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Abstract: Sphingomyelin is a cell membrane sphingolipid that is upregulated in synovial sarcoma (SS).
Jaspine B has been shown to inhibit sphingomyelin synthase, which synthesizes sphingomyelin from
ceramide, a critical signal transducer; however, jaspine B’s low bioavailability limits its application
as a promising treatment option. To address this shortcoming, we used microfluidics to develop a
liposomal delivery system with increased anticancer efficacy. The nano-liposome size was determined
by transmission electron microscopy. The jaspine B liposome was tested for its tumor inhibitory
efficacy compared to plain jaspine B in in vitro and in vivo studies. The human SS cell line was tested
for cell viability using varying jaspine B concentrations. In a mouse model of SS, tumor growth
suppression was evaluated during four weeks of treatment (3 times/week). The results show that
jaspine B was successfully formulated in the liposomes with a size ranging from 127.5 ± 61.2 nm. The
MTT assay and animal study results indicate that jaspine B liposomes dose-dependently lowers cell
viability in the SS cell line and effectively suppresses tumor cell growth in the SS animal model. The
novel liposome drug delivery system addresses jaspine B’s low bioavailability issues and improves
its therapeutic efficacy.

Keywords: liposomes; jaspine B; microfluidic method; drug delivery; synovial sarcoma

1. Introduction

As, a marine sponge extract and anhydrophytosphingosine, jaspine B, inhibits sphin-
gosine kinases and their proliferative activities [1]. Since its isolation, several biochemical
studies have demonstrated its ability to inhibit microtubule formation, cell growth, and
cell death program stimulation [2]. Human Sk-Mel28 melanoma cell lines and Murine B16
proliferation, for example, are inhibited by jaspine B in a time- and dose-dependent manner.
Exposing these cells to jaspine B triggers cell death by typical apoptosis, as indicated by
phosphatidylserine externalization, the release of cytochrome c, and caspase processing [2].
Although biological studies of jaspine B and its congeners have exhibited cytotoxic proper-
ties in several cancer cell lines [3–5], no commercial jaspine B natural products are available
for therapeutic use.

Sphingomyelin, a cell membrane sphingolipid, plays a vital role in cell growth and
mitosis and is upregulated in osteosarcoma and synovial sarcoma (SS). The metabolic
intermediate of the sphingolipid pathway, ceramide, is critical in cellular signal transduc-
tion and apoptotic pathways. Jaspine B inhibits sphingomyelin synthase [2] (Figure 1)
and induces apoptosis in HeLa cells, which are associated with disrupting sphingolipid
homeostasis, resulting in increased ceramide levels [3]. In gastric epithelial cells, jaspine B
targets the autophagy pathways and demonstrates anticancer effects [4]. The bioavailability
and accumulation of jaspine B in the cells during the steady state is a significant factor
that correlates with its cytotoxic efficacy [6]. However, low bioavailability due to limited
intestinal absorption and extensive oral clearance impedes its application as a promising
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anticancer agent. Coadministration with bile salts increases oral bioavailability and may
enhance its pharmacological effects [7].
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Figure 1. Schematic overview of the sphingomyelin pathway and jaspine B’s mechanism of action.

This study developed a liposomal delivery system to improve jaspine B’s pharma-
cokinetics. We also tested its ability to inhibit cell proliferation in the sarcoma cell line
and SS tumor growth in the animal model. Liposomes, a type of vesicle used for biomed-
ical and pharmaceutical applications, are biocompatible delivery systems that enhance
a drug’s oral bioavailability [8]. Liposomes improve hydrophobic compound solubility
and prevent chemical or enzymatic degradation in the gut. The lipid bilayer structure
provides other advantages, such as cell membrane adherence, enhanced permeability, and
lymphatic uptake. Liposomes consist of a phospholipid bilayer enclosing a small volume of
aqueous buffer. Their size may vary from tens of nanometers to hundreds of micrometers,
based on the protocol utilized for their preparation and use. Liposomes have successfully
improved the oral bioavailability of various compounds, including peptides, proteins, and
hydrophilic and lipophilic drugs [9]. Liposomes are formulated using several methods. A
new microfluidic fabrication uses streams of an ethanolic solution and an aqueous buffer
and lipids forced through the central channel of a microfluidic mixer cartridge. (Figure 2).
The two liquid phases pass through a thin sheet with rectangular cross sections to form
vesicular liposomes. Vesicle size is controlled by adjusting the total flow rate (TFR) and
flow rate ratio (FRR) between the lipid and aqueous phases [10].
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Figure 2. Schematic overview of the jaspine B liposome formation procedure using the microflu-
idics method.

We developed a novel jaspine B liposomal delivery system of jaspine B that enhance
both in vitro and in vivo efficacy. We characterized the liposomal formulation using trans-
mission electron microscopy (TEM) and LC-MS/MS methods and tested the in vitro and
in vivo efficacy in an SS cell line and an animal model.

2. Results
2.1. Stereoselective Scale-Up Synthesis of Amphiphilic Jaspine B

Jaspine B was synthesized, and its scale-up was performed successfully with more
than 80% yield from its precursor, according to our published method [11].

Its chemical structure and purity were confirmed by characteristic peaks in the 1H-
NMR spectrum (400 MHz, CD3 OD): δ = 0.88 (t, 3 H), 1.20–1.51 (m, 24 H), 1.61–1.73 (m, 2 H),
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3.67–3.74 (m, 1 H), 3.76–3.84 (m, 1 H), 3.84–3.95 (m, 2 H), 4.25 (br s, 1 H). (Figure 3) and
LC-MS/MS chromatogram [7] (Figure 4A). The scale-up jaspine B characterization is in
agreement with the previously reported study [11].
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Figure 4. Respective multiple reaction monitoring (MRM) chromatograms of jaspine B and berberine
as internal standard (IS) using LC-MS/MS. The chromatograms represent the MRM of jaspine B
(m/z 299.8→270.1) and IS (m/z 336.1→320.0) from (A) standard solutions and (B) liposome samples.

2.2. LC-MS/MS Analysis of Jaspine B in Liposomes

A published LC-MS/MS method [7] was successfully validated and adopted for
jaspine B quantification. Figure 4 depicts the chromatogram generated by Electron Spray
Ionization (ESI) in positive mode and MRM at m/z 299.8→270.1 for jaspine B and
m/z 336.1→320.0 for berberine as internal standard (IS). The retention times of jaspine
B and IS were 5.24 and 5.70 min in solution and 4.78 and 5.17 in the tested samples. The
slight difference in the retention times resulted from a marginally altered solvent composi-
tion used for reconstitution. However, the mass and fragment transitions were identical for
these compounds in the standard solution (Figure 4A) or liposomal extract (Figure 4B).



Mar. Drugs 2022, 20, 509 4 of 12

2.3. Jaspine B Liposome Characterization

Different jaspine B concentrations and instrument parameters (FRR) were tested for
liposome encapsulation efficiency (EE) and size determination. Phospholipid bilayer
visualization occurs due to phosphorus atom contrast under electron microscopy [10].
The impact of different FRRs and jaspine B concentrations at an 8 mL/min TFR on the
size distribution and EE% are presented in Table 1. Figure 5 depicts different batches of
formulated liposomes at variable FRR and jaspine B concentrations with some distinct
outer and inner layers visualization (Figure 5C).
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Figure 5. The TEM images of (A–D) jaspine B liposomes were formulated using microfluidics with
different jaspine B concentrations and FRR. Liposomes with jaspine B concentration of 2 mg/mL and
FRR 2:1 had the highest %EE. The size distribution of jaspine B liposome (E) with the highest %EE
correspondence to TEM image C. The bar represents 500 nm. FRR; flow rate ratio, TEM; transmission
electron microscopy, EE; encapsulation efficiency.
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Table 1. The effect of flow rate ratio (FRR) and jaspine B concentration on the liposome size distribu-
tion and encapsulation efficiency percentage (EE%).

Jaspine B Conc.
(mg/mL) FRR (PBS: Lipid) Size (nm)

Mean ± SD EE%

1 2:1
3:1

100.1 ± 2.2
74.2 ± 7.2

70
43

2 2:1
3:1

127.5 ± 61.2
89.8 ± 3.7

97
77

Table 1 and Figure 5C results indicate that EE% was highest (97%) when FRR was set at
2:1 and jaspine B concentration at 2 mg/mL, while the size of distribution of liposomes was
at 127.5 ± 61.2 (Figure 5E). Considering an EE of 97%, the drug: lipid mass ratio was 0.39.

Jaspine B liposomes were stable for more than two months in PBS pH 7.4 at 4 ◦C; their
size and EE% did not significantly change.

2.4. In Vitro Human SS Cells Viability Assay

Using the MTT assay and Yamato-SS cell line, the jaspine B IC50 and its liposome were
determined after 72 h of exposure to a drug-free medium, empty liposome, or the final
concentrations, ranging from 0.01 to 100 µM of jaspine B or equivalent concentrations of
jaspine B liposome (Figure 6).
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Figure 6. The cell viability percentage (normalized by drug-free medium or empty liposome-treated
cells) of the Yamato-SS, a human synovial sarcoma cell line, was measured by MTT assay after treat-
ment with final concentrations ranging from 0.01 to 100 µM of jaspine B or equivalent concentrations
of jaspine B liposome and incubation for 72 h.

The IC50 and log IC50 values for both jaspine B and its liposome in the Yamato-SS cell
line are presented in Table 2. The IC50 value (mean ± SD) for jaspine B was 0.36 ± 0.07 µM,
which improved when jaspine B was encapsulated in liposomes (0.06 ± 0.01 µM).

Table 2. IC50 and log IC50 values of jaspine B and its liposomes in the Yamato-SS cell line.

Drug IC50 (µM)
Mean ± SD

Log IC50 (µM)
Mean ± SD

Jaspine B 0.36 ± 0.07 −0.44 ± 0.07
Jaspine B liposome 0.06 ± 0.01 * −1.26 ± 0.07 *

The values are presented as mean ± SD. * Significantly different from jaspine B, p < 0.05.

2.5. In Vivo Efficacy Study in SS Mouse Model

Jaspine B’s liposomal formulation in vivo anticancer effect was investigated using an
SS animal model. Figure 7 shows the tumor size fold change compared to the control group
during the four weeks of treatment (3 doses/week). Mice were monitored regularly, and
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no outward signs of toxicity were evident due to different treatments. Jaspine B and its
liposomal formulation suppressed tumor growth. This effect was more pronounced in the
jaspine B liposome-treated group. A set of representative images, one mouse per group, is
depicted in Figure 8.
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Figure 7. Tumor growth suppression in an animal model of synovial sarcoma (SS) after oral adminis-
tration of three doses/week of the vehicle (PBS) in control (n = 7) or 5 mg/kg as jaspine B: jaspine B
(n = 4), empty liposome (n = 3), or an equivalent dose of jaspine B in liposomal formulation (n = 3).
* Significantly different from the control or empty liposome groups, p < 0.05.
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11 doses of vehicle, empathy liposome, jaspine B (5 mg/kg), or jaspine B liposome (an equivalent
dose of jaspine B). The red circle highlights the location and the size of the tumor.

3. Discussion

Yamato- SS cell line study results indicate that jaspine B formulation in a liposome sig-
nificantly increased in vitro anticancer potency, with a lower IC50 than jaspine B
(Figure 6 and Table 2). Jaspine B’s efficacy against tumors originating from various tissues
has been reported, where its effectiveness was dependent upon steady-state cellular accu-
mulation [12]. Our observation may also be attributed to improved jaspine B stability and
liposomal lipid bilayer impact on enhanced cell permeation and accumulation.

Systemic administration of jaspine B significantly reduced lung metastatic melanoma
cell growth [13]. However, extensive systemic clearance or low bioavailability after oral
administration, due to poor solubility and extensive first-pass effect, hampered its efficacy
and reduced suitability for cancer treatment. Choi et al. used a bile salts coadministration
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approach. They improved jaspine B bioavailability by several folds, attributed to jaspine
B’s permeation through the lipophilic cell membrane and tight junction [7]. These results
suggest that developing oral jaspine B formulations with bile acids and phospholipids
could increase the compound’s bioavailability and tissue permeability [14]; however, the
observed pharmacokinetic improvement was not evaluated for pharmacodynamic effect.
In other studies, the administration of several anticancer drugs, such as doxorubicin [15]
and paclitaxel [16], in phospholipid mixture formulations also resulted in a higher cellular
concentration and reduced systemic toxicity compared to the plain drug.

Similarly, we observed a pronounced pharmacodynamic effect on tumor growth
suppression in a SS animal model after 4-week oral liposomal delivery of jaspine B,
which outperformed plain jaspine B (Figures 7 and 8). A significant level of deference
was not attained due to the small number of animals enrolled in the study of jaspine B
(n = 4) and its liposomal formulation (n = 3); however, we assume the observed in vivo
efficacy improvement is rooted in jaspine B’s enriched oral bioavailability, parallel to the
Choi et al. study. We are currently conducting a pharmacokinetic study in healthy animals
to confirm the observed data and further elaborate on the mechanisms responsible for the
observed effects.

The lipid compositions, their ratios, and jaspine B concentrations were determined
from pilot study results, jaspine B physicochemical characteristics, the manufacturer’s
protocol, initial suggestions from Precision NanoSystems scientists, and previous lipophilic
molecule studies [17–19]. The lipid concentration was kept constant at 5 mg/mL because
higher concentrations clogged the cartridge and did not yield any liposomes. The for-
mulation and characterization data of jaspine B (Figure 5 and Table 1) indicate that an
optimal liposome size with narrower size distribution and highest EE% was achieved using
a lipid mixture of 2:4:4 w/w (cholesterol, DSPC, and DSPE-PEG), jaspine B concentration
of 2 mg/mL, FFR of 2:1 and TFR of 8 mL/min. Although using a lower concentration
of jaspine B at both values of FRR produced smaller liposomes, the size distribution was
much broader, and EE% was much lower. Similar results were observed when a higher
concentration of jaspine B with an FRR of 3:1 was used. The morphologic TEM image of
liposomes clearly shows a lipidic bilayer structure surrounding an aqueous phase at the
center. Jaspine B’s amphiphilic chemical structure (Figure 9) enabled its incorporation into
the liposome’s lipidic bilayer shell, which enhanced vesicle formation, increased membrane
permeability, and improved in vitro and in vivo efficacy.
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The short-period stability study of the liposomes showed an optimal shelf-life for this
nanocarrier delivery system. Further investigation is needed to evaluate the possibility of
preparation and storage by other means (e.g., lyophilized powder), which could further
extend its shelf-life and ease its administration and usage. Considering jaspine B’s remark-
able anti-tumor effect, the proposed liposomal drug delivery system offers a potentially
effective treatment for SS and other cancers.
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4. Materials and Methods
4.1. Materials

Cholesterol, 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), and DSPE-PEG2000
Carboxylic Acid were purchased from Avanti Polar Lipids (Alabaster, AL, USA). All other
reagents used were analytical grade and purchased from Sigma Aldrich (St. Louis, MO, USA).

4.2. Stereoselective Scale-Up Synthesis of Amphiphilic Jaspine B towards Liposome Formation

Jaspine B was synthesized and scaled up based on our published method [11]. Briefly,
stereoselective synthesis of jaspine B was performed using a chiral pool strategy starting
with L-Serine (Figure 9). The second-generation chiral aminobutenolide is synthesized in
gram quantities starting from L-Serine (Figure 9a). Chiral aminobutenolide (Figure 9b) has
inherent chirality with unsaturated lactone (Michael acceptor) and protected nucleophiles
(OH, NH2). Acetonide deprotection of aminobutenolide followed by Michael addition
affords thermodynamically favorable enantiopure bicyclic furafuranone (Figure 9c) as the
only product. The all-syn tri-substitution is achieved in this transformation. Functional
group transformation of the lactone in bicyclic furafuranone (Figure 9c) provides an N,
O-protected jaspine B precursor (Figure 9d). Global deprotection of jaspine B precursor
under acidic conditions results in enantiopure jaspine B as HCl salt (Figure 9e).

Jaspine B’s structural core has an all-syn trisubstituted tetrahydrofuran core, which
constitutes the C-2 lipophilic tetradecyl alkyl chain and C-3 hydroxy, C-4 amino polar
functionalities. This substitution pattern differentiates jaspine B with a hydrophilic head
group and a lipophilic tail, mimicking the sphingolipid-type scaffold. This characteristic
differentiation makes jaspine B amphiphilic. It is noteworthy that the final step of the
jaspine B synthesis involves global deprotection of N-Cbz, N and O pentanonide in an
aqueous HCl under vigorous stirring and reflux conditions. Jaspine B’s amphiphilic nature
appears as an oil droplet immiscible in an aqueous environment supporting the structural
features of liposomal formation. Upon cooling, it solidifies as white solid immiscible
HCl salt.

For structural characterization, using the Bruker DRX 400 Mhz spectrometer, NMR
spectra were recorded with the chemical shifts (δ) reported in ppm relative to CD3OD (for
1H) as the internal standard. The AB Sciex (Foster City, CA, USA) QTRAP 5500 quadrupole
mass spectrometer in positive electrospray ionization mode (ESI) was used for molecular
ion and purity confirmation.

The chemical composition of this liposome involves Cholesterol, 1,2-distearoyl-sn-
glycero-3-phosphocholine (DSPC), and DSPE-PEG2000 Carboxylic Acid. The amphiphilic
jaspine B matches the other constituents of liposome and efficiently enhances the vesicle
formation (Figure 10).
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4.3. Preparation and Characterization of Liposomal Vesicles Using Microfluidics

Liposomes were prepared using a microfluidic mixing method using the NanoAssem-
blr™ Platform (Precision Nanosystems, Vancouver, BC, Canada). The mixer contains
channels for organic and aqueous phases. Disposable syringes of 1 mL were used for inlet
streams. Controlled TFR (8 mL/min) and aqueous to organic phase FRR (3:1 and 2:1) and
two concentrations of 1 and 2 mg/mL jaspine B were used to achieve the optimum liposome
size, encapsulation efficiency, and loading capacity. The temperature was controlled by a
heating block unit and maintained at 60 ◦C.

To formulate the liposomes, 10 mg of lipid mixture (2:4:4 w/w of cholesterol, DSPC, and
DSPE-PEG) was dissolved in 2 mL ethanol to achieve a 5 mg/mL lipid solution. Such lipid
composition, ratio, and concentration have been successfully used in studies for liposomal
encapsulation of lipophilic and hydrophilic molecules [17–19]. The lipid concentration was
kept constant at 5 mg/mL to avoid cartridge clogging at higher concentrations.

Empty vesicles were manufactured by injecting lipids and phosphate-buffered saline
(PBS 10 mM, pH 7.4) into the instrument’s separate chamber arms. The final liposomal
formulation was collected from the chamber outlet and dialyzed at room temperature using
PBS 10 mM. Then, liposome solutions were centrifuged in 10 kDa molecular weight cut-off
falcon tubes for one hour at 4 ◦C to remove the remaining solvent. Jaspine B liposome
formulation procedure was similar and used the same TFR and FRR input conditions, while
jaspine B was dissolved in ethanol along with lipids due to its lipophilicity.

Size measurements and recording of the morphology of liposomes were performed
using a TEM instrument according to a method described previously [20]. A total of
20 µL of the sample was deposited onto mesh carbon-coated copper grids to obtain a thin
film. The excess solvent was drained gently by blotting filter paper during the verification
process. Then, the grids were air-dried at room temperature. The prepared grids were
transferred to a grid holder and examined by a TEM instrument (Gatan Inc., Pleasanton,
CA, USA) at an accelerating voltage of 80 kV.

4.4. Jaspine B Analysis Using Liquid-Chromatography Mass Spectrometry (LC-MS/MS)

The level of jaspine B was measured using a validated LC-MS/MS method [7] in
multiple reaction monitoring (MRM). The system was composed of liquid chromatography
in tandem with mass spectrometry (Shimadzu, Columbia, MD, USA) with a controller
(CBM-20A), two binary pumps (LC-30AD), an autosampler (SIL-30AC), and an AB Sciex
(Foster City, CA, USA) QTRAP 5500 quadrupole mass spectrometer in positive electrospray
ionization mode (ESI). The chromatograms were monitored and integrated by the Analyst
1.7.2 software (AB Sciex, Foster City, CA, USA).

LC separation was performed on an analytical reversed-phase column Kinetex®C18
100 × 2.1 mm (1.7µm) (Phenomenex, Torrance, CA, USA) by a combination of 0.1% formic
acid in acetonitrile and water (85:15, v/v) in isocratic mode at a flow rate of 0.2 mL/min.

The positive ion ESI mass spectrometric parameters were as follows: capillary voltage;
5.5 kV, temperature; 250 ◦C, declustering potential (DP); 50 V, and collision cell exit potential
(CXP); 15 V quantification was performed using MRM at m/z 299.8→270.1 (jaspine B), and
m/z 336.1→320.0 (IS). Nitrogen was used as collision gas, and the collision energies were set
at 30–40 eV. Calibration curves using peak height ratio (analyte over IS) were constructed
over the range of 0.5 to 16 ng/mL in liposomes to measure jaspine B concentrations
in liposomes.

4.5. Encapsulation Efficiency of Jaspine B Liposomes

The EE% of jaspine B in the liposomes was determined using a previously described
method with minor modification [21]. The liposome samples were centrifuged at 8000× g
for 10 min to remove unencapsulated jaspine B; supernatants were treated with an equal
volume of triton-X100 (Ameresco. Solon, OH, USA), followed by centrifugation at 20,000× g
for 30 min. Twenty µL of 200 ng/mL IS was added to each sample, and the peak intensity
was measured using an LC-MS/MS method. The content of jaspine B loaded in the
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liposomes was then calculated by a calibration curve. The EE was calculated using the
following equation:

EE (%) = MJL/MJI × 100 (1)

where MJL is the mass of jaspine B loaded into the liposomes, and MJI is the initial mass of
the jaspine B in the system.

The stability of jaspine B liposome solution in PBS pH 7.4 was tested for size and EE%
after storage at 4 ◦C for two months.

4.6. In Vitro Cell Viability Assay

A cell viability assay was performed using a previously published method [22]. Dr.
Torsten Nielson, University of British Columbia, provided the human Yamato-SS cell
line (CVCL_6C44)which was maintained in Dulbecco’s modified Eagle medium (DMEM)
with 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin at 37 ◦C and 5% CO2.
The in vitro cell viability assay was performed using MTT (3-(4, 5-dimethyl thiazolyl-2)-
2,5-diphenyltetrazolium bromide) reagent to compare the viability and anti-proliferation
effects of jaspine B with jaspine B liposome in different concentrations. Cell viability was
normalized using a drug-free medium or empty liposome as a control treatment. Cells
were seeded in a 96-well tissue culture dish at 10,000 cells/well and incubated for twenty-
four hours. Serial dilutions of jaspine B and jaspine B liposomes were prepared so that
the final concentration ranged from 0.01 to 100 µM. After 72 h of treatment, 5 mg/mL
MTT was added to each well, resulting in a final concentration of 0.5 mg/mL MTT; cells
were incubated at 37 ◦C and 5% CO2 for 2.5 h. Formazan crystals were resolubilized in
10% SDS and 0.01 M HCl, and the absorbance of the samples was measured at 570 nm
and normalized to 650 nm using a microplate reading spectrophotometer, VarioscanLux
(Thermofisher, Waltham, MA, USA). Each experiment was performed in triplicate.

4.7. SS Induction, Dosage Regimens, and In Vivo Study in Mice

An animal model of SS was used to further investigate and compare the efficacy
of jaspine B liposomes with plain jaspine B. Mouse experiments were conducted with
the approval of the Idaho State University’s Institutional Animal Care Committee un-
der legal and ethical standards established by the National Research Council and pub-
lished in the Guide for the Care and Use of Laboratory Animals (protocol #757, approved
5 July 2019). The previously described Rosa26-LSL-SS18-SSX1; Ptenfl/fl and Rosa26-LSL-
SS18-SSX2; Ptenfl/fl mice [23] were maintained on a mixed strain background, C57BL/6
and SvJ. Mice were genotyped with the following primers: Rosa26-LSL-SS18-SSX (F flox—
AAACCGCGAAGAGTTTGTCCTC, F wt—GTTATCAGTAAGGGAGCTGCAGTGG, R—
GGCGGATCACAAGCAATAATAACC) Pten (F flox—CAAGCACTCTGCGAACTGAG,
R—AAGTTTTTGAAGGCAAGATGC). TATCre was dosed with 10 µL intramuscular injec-
tions at 50 µM at 1 month of age. Then, animals were randomly divided into four groups;
the control group receiving vehicle (PBS) (n = 7), jaspine B group receiving 5 mg/kg jaspine
B (n = 4), empty liposome group receiving empty liposome without jaspine B (n = 3), and
jaspine B liposome group receiving 5 mg/kg encapsulated jaspine B (n = 3) [23]. The tumor
measurements were performed by an experienced person (blinded to the animal treatment
group) using a digital caliper. Length, width, and height of the tumors were measured,
and tumor sizes were calculated using a standard equation of W × D × L/2 and reported
as mm3.

4.8. Statistical Analysis

Statistical analyses were performed using GraphPad Prism 8.0 statistical software (San
Diego, CA, USA), and results were expressed as the mean ± SD. One-way analysis of the
variances (ANOVA) was used to evaluate the differences between groups, followed by
Tukey’s post hoc analysis. The level of significance was set at p < 0.05.
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5. Conclusions

In this study, we formulated a liposomal drug delivery system for jaspine B and
successfully adopted an LC-MS/MS method to characterize jaspine B in solution and
liposomal formulation. Moreover, our in vitro and in vivo studies indicate that jaspine B is
an effective sphingolipid metabolism inhibitor and a viable therapeutic option for treating
sarcomas and other types of cancers. The remarkable 97% encapsulation of jaspine B in our
novel liposome drug delivery system addresses low bioavailability issues, improves cancer
cell uptake, and increases therapeutic efficacy to serve as a potential SS adjuvant therapy.
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