room temperature on a Cary 60

UV-Vis spectrophotometer (Agilent, Santa Clara, CA, USA) using the scan mode, with a
300–800 nm absorbance range. Acetone was used as blank and baseline correction. Sample
dilutions were made with acetone to avoid saturation of the spectrophotometric monitoring
of the extracts (1:5 dilution for 0.5% and 1% starch extracts; 1:10 dilution for 0.5%, 1% and
1.5% glucose extracts; and 1:20 dilution for 1.5–2.5% starch and 2–2.5% glucose extracts).
The spectra are represented with the dilution factor applied.

3.3. In Vitro Antioxidant Activity

With the aim of determining the antioxidant activity of haloarchaeal carotenoid ex-
tracts, four assays were carried out based on previous research published by Loizzo and
collaborators [89,90]. Acetone was removed, and serial dilutions were prepared with
methanol. During the FRAP assay, the reduction of tripyridyltriazine (TPTZ)-Fe3+ by the
carotenoids was quantified. The absorbance was read at 595 nm. Radical scavenging
activity was assessed using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-azino-bis(3-
ethylbenzothiazoline-6-sulfonic) acid (ABTS) assays. The DPPH assay is based on the
spectrophotometric detection of the bleaching of the DPPH radical at 517 nm after 30 min
of exposure to the samples. Regarding the ABTS assay, a mix containing the ABTS radical
cation and the sample was prepared and incubated for 6 min in the dark. Then, the activity
was established by measuring at 734 nm. The β-carotene bleaching test was carried out to
evaluate the inhibition of lipid peroxidation by the samples.

3.4. Carbohydrate-Hydrolyzing Enzymes and Lipase Inhibitory Activities

The identification of compounds capable of inhibiting α-glucosidase and α-amylase is
of much interest to the pharmaceutical and medical industries since these enzymes could be
useful in the modulation of postprandial hyperglycemia; and therefore, in the management
of the prediabetes condition. A pancreatic lipase inhibitory assay was used to determine
the ability of the carotenoid extracts to reduce fat absorption. The protocols used were
those described elsewhere by Loizzo and collaborators [82,89–91]. Samples were mixed
with 4-nitrophenyl octanoate (NPC), Tris-HCl buffer (pH 8.5), and an enzyme solution in a
96-well plate and incubated at 37 ◦C for 30 min. The absorbance was measured at 405 nm.

3.5. Determination of the Composition of Carotenoid Extracts by HPLC Analysis

The HPLC analysis of carotenoids in acetone was performed using a Zorbax extended -
C18 column (Agilent, Santa Clara, CA, USA) (2.1× 50 mm, 1.8 µm) on an Agilent 1200 series
system (Santa Clara, CA, USA). To determine the mass spectra of the different compounds,
a 6490 Triple Quad LC/MS system (Agilent, Santa Clara, CA, USA) was used equipped
with an electrospray ionization source (ESI) jet stream operating in positive scan mode
(m/z range of 300–900) with 0.1 a.m.u (atomic mass unit) precision and controlled by
MassHunter Workstation Software (Agilent, B.05.00, Santa Clara, CA, USA). The following
specific working conditions were used: capillary voltage 3000 V, gas flow rate 11 L min−1,
gas temperature 290 ◦C, sheath gas flow rate 12 L min−1, sheath gas temperature 300 ◦C,
and nebulizer pressure 35 psi. The percentage represented by each carotenoid was cal-
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culated by dividing the sum of the areas of a carotenoid by the sum of the areas of all
identified carotenoids.

3.6. Statistical Analysis

All experiments were carried out in triplicate. The results are expressed as the
mean ± standard deviation (SD). Prism GraphPad Prism version 7.04 for Windows (Graph-
Pad Software, San Diego, CA, USA) was used to determine the concentration of carotenoid
extracts that exerted 50% inhibition (IC50). In the biological tests, differences within and
between groups were evaluated by one-way ANOVA followed by a multicomparison
Dunnett’s test. Pearson’s correlation coefficient (r), assessment of repeatability, linear re-
gression, average, and relative standard deviation calculation were completed using Prism
GraphPad Prism version 7.04 for Windows. The relative antioxidant capacity index (RACI)
was calculated as described elsewhere [64,92]. All samples were ranked by the IC50 values
and the SD. The dimensionless score was obtained by subtracting the mean from the raw
data divided by the standard deviation. The standard scores of a sample for different
antioxidant assays were calculated by combining data from different methods without unit
limitation and no variance among techniques. All antioxidant assays were included, i.e.,
DPPH, ABTS, FRAP, and β-carotene bleaching tests.
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