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Abstract: Parasitic diseases still compromise human health. Some of the currently available therapeu-
tic drugs have limitations considering their adverse effects, questionable efficacy, and long treatment,
which have encouraged drug resistance. There is an urgent need to find new, safe, effective, and
affordable antiparasitic drugs. Marine-derived cyclic peptides have been increasingly screened as
candidates for developing new drugs. Therefore, in this review, a systematic analysis of the scientific
literature was performed and 25 marine-derived cyclic peptides with antiparasitic activity (1–25)
were found. Antimalarial activity is the most reported (51%), followed by antileishmanial (27%) and
antitrypanosomal (20%) activities. Some compounds showed promising antiparasitic activity at the
nM scale, being active against various parasites. The mechanisms of action and targets for some of
the compounds have been investigated, revealing different strategies against parasites.

Keywords: antiparasitic activity; cyclic peptides; leishmaniasis; malaria; marine resources;
trypanosomiasis

1. Introduction

Parasitic diseases affect millions of people around the world, especially in developing
countries where sanitary and hygiene conditions are very poor, resulting in a huge mortality
rate [1,2]. Despite this, the therapeutic arsenal available to treat this type of disease has been
the same for many years, having low effectiveness and many side effects [3]. In addition
to all these problems, the resistances acquired by parasites over time are also a huge
concern [4]. The therapeutic scenario still remains the same because there is low investment
in the development of this class of drugs since these diseases have a higher incidence in
poor countries, which are not seen as good markets for the pharmaceutical industry [5].
Fortunately, this reality is changing thanks to the investment of some individuals and
organizations for the development of antiparasitic drugs and to the cooperation between
industry and academic research groups [6].

The parasitic diseases can be subdivided into two categories: those caused by proto-
zoan parasites, such as malaria (caused by Plasmodium), leishmaniasis (caused by Leishma-
nia), sleeping sickness, Chagas disease (caused by Trypanosoma), and toxoplasmosis (caused
by Toxoplasma gondii); and those caused by helminths, such as schistosomiasis (caused by
Schistosoma mansoni) and taeniiasis (caused by Taenia solium) [7].

Malaria is a severe infectious disease which is endemic in tropical and subtropical
regions [8,9]. It can be caused by four species of the intracellular protozoan parasite from
the Plasmodium family, with P. falciparum being the disease’s most dangerous form, and it is
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transmitted by mosquito bites [10]. According to the World Malaria Report 2022, in 2021,
there were 247 million cases and 619,000 deaths from malaria. Moreover, malaria cases
have been on the rise since 2016 [11].

Antimalarial drug options are still very limited [12]. One of the oldest drugs is qui-
nine, whose discovery is considered serendipitous. Quinine was isolated from a cinchona
tree (Cinchona succirubra), in 1820, by two French chemists. This compound began to be
used as an antimalarial and its mechanism of action is still unknown. Quinine has a low
therapeutic index and causes many side effects [13]. Subsequently, quinine analogues
such as chloroquine, amodiaquine, primaquine, and mefloquine have emerged and are
still used in therapy today; we highlight chloroquine, a 4-aminoquinoline derivative of
quinine, which was synthesized in 1934 [12]. In 1970, artemisinin was isolated from the
plant Artemisia annua and was a very useful compound for the treatment of malaria. In
addition, to improve its pharmacokinetic and pharmacodynamic properties, molecular
modifications were performed in artemisinin which gave rise to derivatives such as arte-
sunate, arteether, and artemether [14]. All these compounds are still used to treat severe
cases of malaria [12]. It is important to note that quinine and artemisinin derivatives are the
main drugs currently used to treat malaria [15]. Derivatives of tetracyclines are sometimes
used, such as doxycycline, which is used for treatment and prophylaxis in combination
with quinine or artesunate, when the treatment with artesunate is not effective [15]. There
is also the option of antifolate drugs, which are dihydrofolate reductase inhibitors; however,
they are susceptible to rapid development of resistance by the parasite. Therefore, these
drugs are used in combination to overcome the resistance issue [12]. The resistance to the
few antimalarials available is caused by spontaneous mutations that increase the parasite’s
tolerance to the drug [16]. Thus, although there is an urgent need to devise new strategies
for developing new drugs that act on already known targets, it is also important to discover
new targets.

Currently, several strategies for developing new antimalarials are being explored [17].
For example, via synthesis, Wani et al. [18] obtained a methalocenic analogue of chloroquine,
ferroquine, which is in clinical trials for the treatment of uncomplicated malaria [19]. Nature
is also an immensely rich source of bioactive compounds, including antimalarials [20,21].
Natural products with antimalarial activity include various classes of compounds, such as
alkaloids [22], terpenes [23], biflavonoids [24], lactones [25], coumarins [26], xanthones [27],
quinones [28], and peptides [29,30]. Other strategies include the identification of new
targets and the design of selective inhibitors for these targets [17] or the repositioning of
drugs [31,32].

Leishmaniasis, a disease caused by 20 species of the protozoan parasite Leishmania, is
transmitted through the bite of infected female sandflies. The intracellular parasite exists
in two morphological forms, non-infectious promastigote and infectious amastigote [33].
This disease has three distinct forms: visceral, cutaneous, and mucocutaneous. Visceral
leishmaniasis is the most serious form of the disease and is usually fatal if untreated;
cutaneous leishmaniasis is the most common form of the disease and manifests itself
through lesions and ulcers on the skin; and mucocutaneous leishmaniasis causes metastasis
to the mucosal tissues of the nose and mouth [34]. According to the latest World Health
Organization (WHO) report, there are an estimated 1 million new cases of leishmaniasis
every year [35]. Leishmaniasis is considered one of the neglected tropical diseases that
mostly affects developing countries [36,37].

The drugs currently used to treat leishmaniasis include pentavalent antimonials, am-
photericin B, miltefosine, paromomycin, and pentamidine. The latter four are cases of
drug repositioning [38]. All of these drugs, without exception, have many side effects and
are associated with high toxicity, require long treatments, and are very expensive, and
situations of resistance have already been reported [39]. Thus, there is an urgent need to
develop new anti-leishmanial drugs with a better safety profile than current drugs, and that
are effective against resistant species and affordable [40]. In recent years, several studies
have been carried out in this area and different chemical families of compounds for an-
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tileishmanial activity have been explored, including benzimidazole derivatives [41], quinali-
dine derivatives [42], alkylphospholipid analogues [43], coumarins [44], chalcones [45],
thienopyridine [46], and peptides [47–49].

Trypanosomiasis, a disease caused by trypanosomatids, is on the list of the six most
dangerous tropical diseases according to WHO [2,50]. Depending on the parasite respon-
sible for the disease, it is designed by different names: human African trypanosomiasis,
also known as sleeping sickness, caused by two subspecies of Trypanosoma brucei (T. b.
gambiense and T. b. rhodesiense), and American trypanosomiasis, also known as Chagas
disease, caused by Trypanosoma cruzi [51,52].

Human African trypanosomiasis is transmitted to humans by the tsetse fly and is
an endemic disease in sub-Saharan. This is a disease that affects people in rural areas
and, if left untreated, can be fatal [53]. The drugs eflornithine, melarsoprol, nifurtimox,
pentamidine, and suramin are used to treat this disease [54]. Nevertheless, these drugs have
several limitations: they are expensive, have high toxicity, low oral bioavailability, and low
efficacy, and require very long treatments [55]. Recently, fexinidazole has been approved
for the treatment of trypanosomiasis caused by T. b. gambiense and is currently in clinical
trials for trypanosomiasis caused by T. b. rhodesiense [56]. It is the first drug administered
orally for the treatment of human African trypanosomiasis [57]. Moreover, acoziborole,
also known as SCYX-7158, showed activity against T. b. gambiense and T. b. rhodesiense
after a single oral administration [58,59]. In clinical trials, it proved to have good efficacy
and a good safety profile [60]. Iheyamides A-C, naturally occurring peptides, exhibited
antitrypanosomal activities against both T. b. rhodesiense and T. b. brucei (non-human
pathogenic subspecies) [61].

American trypanosomiasis is a chronic systemic parasitic infection that is endemic in
Latin America and affects poor rural areas [62,63]. This is a disease transmitted through
the bite of the triatomine bug. By 2021, it was estimated that around 7 million people were
infected and that around 65 million were at risk of infection [50]. The drugs benznidazole
and nifurtimox are used to treat this disease [64]. Both drugs have several disadvantages,
including adverse effects and their use being limited only to the acute phase of the dis-
ease, and resistance to these drugs has already been identified [65]. Trypanocidal drugs
with greater efficacy and safety are therefore needed. Some research is underway in this
direction. For example, some triazole derivatives used for fungal infections treatment
have demonstrated in vitro and in vivo activity against T. cruzi, namely itraconazole [66],
voriconazole [67], and ravuconazole [68]. The compound AN15368, which belongs to the
oxaborole class of compounds, showed in vitro and in vivo activity against T. cruzi with
low toxicity [69].

Toxoplasmosis, a disease caused by the parasite Toxoplasma gondii., is transmitted by
eating meat containing T. gondii cysts or drinking water containing oocysts. This disease
is found in Asia, Africa, America, and even Europe [70]. Currently, the therapeutic op-
tions for toxoplasmosis include the use of antiparasitic and antibacterial drugs. However,
these drugs are only effective in acute toxoplasmosis and their use is dependent on factors
such as intolerance, resistance, and side effects [71]. There are some compounds being
studied that display activity against T. gondii, such as artemisinin derivatives [72], dihy-
drotriazines [73], fluoroquinolones derivatives [74], N-benzoyl-2-hydroxybenzamides [75],
4-(1H)-quinolones [76], and thiosemicarbazones [77].

The urgent need to develop new antiparasitic drugs is evident for a large number of
reasons. Fortunately, academia and even some industries are already aware of the problem
that infectious diseases represents and, in this sense, there are already some efforts and
advances aimed at finding new effective, safe, cheap, and easy-to-administer drugs to
combat what is a major global health problem that mainly affects developing countries.
Among the various classes of naturally derived compounds that are being explored as new
antiparasitic agents, the marine-derived cyclic peptides are included.
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2. Marine-Derived Cyclic Peptides in Drug Discovery

Marine organisms produce a wealth of natural products, creating a universe of unique
and novel compounds [78]. Long-term evolution of marine organisms exposed to extreme
conditions, such as pressure, temperature, light, and salinity, promote competitive advan-
tages to their producers in their natural environments. Thus, many of the marine products
have notable biological activities, including antiparasitic activity [79,80], making them good
candidates for drug development [81]. Notable efforts have been carried out to discover
new therapeutic entities based on marine natural products or their derivatives and, from
2015 to 2018, 17 clinically available drugs were reported, with 28 drugs in Phase I–III clinical
trials [82]. Since then, 68 patents from marine organisms have been filed [83].

Naturally occurring and chemically modified marine peptides are of crucial relevance
due to their unique structures, chemical properties, low inherent toxicity, and potential in a
myriad of therapeutic areas [84,85], and they continue to fuel the drug pipeline [86]. Proof
of this are the diverse examples of approved marine-derived peptides used in therapeutics.
Ziconotide (Prialt®, analgesic drug) was the first Food and Drug Administration (FDA)-
approved marine-derived peptide, in 2004 [87,88]. Other examples include brentuximab
vedotin (Adcetris®), plitidepsin (Aplidin®), polatuzumab vedotin (Polivy®), tisotumab
vedotin (TIVDAKTM), and disitamab vedotin (Aidixi®), all anticancer drugs [89]. We
highlight that ziconotide and plitidepsin are both cyclic peptides. Marine-derived pep-
tides attract great attention not only for the pharmaceutical field [90,91], but also for the
cosmeceutical [92,93] and nutraceutical [94,95] industries.

Diverse marine organisms can produce peptides, such as bacteria [96], cyanobacte-
ria [97], fungi [89,98], sponges [99], algae [100], and tunicates [101]. Some of them are found
from symbionts [102] and non-symbiotic microorganisms [103,104]. One type of cyclic
peptide often found in marine organisms includes the depsipeptides, molecules where one
or more amide groups are replaced by the corresponding ester [105]. Cyclic depsipeptides
have also contributed to expand the peptide chemical space [106].

Among the marine-derived peptides, cyclic peptides can offer some advantages com-
pared to linear peptides, which make them attractive molecules to be explored. Most
often, they present an increase in binding affinity and selectivity to the protein target [107].
This occurs because the cyclization reduces the spatial vibrations of the peptide molecule,
lowering conformational changes, and increases the surface area available for interaction
with the biotarget [108]. In addition to molecular recognition considerations, cyclization
can also improve the absorption and membrane permeability of peptides because it reduces
the energy barrier required for the peptide to adapt to the membrane environment and bind
to transport proteins to enter the cell, both by passive diffusion or active transport [109].
Cyclic peptides also present greater metabolic stability, being resistant to the action of
exopeptidases, due to the lack of terminal amine and carboxylic acid groups, and that
of endopeptidases, by blocking the access to the cleavage site [110]. Structurally, cyclic
peptides may comprise unique scaffolds, such as non-proteinogenic amino acids [111],
or some structural modifications, including methylation [112], sulfuration [113], lipida-
tion, and acetylation [114]. These characteristics have a key role in the interaction with
biotargets [115,116].

Moreover, several synthetic derivatives of marine cyclic peptides and depsipeptides
are also reported [117,118]. In fact, these naturally occurring compounds are very interest-
ing models for molecular modifications to obtain more potent derivatives with improved
properties and perform structure–activity relationship (SAR) studies [119,120].

Among the broad spectrum of bioactivities of natural and chemically modified marine
peptides [121,122], anticancer [123] and antimicrobial [124] peptides are of pivotal relevance
because they yield a very high output [125]. This review aims to gather the research findings
on this class of marine compounds, particularly regarding their antiparasitic effects, through
a comprehensive literature survey.
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3. Marine-Derived Cyclic Peptides with Antiparasitic Effects

The research into marine-derived cyclic peptides with antiparasitic effects was de-
signed with the aim of addressing the topic in a comprehensible approach. From this
perspective, the research was systematized following the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) protocol [126]. The identification of
papers was conducted through a search of the SCOPUS database considering the following
keywords or expressions: marine AND (peptide OR cyclic peptide OR cyclopeptide) AND
(antiparasitic OR antimalarial OR antileishmanial OR antitrypanosomal).

Inclusion criteria for selection of studies were all works published as original articles.
The selection of studies took place in August/September 2023. Exclusion criteria consid-
ered the type of publication being removed: review papers, book chapters, conference
papers, and short surveys. All the elected studies were published in English and addressed
the theme of this research, and excluded the works describing linear peptides, peptides
from sources other than marine, or inactive marine-derived cyclic peptides for antiparasitic
activity, as well as studies not relevant to the topic. At the end, studies identified via other
methods were also included, specifically from citation searching. All data collected were
interpreted in a critical and impartial manner and the findings followed the recommenda-
tions of PRISMA. The methodological path that led to the selection of 30 scientific articles
was outlined according to the flowchart shown in Figure 1.
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Figure 1. Flow diagram of literature search (n = number of scientific articles).

Through the comprehensive literature survey, 25 marine-derived cyclic peptides with
antiparasitic activity (1–25) were found. In Figure 2, some of the most important landmarks
of the history of marine-derived cyclic peptides with antiparasitic activity are summarized.
Several marine sources were described, including cyanobacteria, bacteria, sponges, tuni-
cates, fungi, and mollusks, with the marine-derived cyclic peptides from cyanobacteria
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being the most abundant. The main described antiparasitic activities associated with these
peptides were antimalarial, antileishmanial, and antitrypanosomal. As shown in Figure 2,
the decade between 2007 and 2017 was a period with significant research in this area.
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Table 1 summarizes the marine natural product name, cyclic peptides classification,
compound producers, and antiparasitic activities for each compound and their references.

Table 1. Marine-derived cyclic peptides with antiparasitic effects (1–25).

Peptides Types Sources Organisms Country Antiparasitic
Activities Refs.

Jasplakinolide (1) Cyclic
tridepsipeptide Sponge Jaspis sp. Island of Benga, Fiji

active against P. falciparum,
T. gondii, E. histolytica and

E. invadens
[127–131]

Cyclomarins
A–C (2–4)

Cyclic
heptapeptides Bacteria Streptomyces sp. United States (San

Diego, CA)

2: active against P.
falciparum

4: active against
multidrug-resistant P.

falciparum strains

[132–134]

Venturamides A–B
(5–6) Cyclic hexapeptides Cyanobacteria Oscillatoria sp. Panama active against P. falciparum,

T. cruzi, and L. donovani [135]

Symplocamide A
(7)

Cyclic lipohexadep-
sipeptide Cyanobacteria Symploca sp. Papua New Guinea active against P. falciparum,

T. cruzi, L. donovani
[136]

Mollamide B (8) Cyclic hexapeptide Tunicate Didemnum molle Manado Bay,
Indonesia

active against P. falciparum
clones and L. donovani [137]

Lagunamides A and
B (9–10)

Cyclic
pentadepsipeptides Cyanobacteria Lyngbya majuscula Pulau Hantu Besar,

Singapore active against P. falciparum [138]

Valinomycin (11) Cyclic
dodecadepsipeptide Bacteria Streptomyces sp. Croatia active against P. falciparum,

T. brucei and L. major [139,140]

Mollemycin A (12)
Cyclic glyco-

hexadepsipeptide-
polyketide

Bacteria Streptomyces sp.
Australia, South

Molle Island,
Queensland

active against P. falciparum [141]
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Table 1. Cont.

Peptides Types Sources Organisms Country Antiparasitic
Activities Refs.

Companeramides A
and B (13–14)

Cyclic
octadepsipeptides Cyanobacteria Leptolyngbya sp. Coiba Island,

Panama active against P. falciparum [142]

Dudawalamides
A–D (15–18)

Cyclic
hexadepsipeptides Cyanobacteria Moorea producens Papua New

Guinean

15–18: active against P.
falciparum and L. donovani
18: active against T. cruzi

[143]

Kakeromamide B
(19) Cyclic pentapeptide Cyanobacteria Moorea producens Northern Lau

Islands of Fiji

active against P. falciparum
blood-stage and against P.

berghei liver schizonts
[144]

Ulongamide A (20) Cyclic
tetradepsipeptide Cyanobacteria (a) Lyngbya sp.

(b) Moorea producens
(a) and (b) Northern

Lau Islands of Fiji
active against P. falciparum

blood-stages [144]

Lyngbyabellin A
(21)

Cyclic
tetradepsipeptide Cyanobacteria

(a) Lyngbya
majuscula

(b) Moorea producens

(a) Northern Lau
Islands of Fiji

(b) Finger’s Reef,
Guam

active against P. falciparum
blood-stages [144]

Kahalalide F (22) Cyclic
dodecadepsipeptide Mollusk Elysia rufescens O’ahu, Hawaii

active against L. donovani
promastigotes, L. pifanoi

promastigotes and
amastigotes

[145–147]

IB-01212 (23) Cyclic
octadepsipeptide Fungus Clonostachys sp.

ESNA-A009 Japan
active against L. donovani

promastigotes and L.
pifanoi amastigotes

[148,149]

Janadolide (24)
Cyclic pentapolyke-

tidepsipeptide
hybrid

Cyanobacteria Okeania sp. Janado, Okinawa active against T. b. brucei,
T. b. rhodesiense and T. cruzi [150,151]

Motobamide (25) Cyclic decapeptide Cyanobacteria Leptolyngbya sp. Okinawa Island,
Japan

active against bloodstream
forms of T. b. rhodesiense [152]

Entamoeba histolytica (E. histolytica), Entamoeba invadens (E. invadens), Leishmania donovani (L. donovani), Leishmania
major (L. major), Leishmania pifanoi (L. pifanoi), Plasmodium berghei (P. berghei), Plasmodium falciparum (P. falciparum),
Toxoplasma gondii (T. gondii), Trypanosoma brucei (T. brucei), Trypanosoma brucei brucei (T. b. brucei), Trypanosoma brucei
rhodesiense (T. b. rhodesiense), Trypanosoma cruzi (T. cruzi).

In this section, marine-derived cyclic peptides are organized according to the main
antiparasitic activity and, in each subsection, in chronological order of their discovery.
Among them, 17 were found to be depsipeptides.

3.1. Malaria

One of the most described antiparasitic activities associated with marine-derived
cyclic peptides is antimalarial activity [153]. Among the 25 marine-derived cyclic peptides,
21 peptides (1–21) exhibited promising results against P. falciparum (Figure 3). Some of
them have also demonstrated activity against other parasites, or even displayed other
biological activities.

Jasplakinolide (1), also named jaspamide, was isolated from the soft-bodied sponge
species Jaspis collected off the shore of the island of Benga, Fiji [127]. This 19-membered
macrocyclic depsipeptide, containing a macrolactam joined by a tripeptide unit and a
non-peptide polypropionate sector (Figure 3), has been widely studied over the years.
Diverse synthetic strategies for its total synthesis and analogs were explored, which were
summarized in a recent review [154].

Regarding the biological activities, several studies can be found related to various
activities of 1, such as antifungal [155,156], antitumor [157–161], neuroprotective [162], and
antiparasitic [128–130] activities. Jasplakinolide (1) is a potent inducer of actin polymeriza-
tion and filament-stabilizing drug [163,164], and this capability is relevant for its biological
effects [165–170]. Compound 1 dramatically reduces the critical concentration of actin
subunits necessary to drive polymerization and stabilizes filaments [163,170].

Regarding antiparasitic activity, it was found that 1 inhibits P. falciparum growth and
impairs host cell invasion due to the stabilization of parasite actin filaments, in a time- and
concentration-dependent manner. The decrease was remarkable at day 2 at concentrations
of 0.3 µM and above, and parasites finally disappeared at day 4 [128]. P. falciparum and other
parasites actively invade host cells, using a mechanism that depends on the interaction
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of the motor protein myosin and actin filaments which serve as tracks [171,172]. Thus, it
has been proposed that the unstable nature of apicomplexan actin filaments is essential for
parasite survival [171].
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By electron cryomicroscopy, the near-atomic structure of jasplakinolide (1)-stabilized
P. falciparum actin 1 filaments (PfAct1) was determined. Jasplakinolide (1) binds at regular
intervals inside the filament to three adjacent actin subunits, reinforcing filament stability
by hydrophobic interactions (Figure 4) [173].
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In a previous study, jasplakinolide (1) also drastically decreased the T. gondii motility
and host cell invasiveness [129]. Additionally, 1 induced an acrosomal process and allowed
better visualization of the actin filaments, revealing the conoid and apical complex as major
sites of actin polymerization [174].

Jasplakinolide (1) has also been reported to inhibit both the growth and encystation
of Entamoeba histolytica and Entamoeba invadens, inducing the formation of F-actin aggre-
gates [130,131]. Compound 1 inhibited the growth of E. histolytica in a dose-dependent
manner, in which 0.1 and 0.3 mM of the drug had a similar inhibitory effect, whereas 0.5,
0.7, and 1 mM inhibited 62, 82, and 100% of control growth, respectively. The inhibition of
E. invadens by 1 mM of 1 was 25% [131].

Cyclomarins A–C (2–4) were isolated from extracts of a cultured marine bacterium
Streptomyces sp. CNB-982, collected in the vicinity of San Diego, CA. Cyclomarin A (2) is the
major metabolite, while cyclomarins B and C (3–4) are only produced in lower percentages
(2–3%). Cyclomarins A–C (2–4) are cyclic heptapeptides containing two proteinogenic
amino acids, (S)-Ala and (S)-Val), an N-methylated (S)-Leu, in addition to four unusual
(S)-amino acids (Figure 3). The planar structure of 2–4 was elucidated by 1D and 2D nuclear
magnetic resonance (NMR) methods, and their stereochemistry was determined by X-ray
crystallography of a diacetate derivative of cyclomarin A (2) [132].

Detailed studies at Novartis indicated a strong activity of compound 2 against P.
falciparum strain NF54 in a nanomolar range, with a half-maximal inhibitory concentration
(IC50) value of 40 nM [133]. By chemical proteomics, the biotarget was identified to be the di-
adenosine triphosphate hydrolase (PfAp3Aase) of the protozoan parasite, without affecting
the human homolog hFHIT. Co-crystallization experiments revealed that one molecule of 2
binds a dimeric PfAp3Aase and prevents the formation of the enzyme–substrate complex
(Figure 5) [133]. Cyclomarin C (4) has also been isolated from Streptomyces sp. BCC26924
and exhibited antimalarial activity against the multidrug-resistant P. falciparum K1 strain,
with IC50 values of 0.24 µg/mL [134].

In addition to antiparasitic activity, cyclomarin A (2) also displayed significant anti-
inflammatory activity in both in vivo and in vitro assays [132] and anti-tuberculosis activity
(minimum inhibitory concentration (MIC) of 0.1 µM) by targeting the ClpC1 subunit of the
caseinolytic protease [175,176].
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Regarding the outstanding biological activities of cyclomarins, it is not surprising that
synthetic studies have been performed to obtain these compounds in higher quantity as
well as analogues for SAR studies [177,178]. The first report of stereoselective syntheses of
four unusual amino acids constituents of cyclomarin A (2) was described by Yokokawa
and co-workers [179], in 2002. A few years later, synthetic access to cyclomarin C (4) was
achieved and optimized by Yao and co-workers [180,181]. Just over ten years later in 2016,
Barbie and Kazmaier [182,183] accomplished the total synthesis of cyclomarin A (1) for
the first time. They also reported the total synthesis of cyclomarin C (4), cyclomarin D,
and other natural peptides [182]. Regarding the planning of derivatives, the first strategy
was via semi-synthesis [176], and then by total synthesis [184]. Some addressed simplified
structures, such as deoxycyclomarin C [185].

Venturamides A–B (5–6) were isolated from the crude organic extract of a Panamanian
collection of Oscillatoria sp. from Buenaventura Bay, via an antimalarial bioassay-guided
fractionation. Their isolation constitutes the first example of the identification of cyanobac-
terial peptides with selective antimalarial activity. Venturamides A–B (5–6) comprise
2,4-disubstituted thiazole units (Figure 3), and their complete structure elucidation was
determined via 1D and 2D NMR analyses and Marfey’s method [135]. Venturamides A–B
(5–6) were tested for their antimalarial activity against the W2 chloroquine-resistant strain
of the malaria parasite. Compound 5 exhibited an IC50 value of 8.2 µM against P. falciparum,
with only mild cytotoxicity to mammalian Vero cells (IC50 value of 86 µM). Compound
6 also displayed effective antimalarial activity against P. falciparum, with an IC50 value
of 5.6 µM, and mild cytotoxicity to mammalian Vero cells, with an IC50 value of 56 µM.
The positive control, chloroquine, showed IC50 values of 80–100 nM [135]. Liu et al. [186]
described the total synthesis of both compounds via an effective one-pot procedure for
enantiomerical synthesis of thiazole-containing amino acids.

Symplocamide A (7) (Figure 3) was isolated from the marine cyanobacterium Sym-
ploca sp., collected from Sunday Island in Papua New Guinea. The planar structure was
elucidated by detailed NMR and MS analysis, and chiral high performance liquid chro-
matography (HPLC) was the method used for stereochemical elucidation of amino acid
residues. Compound 7 was screened against three tropical parasites, specifically malaria,
Chagas disease, and leishmaniasis, showing interesting results. An IC50 value of 0.95 µM
was obtained regarding the inhibition of W2 P. falciparum, while for both T. cruzi and L.
donovani, both IC50 values were higher than 9.5 µM [136]. Symplocamide A (7) is also a
potent cancer cell cytotoxin to H-460 lung cancer cells, with an IC50 value of 40 nM, and
neuro-2a neuroblastoma cells, with an IC50 value of 29 nM. Compound 7 also inhibits
serine proteases with a 200-fold greater inhibition of chymotrypsin over trypsin [136]. The
total synthesis of symplocamide A (7) using a solid-phase strategy was reported [187].

Mollamide B (8) (Figure 3) was isolated from the tunicate Didemnum molle, collected
from Manado Bay, Indonesia. The planar structure was established using 1D and 2D
NMR experiments. The absolute configurations of amino acid residues were assigned by
Marfey’s method, while the relative configuration at the thiazoline moiety was determined
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using molecular modeling coupled with NMR-derived restraints. Mollamide B (8) showed
inhibitory activity against P. falciparum, clones D6 and W2, with IC50 values of 2.0 and
21 µg/mL, respectively. Mollamide B (8) also exhibited slight activity against L. donovani,
with an IC50 value of 18 µg/mL [137].

The cyclic pentadepsipeptides lagunamides A–B (9–10) (Figure 3) were isolated from
the marine cyanobacteria Lyngbya majuscula obtained from Pulau Hantu Besar, Singapore.
Extensive spectroscopic analysis, including 2D NMR experiments, in addition to Marfey’s
method and 3JH-H coupling constant values, a modified method based on Mosher’s reagents,
and analysis using liquid chromatography–mass spectrometry (LC–MS), allowed the total
elucidation of these molecules. Compounds 9–10 displayed in vitro antimalarial properties,
with IC50 values of 0.19 µM and 0.91 µM, respectively, against P. falciparum. Curiously,
the only structural difference between these compounds is an additional olefinic group
between C40 and C41 in 10. Consequently, this slight structural difference is responsible for
an increase in antimalarial activity observed for 9 [138].

In addition to antimalarial activity, lagunamides A–B (9–10) displayed antiswarming
activity when tested at 100 ppm against the Gram-negative bacterial strain Pseudomonas
aeruginosa, which exerted 62% for 9 and 56% for 10, compared to control. Compounds 9–10
also exhibited potent cytotoxic activity against P388 murine leukemia cell lines, with IC50
values of 6.4 and 20.5 nM, respectively [138]. Further studies revealed that 9 exhibited a
selective growth inhibitory activity against a panel of cancer cell lines, with IC50 values
ranging from 1.6 nM to 6.4 nM [188]. Molecular mechanism studies suggested that the
cytotoxic effect of these compounds might be via induction of mitochondrial mediated
apoptosis [188,189].

The total synthesis and stereochemical revision of lagunamide A (9) was first described
by Dai et al. [190]. Later, Lin and co-workers [191] reported the synthesis of 9 and five
analogues. Although the total synthesis of lagunamide B (10) has not yet been described,
a synthetic approach toward the total synthesis of a lagunamide B (10) analogue was
reported [192].

A cyclic dodecadepsipeptide, valinomycin (11) (Figure 3), was identified from Strep-
tomyces sp. strains isolated from Mediterranean sponges collected by SCUBA diving
offshore of Rovinj, Croatia [140]. This was the first report of the isolation of 11 from a ma-
rine source [140]. Nevertheless, 11 had already been recovered from various soil-derived
actinomycetes, being first reported in 1955 [193]. Over the years, this cyclic depsipep-
tide has been extensively studied and a wide range of issues were explored, including
structural characterization, biogenesis, synthesis, and bioactivity. In a Scopus search
(https://www.scopus.com, accessed on 22 October 2023, with the keyword “valinomycin”
and searching within “article title”, 717 original articles were found. Recently, a review
summarizing all the relevant features concerning this cyclic depsipeptide (11) was pub-
lished [194]. Considering the subject of this review, it is important to highlight that 11
showed antiparasitic activity against P. falciparum, with an IC50 value of 5.3 ng/mL [139].
Moreover, 11 also exhibited inhibitory activity against both L. major, with an IC50 value
lower than 0.11 µM, and T. brucei, with an IC50 of 3.2 nM [140]. Other relevant biological
activities have been described for valinomycin [194], such as insecticidal [195], antivi-
ral [196,197], antibacterial [197], antifungal [198], and antitumor [199] activities. Recent
studies reported that 11, as a mitophagy activator, also played a positive role in the treat-
ment of Parkinson’s and Alzheimer’s diseases [200,201].

A glyco-hexadepsipeptide-polyketide, mollemycin A (12) (Figure 3), was isolated from
a marine-derived Streptomyces sp. (CMB-M0244) collected off South Molle Island, Queens-
land. The structure of 12 was elucidated by detailed spectroscopic analysis, supported by
chemical derivatization and degradation. C3 Marfey’s analysis was performed for stereo-
chemical configuration assignments. Mollemycin A (12) exhibited exceptionally potent and
selective growth inhibitory activity against drug-sensitive 3D7 and multidrug-resistant Dd2
clones of P. falciparum, with IC50 values of 7 and 9 nM, respectively. Remarkably, compound
12 exhibited greater activity when compared to the positive control, chloroquine, with
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IC50 values of 13 nM for 3D7 and 130 nM for Dd2. Moreover, lower cytotoxicity against a
mammalian cell line (>20-fold) was observed [141].

Mollemycin A (12) also exhibited exceptionally potent and selective growth inhibitory
activity against Gram-positive and Gram-negative bacteria (IC50 = 10–50 nM) [141].

Companeramides A–B (13–14) were isolated from a marine cyanobacterial assemblage
comprising a small filament Leptolyngbya sp., from a reef pinnacle in Coiba National Park,
Panama. Companeramides A–B (13–14) contain eight α-amino acid units, a 3-amino-2-
methyl-7-octynoic acid, and hydroxy isovaleric acid (Figure 3). Their planar structures were
elucidated by NMR spectroscopy and MS. The absolute configurations of the amino and
hydroxy acid units in both compounds were determined using a combination of Marfey’s
method and chiral HPLC. Companeramides A–B (13–14) were tested in vitro against three
strains of the malaria parasite P. falciparum, D6, Dd2, and 7G8, showing high antiplasmodial
activity, with IC50 values ranging from 0.22 to 0.70 µM for 13 and from 0.57 to 1.10 µM for
14. The positive control, chloroquine, showed IC50 values of 5 to 80 nM [142].

Dudawalamides A–D (15–18) were isolated from a Papua New Guinean field collec-
tion of the cyanobacterium Moorea producens, by a combination of bioassay-guided and
spectroscopic approaches. Experiments using 1D and 2D NMR and MS analysis were
performed for planar structure elucidation. Diverse techniques were used for the absolute
configuration assignments, namely X-ray crystallography, modified Marfey’s analysis, chi-
ral gas chromatography (GC)-MS, and chiral HPLC. Structurally, they consist of six amino
acids and a 2,2-dimethyl-3-hydroxy-7-octynoic acid moiety (Figure 3). Dudawalamides
A (15) and D (18) showed the most potent activities against P. falciparum, with IC50 val-
ues of 3.6 and 3.5 µM, respectively. Dudawalamides B (16) and C (17) were significantly
less potent than 15 and 18 [143]. All exhibited minimal mammalian cell cytotoxicity. Re-
garding SAR features, it was found that slight changes in configuration and sequence of
residues had a significant effect on the bioactivity of these marine cyclic peptides. For
example, dudawalamides C (17) and D (18) only differ in one methyl group at one residue,
specifically L-Hiva to Dallo-Hmpa; however, the single methyl group and stereochemical
inversion resulted in a more than 3-fold difference in their P. falciparum inhibition [143].
It was found that dudawalamide D (18) was also relatively potent against L. donovani
(IC50 = 2.6 µM) [143].

Recently, a new cyclic peptide, kakeromamide B (19) (Figure 3), was isolated from
an extract of a marine cyanobacterium Moorea producens collected off the Northern Lau
Islands of Fiji. The extract showed strong potency against P. falciparum and low toxicity
to human liver cells [144]. The stereostructure of kakeromamide B (19) was assigned by
different spectroscopic techniques, high-resolution electrospray ionization mass spectrom-
etry (HRESIMS), and Marfey’s analysis. Kakeromamide B (19) exhibited activity against
P. falciparum blood-stage and against P. berghei liver schizonts with effective concentration
in 50% of population (EC50) values of 0.89 and 1.1 µM, respectively. By a threading-based
computational method, FINDSITEcomb2.0, the binding of 19 to potentially druggable pro-
teins of P. falciparum was predicted. Kakeromamide B (19) was predicted to bind to several
Plasmodium actin-like proteins and a sortilin protein, suggesting possible interference with
parasite invasion of host cells. In a mammalian actin polymerization assay, it was found
that 19, in fact, stimulated actin polymerization in a dose-dependent manner [144].

The cyclic depsipeptides ulongamide A (20) and lyngbyabellin A (21) (Figure 3) were
also identified from the same antimalarial extract of the Fijian marine cyanobacterium
Moorea producens [144]. Ulongamide A (20) was previously isolated from Palauan collections
of the marine cyanobacterium Lyngbya sp. [202] and lyngbyabellin A (21) from the marine
cyanobacterium Lyngbya majuscula [203]. While 20 exhibited moderate activity against P.
falciparum blood-stages with EC50 values of 0.99 µM, 21 was more potent with an EC50
value of 0.15 nM [144].
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3.2. Leishmaniasis

Some marine-derived cyclic peptides with antileishmanial activity have already been
presented in the previous subsection, as they also exhibited antimalarial activity, namely
venturamides A–B (5–6), symplocamide A (7), mollamide B (8), valinomycin (11), and
dudawalamides A–D (15–18). In this subsection, two natural products 22 and 23 (Figure 6)
are described, which proved to be very promising for the treatment of leishmania and
whose mechanism of action has been investigated. In addition, analogues were synthesized
with the aim of obtaining more potent compounds and performing SAR studies.
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Kahalalide F (22), one of the most widely studied marine-derived peptides [204], was
isolated from green alga metabolites that are eaten by the sacoglossan mollusk, Elysia
rufescens [146]. Kahalalide F (22) is the most promising compound of the kahalalide family,
which includes cyclic depsipeptides with variable size and peptide series, ranging from C31
tripeptide to C75 tridecapeptide containing different fatty acid chains [145]. Kahalalide F
(22) comprises 14 residues, 5 of which form a 19-membered ring (Figure 6), and its absolute
stereochemistry was accessed after extensive hydrolytic trials, and a combination of acid
hydrolysis and hydrazinolysis [205]. Nevertheless, the absolute configurations of some
amino acid residues were not consensual [206,207]. Its synthesis has been described by
a solid-phase synthetic approach and solution macrocyclization [206,208]. Several new
improved synthetic routes were explored based on convergent approaches with distinct
orthogonal protection schemes [209]. Considering the high cost in producing analogues
via solid-phase synthesis, a degradation and reconstruction approach was explored using
natural kahalalide F (22) from a seasonal algal bloom for the generation of semisynthetic
libraries [210].

Kahalalide F (22) is notable mainly because its antitumor activity against a panel
of human prostate and breast cancer cell lines [211], and several molecular mechanisms
can be responsible for its rapid and potent cytotoxicity, including changes in lysosome
morphology [212,213], inhibition of the ErbB3 signaling pathways [213–215], induction of
oncosis [216], and alteration of the cell membrane permeability [217]. Kahalalide F (22)
was one of the first generation of drugs from the sea to undergo clinical trials, along with
Yondelis, Aplidin, ES285, and Zalypsis [211,218]. Kahalalide F (22) completed its safety
evaluation in Phase I clinical trials in patients with various advanced solid tumors [219–221].
Unfortunately, in Phase II clinical trials, a lack of efficacy was found [222].

Considering its high potential as a cytotoxic drug candidate, several attempts have
been made to modify the structure of kahalalide F (22) to produce analogues with a
higher potency, longer half-life, or better delivery [223]. For example, new analogues
were synthesized and conjugated in gold nanoparticles with enhanced in vitro antitumor
activity [224].

It is important to highlight that kahalalide F (22) and analogues were also tested for
other activities, including leishmanicidal activity. A series of analogues were synthetized,
preserving the core structure of kahalalide F (22), while changing specific amino acid
residues to explore their influence on the biological activity (Figure 7) [147].
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All compounds were assayed against promastigote and amastigote stages of Leishmania
and, in general, amastigotes were more resistant than promastigotes to kahalalide F (22)
and analogues. The concentrations at which the proliferation of the parasites was inhibited
by 50% (LC50) were 6.13, 8.31, and 29.53 µM for kahalalide F (22), against L. donovani
(promastigote), L. pifanoi (promastigote), and L. pifanoi (amastigote), respectively [147].
Analogue 22c was the most interesting compound, with LC50 values of 3.04, 5.82 and
5.01 µM, against L. donovani, L. pifanoi, and L. pifanoi, respectively. The positive control,
amphotericin B, showed LC50 values of 0.08–0.2 µM [147].

Electron microscopy of L. donovani promastigote parasites treated with 22c evidenced
severe morphological damage to the membrane of the parasite, indicating a full permeabi-
lization of the parasite plasma membrane, with the cytoplasm full of vesicles translucent
to electrons and large vacuoles (Figure 8). It was found that the permeability alteration of
the plasma membrane of the parasite was strongly associated with the lethality of kaha-
lalide F (22) and active analogues, which correlates significantly with their leishmanicidal
activity [147].
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Regarding SAR features, is important to note that a net cationic character and the
maintenance of the configuration of selected residues was required for the leishmanicidal
activity [147]. In addition, kahalalide F (22) and some analogues also exhibited antifungal
activity against yeasts (Candida albicans and Cryptococcus neoformans) and filamentous fungi
(Aspergillus fumigatus and Fusarium spp.), among others [213,225,226].

IB-01212 (23) (Figure 6), a cyclodepsipeptide isolated from the mycelium of the marine
fungus Clonostachys sp. ESNA-A009 [148], also showed leishmanicidal activity at a low
micromolar range of concentrations on promastigote and amastigote forms of the para-
site [149]. The structure of IB-01212 (23) and the configurations of amino acid residues
were assigned by spectroscopy techniques and a combination of Marfey and menthol
methods [148].

The total synthesis of IB-01212 (23) [227] and analogues [228] was reported by the same
research group. Recently, IB-01212 (23) was used as model to investigate a facile synthesis
process of N-methylated peptides via simultaneous N-methylation of several peptide bonds
in the presence of peptide bonds that were not to be methylated. The aim was to improve
the potency and physicochemical properties, especially membrane permeability [229].

Before being studied for Leishmania, IB-01212 (23) and synthetic analogues proved
to be highly cytotoxic to different tumor cell lines [148,228]. Regarding leishmanicidal
activity, they were demonstrated to be effective on both parasite forms, with LC50 values
of 5.9–25.9 µM and 10.5–49.1 µM for amastigotes and promastigotes, respectively. It was
found that all were more active on the amastigotes, the pathological form in vertebrates
of Leishmania, and IB-01212 (23) exhibited the highest activity on promastigotes [149].
SAR studies revealed that the most active analogue against the amastigote form of the
parasite contained a 22-atom cycle, amide and ester bonds, and C-2 asymmetry. The
mechanism of action for leishmanicidal activity was associated with the depolarization of
the mitochondrial electrochemical gradient, which, in some cases, caused the death of the
parasite through an apoptotic-like process [149].

3.3. Trypanosomiasis

The previously described marine-derived cyclic peptides venturamides A–B (5–6),
symplocamide A (7), valinomycin (11), and dudawalamide D (18), in addition to other
antiparasitic effects, also exhibited antitrypanosomal activity. In this subsection, two
additional compounds (24–25) (Figure 9) displaying antitrypanosomal activity are de-
scribed, which demonstrated activity against the two subspecies of T. brucei (human
African trypanosomiasis or sleeping sickness) and/or T. cruzi (American trypanosomi-
asis or Chagas disease).

Figure 9. Structures of cyclic peptides with antitrypanosomal activity (24–25).

Janadolide (24), a cyclic polyketide–peptide hybrid possessing a tert-butyl group
(Figure 9), was isolated from an Okeania sp. marine cyanobacteria that was collected at the
coast near Janado, Okinawa. The planar structure 24 was determined via spectroscopic
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analyses, and the absolute configurations of the amino acid residues via chiral LC. Regard-
ing the polyketide moiety, the stereochemical assignment of the two stereogenic centers was
performed based on a combination of degradation reactions and spectroscopic analyses.
Compound 24 showed strong antitrypanosomal activity against T. b. brucei GUTat 3.1 strain
with an IC50 value of 47 nM, without cytotoxicity against human cells (such as MRC-5,
HL60, and HeLa cells) at 10 µM. Remarkably, it was found that 24 was more effective than
suramin (IC50 value of 1.2 µM), a commonly used therapeutic drug [150]. Two years after its
discovery, janadolide (24) was synthetized by Ojima et al. [230]. Moreover, a des-tert-butyl
analogue of 24 was also reported but with reduced activity against T. b. brucei [231]. More
recently, the total synthesis of 24 along with eight analogues (24a–h), bearing a simplified
polyketide motif (Figure 10), was described via a solid-phase strategy for the linear peptide
precursor and solution macrocyclization [151]. All compounds were tested against the
pathogenic STIB 900 strain of T. b. rhodesiense and the Tulahuen C4 strain of T. cruzi, with
IC50 values ranging from 33 to 104 µM. None of the compounds displayed cytotoxicity
against human L6 cell lines up to a concentration of 100–150 µM [151].
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Recently, motobamide (25) (Figure 9) was isolated from a marine cyanobacterium,
Leptolyngbya sp., which was collected at Bise, Okinawa Island, Okinawa Prefecture, Japan.
The planar structure of 25 was elucidated based on extensive analysis of 1D and 2D NMR
and high-resolution (HR) MS spectra. The absolute configurations of all amino acids
were assigned by chiral LC analysis, except for a prenyl-tryptophan residue, which was
determined by correlations of NOESY and comparison of the calculated and experimental
electronic circular dichroism (ECD) spectra. Motobamide (25) was found to inhibit the
growth of bloodstream forms of T. b. rhodesiense strains IL-1501, with an IC50 value of
2.3 µM. Additionally, the cytotoxicity of 25 against normal human fibroblasts WI-38 cells
was more than 20-fold weaker, with IC50 value of 55 µM [152].

3.4. Final Remarks

From the systematic analysis of the scientific literature, 25 marine-derived cyclic pep-
tides with antiparasitic activity (1–25) were found. Several marine sources were described,
with cyanobacteria being the main resource.

As shown in Figure 11, the most described antiparasitic activity associated with marine-
derived cyclic peptides is antimalarial activity (51%) followed by antileishmanial (27%)
and antitrypanosomal (20%) activities. It was found that some cyclic peptides were demon-
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strated to be active against various parasites, such as jasplakinolide (1), venturamides A–B
(5–6), symplocamide A (7), mollamide B (8), valinomycin (11), and dudawalamides A–D
(15–18).
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Regarding the antimalarial activity, several promising cyclic peptides were found,
specifically jasplakinolide (1), cyclomarins A–C (2–4), mollemycin A (12), kakeromamide
B (19), and lyngbyabellin A (21). For some of them, the mechanisms of action have been
investigated, exposing different strategies against the parasite. The diverse mechanisms of
action and targets are summarized in Figure 11.

Concerning the antileishmanial activity, it is important to emphasize the cyclic peptides
kahalalide F (22) and IB-01212 (23) which displayed high activity against both promastigote
and amastigote stages of Leishmania. In addition, their mechanisms of action have been
explored, highlighting different targets and strategies against the parasite (Figure 11).

Valinomycin (11) is highlighted, considering its potent activity against T. brucei.
In addition to antiparasitic effects, some marine-derived cyclic peptides also showed

other biological activities, such as anti-inflammatory and anti-tuberculosis (cyclomarin
A (2)), antibacterial (mollemycin A (12)), antifungal (jasplakinolide (1), kahalalide F (22)),
antitumor (symplocamide A (7)), antiswarming (lagunamides A–B (9–10)), and antiviral
(valinomycin (11)). Moreover, some peptides that are being widely investigated and
have demonstrated success for other bioactivities (some of which are already in clinical
trials) were subsequently tested for antiparasitic activity. Therefore, exploration of other
bioactivities of marine cyclic peptides may constitute a promising route for inspiring the
development of new drug molecules.

4. Conclusions

In this review, several promising antiparasitic marine-derived cyclic peptides are de-
scribed, some of which possess unique structural features and relevant activities, resulting
from diverse marine sources. Despite being an inspiring area, the research of marine-
derived cyclic peptides in this therapeutic area is still scarce. The data compiled in this
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study are expected to encourage the broadening and dissemination of information about
this class of antiparasitic compounds, in addition to supporting future research to better
understand their potential and applicability.
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