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Abstract: Chrysomycin A is one of the most promising therapeutic candidates for treating infec-
tions caused by multidrug-resistant Gram-positive bacteria. By hybridizing next-step generation
(Illumina) and third-generation (PacBio) sequencing technologies, a high-quality chromosome-level
genome together with a plasmid was firstly assembled for chrysomycin A-producing marine strain
891. Phylogenetic analysis of the 16S rRNA gene and genome sequences revealed that this strain
unambiguously belonged to the genus Streptomyces, and its genomic features and functional genes
were comprehensively analyzed and annotated. AntiSMASH analysis of this strain unveiled one key
biosynthetic gene cluster, T2PKS, responsible for the biosynthesis of chrysomycin, the biosynthesis
pathway of which was putatively proposed. These findings definitely shed light on further investiga-
tion for construction of a robust industrial strain with high-yield chrysomycin A production using
genetic engineering techniques and combinatorial biology approaches.

Keywords: marine strain; Streptomyces; whole-genome; gene mining; chrysomycin A

1. Introduction

Terrestrial and marine Streptomyces strains play an important role in new drug discov-
ery and development since they harbor a huge number of secondary metabolite biosyn-
thetic gene clusters (BGCs) to make a diverse array of bioactive substances with therapeutic
potential [1,2]. Streptomyces bacteria are known to produce numerous natural products,
most of which are clinically useful compounds with antibacterial, antifungal, anticancer,
immunosuppressive, and other properties. It is well known that daptomycin is a cyclic
lipopeptide antibiotic derived from the organism Streptomyces roseosporus [3], rapamycin is
used as immunosuppressive metabolite from actinomycete species [4], and avermectins
are a series of drugs and pesticides from Streptomyces avermitilis [5]. However, the misuse
and overuse of existing antibiotics in human medical practice is liable to cause seriously
antimicrobial resistance, which has emerged as one of the leading public health threats
around the world [6]. Therefore, there is an urgent need to constantly search for new
drug candidates to alleviate this deteriorative tendency. In the post-genomic era, the ac-
cumulation of genomic and transcriptomic information is accelerating and has revealed
that the metabolic capacity of virtually all organisms is vastly underappreciated. Genome
mining is one of the effective strategies to increase the discovery rate and facilitate the
characterization of novel compounds and their biosynthetic pathways [7].
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Chrysomycin analogs are one group of glycosides with a benzonaphthopyranone
structure obtained from several Streptomyces strains [8,9], which display a broad spec-
trum of biological properties, including anti-phage, anti-bacterial, and cytotoxic activi-
ties [10–13]. Especially, chrysomycin A (Figure 1) showed a potent inhibitory effect on
multidrug-resistant (MDR) and extensively drug-resistant (XDR) Mycobacterium tuberculosis,
methicillin-resistant Staphylococcus aureus (MRSA), and vancomycin-resistant Enterococcus
(VRE) [13–16]. Chrysomycin A was originally isolated from strain Streptomyces A-419 in
1955 as a mixture with chrysomycin B [10]. Strain 891 was derived from sediments of the
South China Sea and found to produce chrysomycin A under optimal conditions with
the highest yield (3600 mg/L) among all documented strains (Table S1) [17]. In order to
decipher and characterize genomic features of this marine strain, whole genome sequencing
and analysis were well conducted in this work, and the BGC responsible for the synthe-
sis of chrysomycin was extensively analyzed. To our knowledge, it is the first report on
bioinformative analysis of a chrysomycin-producing Streptomyces strain.
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Figure 1. Chemical structure of chrysomycin A.

2. Results
2.1. Morphology, Classification, and Phylogenetic Analysis of Strain 891

The opaque colonies of strain 891 were spherical and wrinkled, and its curly or
spiral mycelia cultivated for 14 days were differentiated into spore chains (Figure 2),
suggesting this isolate had the common morphological characteristics of Streptomyces.
BLAST analysis of the 16S rRNA gene sequence displayed that strain 891 had the highest
similarity (98.93%) with the strain Streptomyces smyrnaeus DSM 42105. By hybridizing next-
step generation (Illumina) and third-generation (PacBio) sequencing technologies, a high-
quality chromosome-level genome of strain 891 together with a plasmid was assembled,
and its sequence was deposited into GenBank and linked to BioProject PRJNA615006.
Further, based on the 16S rRNA gene and whole genome sequences phylogenetic analysis,
this strain made a monophyletic group with S. smyrnaeus DSM 42105, deposited in the
NCBI database (Figures 3 and 4) [18]. The average nucleotide identity (ANI) value for
strains 891 and DSM 42105 was determined as 87.04%, indicating these strains belonged
to species that were significantly different [19]. Accordingly, strain 891 was undoubtedly
classified into the genus Streptomyces.
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2.2. Genome Features of Strain 891

The whole genome of strain 891 consisted of one linear chromosome and a linear
plasmid with 7,804,062 bp and 35,476 bp, respectively (Table 1). As many as 6871 protein-
encoding genes were present in the chromosome and the longest genes had 78,261 bp.
The GC content of the gene region was 71.44%, which was greater than that (68.87%)
of the whole genome (Table S2). In strain 891, the total RNA pool included 18 rRNAs,
57 tRNAs, and 103 ncRNAs, in which the majority of these tRNAs were located in the
chromosome’s intermediate region. It is normal that no rRNA, tRNA, or any non-coding
RNA gene was present in the plasmid of strain 891. Essential genes associated with cell
maintenance, including transcription, translation, and DNA replication, are usually sited in
the “core” region of the chromosome of the Streptomyces genome [20,21]. The BLAST online
alignment tool was used to identify regions of nucleotide similarity between the strain
891 complete plasmid sequence and the nr database maintained by NCBI database. The
result showed no very similar plasmid sequence detected in other bacterial species or even
genera. Fifteen predicted CRISPRs were present in strain 891, and two of them included
more than 20 spacers located at the end of the linear chromosome (Table S3). The type I-B
CRISPR-Cas immune system in strain 891 consists of seven CRISPR-associated (cas) genes
flanked by two CRISPR loci (Table 2), which constitute its powerful immune system [22].
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Table 1. Genomic features and annotation of strain 891.

Features Chromosome Plasmid

Genome topology linear linear
Genome size (bp) 7,804,062 35,476
GC content (%) 71.11 68.31

Open reading frames 6871 37
Gene total length (bp) 6,656,877 30,870

Gene density (genes per kb) 0.88 1.043
Longest gene length (bp) 78,261 4968
Gene average length (bp) 968.84 834.32

GC content in gene region (%) 71.44 68.62
rRNA genes 18 0
tRNA genes 57 0

ncRNA genes 103 0
Secondary metabolite BGCs 26 0

Genes assigned to Swiss-Prot 4236 5
Genes assigned to KEGG 2232 2

Genes assigned to GO 4675 7
Genes assigned to NR 6581 25

Genes assigned to COG 5808 11
Genes assigned to CARD 55 0
Genes assigned to CAZy 250 0

CRISPR repeats 15 0
GenBank accession number CP050693 CP050694

Table 2. Location of CRISPR-associated genes and repeats in strain 891.

Positions Functions

CRISPR repeat No.1 7,701,174–7,702,715 CRISPR repeat sequences

cas gene

7,703,460–7,703,765 CRISPR-associated endoribonuclease Cas6
7,705,207–7,706,280 type I-B CRISPR-associated protein Cas7/Cst2/DevR
7,706,474–7,707,001 CRISPR-associated protein Cas5
7,707,097–7,709,430 CRISPR-associated helicase/endonuclease Cas3
7,709,427–7,709,942 CRISPR-associated protein Cas4
7,709,942–7,710,922 CRISPR-associated protein Cas1
7,711,064–7,711,192 CRISPR-associated protein Cas2

CRISPR repeat No.2 7,712,784–7,714,256 CRISPR repeat sequences

2.3. Genome Sequence Annotation of Strain 891

To predict protein sequences, 6871 non-redundant genes were subjected to similarity
analysis based on five public databases. According to the COG database, the number of
unknown function genes was the highest, and up to 1994, accounted for 29.02% of total
protein-encoding genes. That was followed by “Transcription”, “Carbohydrate transport
and metabolism”, and “Amino acid transport and metabolism” as the most gene-rich
classes in the COG groupings (Figure 5). GO analysis was used to categorize genes into
three categories according to matches with known sequences. The largest functional groups
in the biological process category were cellular nitrogen compound metabolic process. In
the cellular component category, the largest functional groups were cell, and the largest
functional groups in the molecular function category were ion binding. Of the eight
classifications of KEGG pathways, metabolism (carbohydrate metabolism and amino acid)
contained the highest number of genes, followed by brite hierarchies (protein families:
signaling and cellular processes, genetic information processing, metabolism) (Figure 5).
These findings suggest the presence of an enriched and varied array of carbohydrates and
amino metabolism functions that enable higher energy conversion efficiency.
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analysis.

2.4. Additional Annotation on Prophage, Genomic Islands, Antibiotic Resistance, and
Carbohydrate Genes

Using the PHASTER (PHAge Search Tool Enhanced Release) approach, one complete
prophage with a length of 45 kb and 50 genes and one truncated prophage with a size of
14 kb and 25 genes were found in the chromosome of strain 891 (Figure 6). A total of ten
genomic islands (GIs) was predicted, in which GI7 overlapped with an intact prophage.
Strain 891 harbored several significant pathogenic and virulence-related genes (Virulence
Factors, VFs) including KatAB, ClpC, IdeR, RelA, and Mycobactin, which were potential
targets for developing new treatment methods and therapies, as well as proposed functions
shown in Table S5. The finding of 37 antibiotic resistance genes (AbR genes), 21 antibiotic
target genes, and one antibiotic biosynthesis gene was made using the Antibiotic Resistance
Database (CARD). These antibiotic resistance genes of strain 891 are marked as triangles
between circles 3 and 4 in Figure 6, and several genes (such as vanRO and mtrA) were
found to be two-component system response regulators. CAZy (Carbohydrate-Active
Enzymes Database) comprises families of enzymes related to glycosidic bond degradation,
modification, and generation and consist of various classes including glycoside hydrolases
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(GHs), critical enzymes for lignocellulosic biomass degradation, glycosyl transferases (GTs),
polysaccharide lyases (PLs), carbohydrate esterases (CEs), auxiliary active enzymes (AAs),
and carbohydrate-binding modules (CBMs) [23]. CAZy analysis of strain 891 revealed a
total of 250 potential genes including 99 GHs, 62 GTs, 39 CEs, 23 CBMs, 21 AAs, and 6 PLs.
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2.5. Analysis of Secondary Metabolite Biosynthetic Gene Clusters

AntiSMASH analysis resulted in discovery of 26 putative secondary metabolite BGCs
including 6 PKSs, 6 NRPSs, 5 terpenes, and 9 other unknown clusters in strain 891 (Table S4).
Five of these BGCs showed high similarity (>80% of genes showed similarity) with those
BGCs responsible for biosynthesis of geosmin, ectoine, desferrioxamine E, marineosin, and
isorenieratene. It is noteworthy that cluster 21 displayed 74% similarity with reference
chrysomycin BGC. The biosynthesis of gilvocarcins M and V consisted of two initial sub-
strates (propionyl CoA and acetyl CoA) and nine malonyl CoAs as extending units as well
as a series of successive oxidation, reduction, rearrangement, and methylation [9]. Owing
to the same motif of chrysomycin and gilvocarcin, these natural products have similar
biosynthetic pathways (Figure 7b). Considering the identity value, the BGC responsible
for biosynthesis of chrysomycins was identified and consisted of 30 ORFs, which were
respectively named based on their precedent chry genes (FN565166.1) from a cosmid library
of Streptomyces albaduncus AD819 [24].

By further comparison with the characterized BGC for biosynthesis of chrysomycin
in strain AD819 (Figure 7a), chry891 had fewer regulatory or resistance mediating genes,
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such as absent chryX and X4–9. Sequence alignment analysis suggested that chry891_R
and chry891_M were two separate ORFs owing to presence of a stop codon between them.
Nearly all genes responsible for the PK scaffold and other genes accountable for the sugar
moiety were positionally adjusted in the corresponding part of the reference chry clus-
ter. Blastp predicted chry891_X3 was one member of the Multiple Antibiotic Resistance
Regulator (MarR) family. MarR homologs govern stress responses, pathogenicity, and the
breakdown or export of hazardous substances such as phenolic compounds, antibiotics,
and common household detergents [25]. Gene chry891_X2 was putatively responsible
for coding CitB, a DNA-binding response regulator with REC and HTH domains, which
belongs to the NarL/FixJ family. CitB is a member of the two-component regulatory system
CitA/CitB, which is required for expression of citrate-specific fermentation genes. Phospho-
rylated CitB binds to two sites in the citS–citC intergenic region, where it probably activates
transcription of both genes [26]. Besides that, three unknown genes were integrated in
the chry891 cluster, and premised on their conserved domains, chry891_Xa was most likely
emrB, encoding a DHA2 family efflux MFS (major facilitator superfamily) transporter per-
mease subunit. As the largest family of transporters, the MFS is a typical type of multidrug
resistance efflux pump, associated closely with antibiotic resistance and taking part in
several important processes of bacterial cell physiology, including cell to cell communica-
tion, and increasing the virulence potential of several bacterial pathogens [27]. Chry891_Xb
and chry891_Xc were predicted to encode 4′-phosphopantetheinyl transferase superfamily
protein and FAD-dependent monooxygenase, which are important co-factors of secondary
metabolite biosynthesis catalytic enzymes. Compared to chry cluster (FN565166.1), chry891
cluster retrenched at least seven genes involved in regulation or resistance and enlarged
three candidates for regulatory or co-factors, which could further promote chrysomycin
biosynthesis. In addition, the gene assemblies in charge of the PK scaffold and sugar moiety
nearly swapped positions, which demonstrated the plasticity of horizontal gene transfer in
type II PKS.
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3. Conclusions

A high-quality chromosome-level genome and a plasmid were first de novo assembled
for chrysomycin A-producing marine strain 891 by a combination of next-step generation
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(Illumina) and third-generation (PacBio) sequencing technologies. Phylogenetic analysis
of the 16S rRNA gene and genome sequences revealed that this strain was undoubtedly
classified into the Streptomyces genus. Since the function of bacterial defense to self-toxicity
is intimately linked to prophages, genomic islands, virulence factors, and antibiotic resis-
tance genes, the abundance of the corresponding genes in strain 891 should significantly
contribute to chrysomycin production capability in vivo without self-toxicity, as it is a
high-yielding strain [28–30]. AntiSMASH analysis of this strain resulted in the discovery of
one key BGC T2PKS responsible for the biosynthesis of chrysomycin, and its biosynthesis
pathway was putatively proposed. These findings may pave the way for the full develop-
ment of strain 891 to construct a robust strain with high-yield chrysomycin A production
using genetic engineering techniques and combinatorial biology approaches.

4. Materials and Methods
4.1. Microbes and Cultivation

Strain 891 was isolated from mangrove sediments of the South China Sea in 2017,
and a suspension of culture containing mycelia in ISP2 supplemented with glycerol (20%
v/v) was stored at −80 ◦C. This strain was inoculated into the ISP2 medium to culture at
28 ◦C and cultivated for several days followed by morphology inspection and genome
sequencing.

4.2. Phylogenetic Analysis

Strain 891 was identified based on phylogenetic analysis of 16S rRNA gene and
genome sequences. The 16S rRNA gene phylogenetic tree was delineated via a neighbor-
joining mode which was constructed using the Tamura3-parameter model in MEGA11
with 1000 bootstrap replicates [31]. We generated the genomic phylogenetic tree by using
GTDB-TK [32] (Figure 4). In addition, an ANI value of the two strains was calculated by
the online web-server EZBioCloud ANI tool (ANI Calculator, https://www.ezbiocloud.
net/tools/ani) [33].

4.3. Genome Sequencing and Assembly

Genomic DNA was extracted following CTAB extraction protocol. The integrity
and purity were assessed by 1% agarose gel electrophoresis and then dissolved in sterile
water and adjusted to a concentration of 149 ng/µL. The next-generation and the third-
generation sequencing technologies utilized the Illumina HiSeq 2500 platform (San Diego,
CA, USA) and PacBio Sequel platform (Menlo Park, CA, USA), respectively. The next-
generation sequencing was performed using TruSeqTM DNA Sample Prep Kit (Illumina)
with Standard Illumina library preparation protocols. The libraries were quantified by
Pico Green dsDNA quantitation assay and qualified by the Agilent Technologies 2100
bioanalyzer (Santa Clara, CA, USA). The third-generation genome sequencing libraries
were performed using Pacbio Template Prep Kit 1.0 (Pacbio) with Standard 20 kb Template
Preparation protocols (Using BluePippin Size Selection). The libraries were quantified
by Qubit 3.0 Fluorometer (Woodlands Central, Singapore) after each bead purification
procedure and qualified by the Agilent Technologies 2100 bioanalyzer. After sequencing,
the paired-end raw data were saved in FASTQ format. The third-generation sequencing
reads were assembled by HGAP (v4, http://www.pacb.com/devnet/) [34] and CANU
(v1.7.1, https://canu.readthedocs.io/en/latest/) [35] softwares into contigs.

Quality control on paired-end raw reads from next-generation sequencing data used
FastQC, the 3′ end of DNA adapter contamination was decontaminated with Adapter
Removal protocol, and then SOAPdenovo2 was used to perform quality correction on
all reads based on the k-mer frequency; the k-mer setting used for the correction was
17. Finally, Pilon software (v1.18, https://github.com/broadinstitute/pilon) was utilized
to correct the third-generation contigs with the above-mentioned high-quality second-
generation sequencing data and stitch together to assemble a complete strain 891 genome
sequence [36]. GeneMarkS software (v4.32, http://topaz.gatech.edu/GeneMark/) was

https://www.ezbiocloud.net/tools/ani
https://www.ezbiocloud.net/tools/ani
http://www.pacb.com/devnet/
https://canu.readthedocs.io/en/latest/
https://github.com/broadinstitute/pilon
http://topaz.gatech.edu/GeneMark/
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used to predict protein-coding genes in strain 891 genome [37]. The tRNA genes were
predicted using tRNAscan-SE (v1.3.1, http://lowelab.ucsc.edu/tRNAscan-SE/) and rRNA
genes using Barrnap (v0.9, http://www.vicbioinformatics.com/software.barrnap.shtml).
CRISPRs were forecasted by obtaining directed repeats (DRs) and spacers in the whole
genome [38].

4.4. Genome Sequence Annotation

All predicted protein-encoding genes were annotated using DIAMOND blastp to
perform sequences alignment based on the NCBI NR database, COG database, and Swiss-
Prot database, respectively [39]. Gene annotations of KEGG (Kyoto Encyclopedia of Genes
and Genomes) Ortholog and Pathway was mainly completed by KEGG’s KAAS (v2.1,
https://www.genome.jp/tools/kaas/) automated annotation system [40]. Genes were also
annotated using Blast2GO software (v1.0, https://www.blast2go.com/) in Gene Ontology
(GO) [41].

4.5. Additional Bioinformatics Analysis

PHASTER (PHAge Search Tool Enhanced Release, http://phaster.ca/) was used
to predict the presence of prophages in the genome of strain 891 [42]. Predicting the
presence of genomics islands was conducted through IslandViewer 4 [43]. The gene-coding
protein sequence via BLAST software (v2.5.0, https://blast.ncbi.nlm.nih.gov/Blast.cgi)
was compared with the amino acid sequence (Set A) in the Virulence Factors of Pathogenic
Bacteria database to predict the presence of virulence factor-related genes and antibiotic
resistance genes in the genome. Hmmscan software (v3.2.1, http://hmmer.org/) was used
to predict the presence of CAZy enzyme genes in genomic sequence.

4.6. Analysis of Secondary Metabolite Biosynthetic Gene Clusters

Secondary metabolite BGCs of strain 891 were predicted by antiSMASH 6.0 (https:
//antismashdb.Secondarymetabolites.org/#/start, accessed on 7 March 2022) with re-
laxed detection, and 7 of 9 extra features were selected to obtain copious information for
analysis [44].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/md20050287/s1, Table S1: Information associated with the dif-
ferent chrysomycin (A)-producing species; Table S2: The statistical results of sequence-length dis-
tribution of the third-generation sequencing data; Table S3: CRISPR arrays in strain 891; Table S4:
Putative biosynthetic gene clusters (BGCs) coding for secondary metabolites in strain 891; Table S5:
Putative function of Virulence Factors in strain 891. References [45–47] are cited in the supplementary
materials.
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