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Abstract: Application of a miniaturized 24-well plate system for cultivation profiling (MATRIX)
permitted optimization of the cultivation conditions for the marine-derived fungus Talaromyces sp.
CMB-TU011, facilitating access to the rare cycloheptapeptide talarolide A (1) along with three new
analogues, B–D (2–4). Detailed spectroscopic analysis supported by Marfey’s analysis methodology
was refined to resolve N-Me-L-Ala from N-Me-D-Ala, L-allo-Ile from L-Ile and L-Leu, and partial and
total syntheses of 2, and permitted unambiguous assignment of structures for 1 (revised) and 2–4.
Consideration of diagnostic ROESY correlations for the hydroxamates 1 and 3–4, and a calculated
solution structure for 1, revealed how cross-ring H-bonding to the hydroxamate moiety influences
(defines/stabilizes) the cyclic peptide conformation. Such knowledge draws attention to the prospect
that hydroxamates may be used as molecular bridges to access new cyclic peptide conformations,
offering the prospect of new biological properties, including enhanced oral bioavailability.

Keywords: talarolides; Talaromyces; cycloheptapeptide; N-OH glycine; MATRIX; GNPS molecular
networking

1. Introduction

During our ongoing investigations into the natural products of Australian marine and
terrestrial microbes, we have encountered many new and unusual cyclic and acyclic pep-
tides and depsipeptides, including the antimalarial glyco-cyclohexadepsipeptide-polyketide
mollemycin A from a north Queensland marine sediment-derived Streptomyces sp.
CMB-M0244 [1]; the antitubercular cyclohexapeptide wollamides A–B from a north Queens-
land desert soil-derived Streptomyces sp. MST-115088 [2]; the acyclic peptaibol nonapeptide
trichodermamides A–E from a Queensland termite nest-derived fungus Trichoderma virens
CMB-TN16 [3]; the nitro-depsitetrapeptide-diketopiperazine waspergillamide A from a
Queensland mud dauber wasp-derived Aspergillus sp. CMB-W031 [4]; the lipocyclopen-
tapeptide scopularides A–H from Queensland mullet gastrointestinal tract-derived Scopu-
lariopsis spp. CMB-F458 and CMB-F115, and Beauvaria sp. CMB-F585 [5]; and N-methylated
acyclic undeca- and dodecapeptide talaropeptides A–D [6], and the cycloheptapeptide hy-
droxamate talarolide A [7], from a Queensland marine tunicate-derived fungus Talaromyces
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sp. CMB-TU011. In the latter case, we took advantage of altering cultivation conditions,
with a YES broth cultivation of Talaromyces sp. CMB-TU011 yielding the talaropeptides [6]
and an M1-saline agar cultivation yielding talarolide A [7].

Notwithstanding that traditional spectroscopic and chemical approaches are generally
very effective at assigning structures inclusive of absolute configurations to cyclic peptides,
our 2017 account of talarolide A proved challenging, with the proposed structure 1a
inconsistent with a subsequent total synthesis by Brimble et al. [8]. In an effort to address
this anomaly, this report describes the application of an innovative miniaturized cultivation
profiling methodology (MATRIX) [9] to optimize the production and enable the isolation
and characterization of talarolides A–D (1–4). With access to larger quantities of talarolide
A, we were able to secure superior NMR data, which, together with refinements to the
Marfey analysis methodology, as well as partial and total syntheses, allowed us to propose a
revised structure 1 for talarolide A and to assign structures to the new analogues talarolides
B–D (2–4) as shown (Figure 1).
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Figure 1. Structures for talarolide A, incorrect (1a) [7] and revised (1), and new analogues for
talarolides B–D (2–4) from Talaromyces sp. CMB-TU011. Highlights (light blue, green, and yellow)
show the difference between the incorrect structure (1a) and revised structure (1) of talarolide A. Pink
highlight in structures 2–4 shows the amino acid variation compared to 1.
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2. Results and Discussion

Since our initial 2017 report on talarolide A [7], we have augmented our microbial
biodiscovery efforts by implementing a miniaturized 24-well plate microbioreactor ap-
proach to support more comprehensive cultivation profiling (MATRIX) [9], to better opti-
mize production and provide higher yields. Furthermore, we have integrated our MATRIX
approach with a chemical profiling strategy employing in situ extraction followed by HPLC-
DAD-ESI(+)MS and a UPLC-DAD-QTOF-MS/MS analysis, with the latter visualized as a
Global Natural Products Social (GNPS) [10] molecular network, to better detect and priori-
tize target chemistry (i.e., new from known and rare from common). Applying MATRIX
cultivation profiling to Talaromyces sp. CMB-TU011 involved 24-well plate cultivations
using eleven different media (Table S1) under three conditions (solid agar, and static and
shaken broth) (Figure 2B) at 26.5 ◦C, over 10 days. Following incubation, the resulting
36 individual wells, together with uninoculated media controls, were extracted in situ with
EtOAc, and the resulting extracts subjected to chemical profiling. While visualization of
the HPLC-DAD-ESIMS data using single ion extraction (SIE, m/z 718) detected 1 in most
extracts, production levels were highly variable with maximum yields observed under
M1-salt, ISP-4, PDA and PYG solid agar, and static and shaken broth conditions returning
far lower yields (Figure S1). Significantly, a GNPS analysis of the MATRIX extracts revealed
a talarolide molecular family (sodiated adducts) incorporating 1 (m/z 740), and nodes
for the deoxy analogue 2 (m/z 724), lower homologue isomers 3 and 4 (m/z 726), and an
unidentified minor analogue (m/z 752) (Figure 2A). Based on these analyses, a scaled up
(×200 plate) 20-day solid phase ISP-4 agar cultivation of CMB-TU011 was extracted and
fractionated by solvent partitioning and gel and reversed phase chromatography, to yield
talarolides A–D (1–4) (Figures 2C and S2). An account of the structure elucidation of 1–4
(including structure revision of 1) is summarized below.

HRESI(+)MS analysis of 1 revealed a molecular formula (C35H55N7O9, ∆mmu +2.5)
requiring 12 double bond equivalents (DBEs), consistent with our earlier 2017 account
of talarolide A [7]. Marfey’s analysis of 1 returned N-Me-L-Tyr, D-allo-Ile, N-Me-D-Leu,
L-Ala, D-Ala, and N-Me-D-Ala (Figure S34). While this analysis differed from our earlier
assessment of talarolide A (i.e., N-Me-L-Ala rather than N-Me-D-Ala), on revisiting and
repeating our earlier analytical HPLC protocols it became apparent that the relative reten-
tion times of Marfey’s D-FDAA (or L-FDAA) derivatives of N-Me-L-Ala and N-Me-D-Ala
were very similar, so much so that replicate analyses could experience a reversal in elution
times, likely due to subtle variations in eluant composition (i.e., pH) over time. To address
this lack of reliability, in this current report, we rely on new analytical HPLC conditions
optimized for the unambiguous resolution of Marfey’s derivatives of N-Me-L-Ala and
N-Me-D-Ala (Figures 3 and S38). Likewise, we also developed and applied new, superior
analytical HPLC conditions optimized for the differentiation of Marfey’s derivatives of
Leu, Ile, and allo-Ile (Figures 4 and S39). With the identity and absolute configuration of the
amino acid residues in 1 assigned, we next turned our attention to the amino acid sequence.
In our earlier structure elucidation of talarolide A, assignment of the planar sequence of
amino acid residues relied on an incomplete set of HMBC correlations and interpretation
of the MS/MS fragmentation patterns (the latter challenging for cyclic peptides). For-
tunately, the re-isolation of 1 enabled the acquisition of superior NMR (DMSO-d6) data
(Tables 1, 2 and S2, and Figures 5 and S3–S8), which allowed for a comprehensive set of
HMBC correlations and unambiguous assembly of the amino acid sequence, as shown. To
assign the regiochemistry of the L-Ala and D-Ala residues in 1, we relied on our earlier 2D
C3 Marfey’s analysis [11] where talarolide A was subjected to partial hydrolysis, derivatiza-
tion, and chromatographic fractionation to yield the dipeptide D-FDAA-D-allo-Ile-D-Ala,
with the D-Ala configuration confirmed by a subsequent round of hydrolysis and Marfey’s
analysis [7]. Thus, the revised structure for talarolide A (1) is as shown. Of particular
interest is the unprecedented N-OH-Gly residue and its ability to engage in an extensive
network of ROESY interactions (and H-bonding) across the cyclic peptide ring (Figure 5,
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dashed pink), which presumably also facilitates the observed long-range ROESY linkages
(Figure 5, dashed green).
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Figure 2. (A) GNPS molecular network of Talaromyces sp. CMB-TU011 in a selection of five media,
with an expansion of the talarolide molecular family. Node segment size correlates with relative
yield/metabolite/media; (B) images of 24-well plate MATRIX cultivation in 11 different media under
three conditions: (i) agar, (ii) static broth, (iii) shaken broth; (C) HPLC-DAD-MS chromatograms of
CMB-TU011 EtOAc extract obtained from ISP4 agar cultivation, with single ion extractions showing
1–4. (* this peak is not a talarolide analogue).
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Ala (pink) and L-FDAA-N-Me-D-Ala (light blue). (A) synthetic L-FDAA-N-Me-L-Ala; (B) synthetic
L-FDAA-N-Me-D-Ala; (C) L-FDAA-N-Me-L-Ala derived from talarolide A (1); (D) synthetic L-FDAA-
N-Me-D-Ala co-injected with L-FDAA-N-Me-L-Ala derived from talarolide A (1).
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(red), L-FDAA-D-Ile (blue) and L-FDAA-D-Leu (green). (A) synthetic L-FDAA-D-allo-Ile; (B) synthetic
L-FDAA-D-Ile; (C) synthetic L-FDAA-D-Leu, (D) L-FDAA-D-allo-Ile derived from talarolide A (1);
(E) synthetic L-FDAA-D-Ile co-injected with L-FDAA-D-allo-Ile derived from talarolide A (1).
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HRESI(+)MS analysis of 2 revealed a molecular formula (C35H55N7O8, ∆mmu +0.4)
consistent with a deoxy analogue of 1. Indeed, Marfey’s analysis of 2 returned N-Me-L-
Tyr, D-allo-Ile, N-Me-D-Leu, L-Ala, D-Ala, and N-Me-D-Ala (Figure S35), while the NMR
(DMSO-d6) data for 2 (Tables 1, 2 and S3, and Figures 6 and S11–S16) revealed chemical
shifts and diagnostic correlations that permitted assignment of the same planar amino acid
sequence as 1, where the N-OH-Gly in 1 had been replaced by a Gly residue in 2. Partial
hydrolysis of 2 followed by derivatization with L-FDAA followed by UPLC-DAD-MS
analysis detected a dipeptide that co-eluted with an authentic synthetic sample of L-FDAA-
D-allo-Ile-D-Ala, but not synthetic L-FDAA-D-allo-Ile-L-Ala (Figure S41), confirming a D-Ala
and L-Ala regiochemistry in 2, common with that independently established for 1. To
further confirm this assignment, we carried out a successful solid phase peptide synthesis
of 2 (Scheme 1), with the synthetic sample proving to be identical to natural talarolide B
(Figures S50–S52), including co-elution on HPLC (Figure S48).

HRESI(+)MS analysis of 3 revealed a molecular formula (C34H53N7O9, ∆mmu +3.0)
suggestive of a lower homologue (-CH2) of 1, with Marfey’s analysis returning N-Me-L-Tyr,
N-Me-D-Ala, D-Ala, L-Ala, D-Val, and N-Me-D-Leu (Figure S36). As with 1, the N-OH-Gly
residue in 3 was not detectable via Marfey’s analysis, although its presence was evident
in the NMR (DMSO-d6) data (Tables 1, 2 and S4, and Figures 4 and S19–S24). Diagnostic
2D NMR correlations (Figure 6) permitted assignment of a planar amino acid sequence
comparable to 1, but where the D-allo-Ile in 1 was replaced by D-Val in 3. The regiochemistry
of the D-Ala and L-Ala residues in 3 was assigned on the basis of biogenetic comparison to
1 and 2, with the structure for talarolide C (3) assigned as shown.



Mar. Drugs 2023, 21, 487 7 of 17

Table 1. 1H NMR (DMSO-d6) data for talarolides A–D (1–4).

1 δH, Mult, (J in Hz) 2 δH, Mult, (J in Hz) e 3 δH, Mult, (J in Hz) 4 δH, Mult, (J in Hz)

N-OH-Gly1/Gly1

2a 4.75, d (17.1) 4.14 a 4.75 a 4.80 d (17.0)
2b 3.76, d (17.1) 3.54, dd (17.3, 2.9) 3.76, d (17.2) 3.71, d (17.0)

N-OH 9.31, s 9.41, s 9.13, s
N-H 7.53, dd (7.6, 2.9)

L-Ala2

2 4.49, qd (6.8, 4.1) 4.67, qd (6.7, 5.9) 4.50, qd (6.7, 4.0) 4.49, qd (6.8, 4.1)
3 1.19, d (6.8) 1.20, d (6.7) 1.20, d (6.7) 1.19, d (6.8)

N-H 8.65, d (4.1) 8.59, d (5.9) 8.65, d (4.0) 8.62, d (4.1)

N-Me-D-Leu3

2 5.05, dd (11.8, 3.9) 5.05, dd (11.8, 3.8) 5.07, dd (11.6, 3.8) 5.06, dd (11.7, 3.8)
3a 1.79, ddd (14.4, 10.3, 3.9) 1.82, ddd (14.4, 10.5, 3.8) 1.79, ddd (14.4, 10.3, 3.8) 1.79, ddd (13.4, 10.6, 3.9)
3b 1.58, ddd (14.4, 11.8, 3.9) 1.61, ddd (14.4, 11.8, 3.7) 1.57, ddd (14.4, 11.6, 3.9) 1.57, ddd (13.4, 11.7, 3.9)
4 1.37, m 1.39, m 1.38, m 1.38 a

5 0.77, d (6.5) 0.79, d (6.5) 0.78, d (6.5) 0.77, d (6.5)
6 0.88, d (6.5) 0.90, d (6.5) 0.89, d (6.5) 0.88, d (6.6)

N-Me 3.00, s 3.11, s 3.01, s 2.98, s

D-allo-Ile4/D-Val4

2 4.72 a 4.60, dd (9.3, 5.2) 4.58, dd (9.5, 4.9) 4.69, dd (9.5, 3.9)
3 1.95, m 1.95, m 2.17, m 1.91, m

4a 1.42, m 1.56, m 0.92, d (6.8) 1.39 a

4b 1.07, m 1.09 b 1.05, m
5 0.94, dd (7.3, 7.3) 0.95, dd (7.3, 7.3) 0.86, d (6.8) 0.92, dd (7.3, 7.3)
6 0.81, d (6.9) 0.92, d (6.9) 0.80, d (6.9)

N-H 7.24, d (9.6) 6.96, d (9.3) 7.23, d (9.5) 7.14, d (9.6)

D-Ala5

2 4.34, qd (7.1, 5.4) 4.42 c 4.33, qd (7.1, 5.0) 3.90, m
3 1.12, d (7.1) 1.10 b, d (7.1) 1.12, d (7.1) 1.13, d (7.1)

N-H 8.87, d (5.4) 8.63, d (5.4) 8.87, d (5.0) 8.58, d (5.2)

N-Me-L-Ala/L-Ala6

2 4.71 a 4.43 c 4.75 a 4.37, m
3 0.49, d (6.5) 0.58, d (6.5) 0.52, d (6.5) 0.63, d (6.4)

N-Me 2.70, s 2.70, s 2.71, s
N-H 8.27, d (9.5)

N-Me-L-Tyr7

2 4.80, dd (10.5, 4.9) 4.15 a 4.80, dd (9.8, 5.3) 5.01, dd (8.6, 6.6)
3a 2.84, dd (14.3, 10.5) 2.93, dd (14.1, 11.6) 2.82, dd (14.2, 9.8) 2.81, dd (14.3, 6.6)
3b 2.60, dd (14.3, 4.9) 2.55 d 2.62, dd (14.2, 5.3) 2.77, dd (14.3, 8.6)

5/9 6.93, d (8.4) 6.90, d (8.4) 6.94, d (8.4) 6.99, d (8.4)
6/8 6.64, d (8.4) 6.63, d (8.4) 6.63, d (8.4) 6.63, d (8.4)

7-OH 9.20, s 9.25, s 9.18, s 9.15, s
N-Me 2.66, s 2.86, s 2.67, s 2.64, s

a–c resonances with the same superscript within a column are overlapping, d signal is obscured by DMSO,
detected by HSQC. e occurs as an equilibrating mixture of major and minor conformers, with the major conformer
tabulated.
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Table 2. 13C NMR (DMSO-d6) data for talarolides A–D (1–4).

1 δC 2 δC 3 δC 4 δC

N-OH-Gly1/Gly1

1 167.3 169.3 167.3 167.5
2 50.2 41.3 50.1 49.9

L-Ala2

1 174.1 174.4 174.1 174.0
2 45.2 44.6 45.2 45.2
3 15.7 15.8 15.7 15.7

N-Me-D-Leu3

1 169.5 169.2 a 169.5 169.5
2 54.5 54.6 b 54.4 54.4
3 36.0 36.1 35.9 36.0
4 24.4 24.4 24.4 24.4
5 21.0 20.9 20.9 20.9
6 23.3 23.3 23.3 23.3

N-Me 31.0 30.8 31.0 30.9

D-allo-Ile4/D-Val4

1 172.0 171.2 171.6 171.8
2 53.7 54.6 b 55.3 53.8
3 38.5 38.5 31.9 38.8
4 26.2 25.7 19.4 26.4
5 12.0 12.0 17.0 11.9
6 13.7 14.2 c 13.7

D-Ala5

1 171.1 171.6 171.0 170.8
2 45.8 45.7 45.8 48.6
3 14.9 14.6 14.9 16.7

N-Me-L-Ala/L-Ala6

1 169.8 169.8 169.8 171.4
2 46.7 49.3 46.7 42.7
3 15.1 14.2 c 15.1 18.5

N-Me 28.6 a 29.1 28.6 a

N-Me-L-Tyr7

1 168.2 169.2 a 168.2 168.3
2 56.6 59.8 56.6 57.1
3 34.1 34.8 34.3 34.5
4 126.6 126.5 126.7 127.2

5/9 130.8 130.3 130.7 130.6
6/8 114.8 114.9 114.8 114.9

7 155.9 156.0 155.9 155.8
N-Me 28.6 a 29.5 28.6 a 28.6

a–c resonances with the same superscript within a column are interchangeable.

HRESI(+)MS analysis of 4 revealed a molecular formula (C34H53N7O9, ∆mmu +3.0)
suggestive of an alternate lower homologue (-CH2) of 1, with Marfey’s analysis returning
N-Me-L-Tyr, D-Ala, L-Ala, D-allo-Ile, and N-Me-D-Leu (Figure S37). As with 1, the N-OH-
Gly residue in 4 was not detectable via Marfey’s analysis, although its presence was evident
in the NMR (DMSO-d6) data (Tables 1, 2 and S5, and Figures 6 and S27–S32). Diagnostic
2D NMR correlations revealed a planar amino acid sequence comparable to 1, but where
the N-Me-L-Ala in 1 was replaced by an L-Ala in 4. The regiochemistry of the D-Ala and
L-Ala residues in 4 were assigned on the basis of biogenetic comparison to 1 and 2, with
the structure for talarolide D (4) assigned as shown.
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Of note, both the N-OH cyclic peptides 3 and 4 exhibit the same extensive pattern
of ROESY correlations (Figures S10, S18 and S26) associated with the N-OH moiety evi-
dent in 1, suggesting that all three adopt a common stable conformation dominated by
hydrogen bonding to the N-OH. Not only is such conformation stabilization not accessible
to the cyclic peptide 2, but the NMR data for 2 reveals two equilibrating conformations
(Figure S53), supporting the hypothesis that N-hydroxylation can have a pronounced effect
on cyclic peptide conformation and stabilization.

In an effort to understand this latter phenomenon, we calculated a solution structure
for 1 DMSO-d6 at 298 K using 2D ROESY NMR spectra, calculated from 41 ROE distance
restraints, three backbone ϕ-dihedral angle restraints derived from 3JNH-CHα, one cis-
amide between N-Me-L-Ala6-N-Me-L-Tyr7, and one hydrogen bond restraint between
N-OH-Gly1 and the D-Ala5 carbonyl oxygen (Figure 7). This hydrogen bond restraint was
supported by the low temperature coefficient for the N-OH-Gly1 in variable temperature 1H
NMR experiments (Figure 8). Structures were calculated in XPLOR-NIH using a dynamic
simulated annealing protocol in a geometric force field, and energy minimized using the
CHARMM force field [12,13]. The 10 lowest energy structures for talarolide A (1) had no
distance (≥0.2 Å) or dihedral angle (≥2◦) violations and were rigid, convergent structures
(average pairwise Ca RMSD 0.18 Å) (Figure 7). The structure for 1 supported observations
made in the VT (variable temperature) NMR experiments, with the N-OH-Gly1 to D-Ala5

carbonyl oxygen hydrogen bond and cis-amide bond between N-Me-L-Ala6-N-Me-L-Tyr7

forming a non-classical alpha turn centered at D-Ala5-N-Me-L-Ala6-N-Me-L-Tyr7, and with
L-Ala2 and N-Me-D-Leu3 forming a distorted beta turn. The D-allo-Ile4 amide proton
projects toward the interior of the structure and is shielded from solvent, while the D-Ala5

amide proton is in close proximity to the N-OH-Gly1 carbonyl oxygen, suggestive of a
hydrogen bond and also less accessible to solvent. The opposite side of the molecule
features an exposed L-Ala2 amide proton, making it more accessible to solvent. From these
observations, it can be concluded that the presence of the N-OH-Gly provides access to a
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hydrogen bond that defines the overall conformation of the cyclic peptide. It is intriguing
to speculate whether this effect is unique to the talarolide scaffold, with its mix of L and D

amino acid residues, or whether it is a more general phenomenon. If the latter, it is possible
that N-hydroxylation could prove to be a valuable molecular tool for accessing new peptide
chemical space.
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Scheme 1. Top: General outline of the solid phase peptide synthesis (SPPS) of talarolide B (2).
(i) Fmoc-Gly-OH coupling to 2-CTC resin, (ii–vii) sequential peptide chain elongation of Fmoc amino
acids, (viii) cleavage of linear protected peptide from resin, (ix) cyclization of linear protected peptide
and (x) deprotection to yield 2. Bottom: Experimental details for SPPS of 2: (i) Fmoc-Gly-OH coupling
to 2-CTC resin in the presence of DIPEA (2 h), (ii) elongation of peptide sequence through a coupling
cycle: Fmoc deprotection with 20% of piperidine in DMF (twice, 5 and 10 min), and a 5 min DMF
flow-wash followed by coupling with preactivated Fmoc-amino acid (3.2 eq.) over 2 × 30 min, or
2 × 3 h for coupling of Fmoc-amino acids to sterically hindered N-Me-amino acids, (iii) cleavage of
linear protected peptide from resin using 20% HFIP/DCM (3 × 20 min), (iv) cyclization of linear
protected peptide using HATU, HOBT, and collidine (14 h), followed by deprotection of NMe-L-Tyr
using 90% formic acid 40 min to give 2 (16 mg, 23% overall yield).
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Figure 7. Backbone superimposition of the 10 lowest energy NMR calculated structures for 1 in
DMSO-d6 at 298 K showing hydrogen bonding between N-OH-Gly1 and the carbonyl in D-Ala5

(dashed line) and a cis-amide bond between N-Me-L-Ala6 and N-Me-L-Tyr7 forming a non-classical
alpha turn. The D-allo-Ile4 amide is projected inward and shielded from solvent, while L-Ala2 is
solvent exposed. Non-polar hydrogens are omitted for clarity, with backbone carbon atoms (green),
sidechain carbon atoms (grey), oxygen atoms (red), nitrogen atoms (blue), and hydrogen atoms
(cyan).
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Figure 8. Temperature dependence of the amide NH and OH NMR (DMSO-d6) chemical shifts
for 1. Line slopes indicating temperature coefficients (∆δ/T) for each residue. Circle: N-OH-
Gly1 (∆δ/T = 1.4 ppb/K); triangle: L-Ala2-NH (∆δ/T = 3.9 ppb/K); black square: D-Ala5-NH
(∆δ/T = 3.5 ppb/K); opened square: D-allo-Ile4-NH (∆δ/T = 0.3 ppb/K). Small temperature coeffi-
cients (∆δ/T) for N-OH-Gly1 and D-allo-Ile4-NH indicates hydrogen-bonds or solvent shielded [14].

3. Materials and Methods
3.1. General Experimental Procedures

Chiroptical measurements ([α]D) were obtained on a JASCO P-1010 polarimeter in a
100 × 2 mm cell at 25 ◦C. Nuclear magnetic resonance (NMR) spectra were acquired on a
Bruker Avance 600 MHz spectrometer with either a 5 mm PASEL 1H/D-13C Z-Gradient
probe or 5 mm CPTCI 1H/19F-13C/15N/DZ-Gradient cryoprobe. The spectra were ac-
quired at 25 ◦C in DMSO-d6 and referenced to residual signals (δH 2.50 and δC 39.5 ppm)
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in deuterated solvents. High-resolution ESIMS measurements were obtained on a Bruker
micrOTOF mass spectrometer by direct infusion in MeCN at 3 µL/min using sodium
formate clusters as an internal calibrant. UPLC-QTOF analysis was performed on a UPLC-
QTOF instrument comprising an Agilent 1290 Infinity II UPLC (Agilent Zorbax C8 RRHD
1.8 µm, 2.1 × 250 mm column, eluting at 0.417 mL/min with a 2.50 min gradient elu-
tion from 90% H2O/MeCN to 100% MeCN with a constant 0.1% formic acid modifier)
coupled to an Agilent 6545 QTOF mass detector (Agilent, Mulgrave, Australia). Liquid
chromatography-diode array-mass spectrometry (HPLC-DAD-MS) data were acquired
on an Agilent 1260 series separation module equipped with an Agilent G6125B series
single quad mass detector and diode array detector (Agilent Poroshell 120 SB-C8 2.7 µm,
3.0 × 150 mm column, eluting at 0.8 mL/min with a 6.25 min gradient elution from 90%
H2O/MeCN to 100% MeCN with a constant 0.05% formic acid modifier). Ultra-high per-
formance liquid chromatograms (UPLCs) were obtained on an Agilent 1290 infinity UPLC
system composed of a 1290 infinity binary pump, thermostat, autosampler, and diode
array detector (Agilent, Mulgrave, AustraliaPreparative and semi-preparative HPLC were
performed using an Agilent 1100 Series diode array and/or multiple wavelength detectors
and an Agilent 1100 Series fraction collector (Agilent, Mulgrave, Australia). Nα-(2,4-dinitro-
5-fluorophenyl)-L-alaninamide (L-FDAA, synonym 1-fluoro-2-4-dinitrophenyl-5-L-alanine
amide) and Nα-(2,4-dinitro-5-fluorophenyl)-D-alaninamide (D-FDAA, synonym 1-fluoro-2-
4-dinitrophenyl-5-D-alanine amide) were purchased from Merck (Darmstadt, Germany).
Amino acids and standards were purchased from BAChem (Torrance, CA, USA) or Merck
(Darmstadt, Germany). Analytical-grade solvents were used for solvent extractions. Chro-
matography solvents were of HPLC grade supplied by Labscan (Bangkok, Thailand) or
Merck (Darmstadt, Germany) and filtered/degassed through 0.45 µm polytetrafluoroethy-
lene (PTFE) membrane prior to use. Deuterated solvents were purchased from Cambridge
Isotopes (Tewksbury, MA, USA). Microorganisms were manipulated under sterile condi-
tions using a Laftech class II biological safety cabinet and incubated in either MMM Friocell
incubators (Lomb Scientific, Taren Point, NSW, Australia) or an Innova 42R incubator
shaker (John Morris, Chatswood, NSW, Australia).

3.2. Collection and Taxonomy of Talaromyces sp. CMB-TU011

The isolation and taxonomy of Talaromyces sp. CMB-TU011 from an unidentified
tunicate collected from Tweed Heads, NSW, Australia, has been previously reported [7].

3.3. Cultivation and Fractionation of Talaromyces sp. CMB-TU011

A loop of spores from a 7-day old M1-salt culture of CMB-TU011 was streaked on
ISP-4 agar plates (×200) and incubated for 20 days at 26.5 ◦C, after which the combined
agar/mycelia was extracted with EtOAc (3 × 500 mL) and concentrated in vacuo to yield
an extract (264 mg), which was partitioned between n-hexane and aqueous MeOH to give
hexane (70 mg) and MeOH (194 mg) soluble fractions. The MeOH fraction was subjected
to gel chromatography (Sephadex® LH-20 (Merck, Darmstadt, Germany) in MeOH) to
obtain 15 fractions, which were combined based on HPLC-DAD-MS analysis to yield a
talarolides-enriched fraction (30.5 mg). Further semi-preparative HPLC (Agilent Zorbax
Eclipse C8 column, 5 µm, 9.4 × 250 mm, 32% MeCN/H2O isocratic elution at 3.0 mL/min
inclusive of an isocratic 0.01% TFA/MeCN modifier) was used to yield talarolide A (1) (tR
25.6 min, 3.4 mg, 1.3%), talarolide B (2) (tR 21.3 min, 1.1 mg, 0.42%), talarolide C (3) (tR
16.1 min, 1.1 mg, 0.42%), and talarolide D (4) (tR 19.3 min, 0.9 mg, 0.34%). (Note: % yields
are calculated as a weight to weight of the EtOAc extract) (Figure S2).

Talarolide A (1): white powder; [α]D
25 –17 (c 0.12, MeOH); 1D and 2D NMR (DMSO-d6)

see Tables 1, 2 and S2, and Figures S3–S8; UPLC-QTOF (MS/MS) fragmentation see
Figure S42; HRESI(+)MS m/z 740.3978 [M + Na]+ (calcd for C35H55N7O9Na 740.3953)
(Figure S9).
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Talarolide B (2): colorless amorphous solid; [α]D
25 –15 (c 0.059, MeOH); NMR (DMSO-

d6) see Tables 1, 2 and S3, and Figures S10–S16; UPLC-QTOF (MS/MS) fragmentation
see Figure S43; HRESI(+)MS m/z 724.4008 [M + Na]+ (calcd for C35H55N7O8Na 724.4004)
(Figure S17).

Talarolide C (3): colorless amorphous solid; [α]D
25 –15 (c 0.072, MeOH); NMR (DMSO-

d6) see Tables 1, 2 and S4, and Figures S18–S25; UPLC-QTOF (MS/MS) fragmentation
see Figure S44; HRESI(+)MS m/z 726.3827 [M + Na]+ (calcd for C34H53N7O9Na 726.3797)
(Figure S25).

Talarolide D (4): colorless amorphous solid; [α]D
25 –14 (c 0.054, MeOH); NMR (DMSO-

d6) see Tables 1, 2 and S5, and Figures S26–S32; UPLC-QTOF (MS/MS) fragmentation
see Figure S45; HRESI(+)MS m/z 726.3827 [M + Na]+ (calcd for C34H53N7O9Na 726.3797)
(Figure S33).

3.4. Marfey’s Analysis of Talarolides A–D
3.4.1. Standard Marfey’s Hydrolysis and Derivatization Method #1

A sample analyte (50 µg) in 6 M HCl (100 µL) was heated to 100 ◦C in a sealed vial for
12 h, after which the hydrolysate was concentrated to dryness at 40 ◦C under a stream of
dry N2. The hydrolysate was then treated with 1 M NaHCO3 (20 µL) and L-FDAA (1-fluoro-
2,4-dinitrophenyl-5-L-alanine amide) or D-FDAA (1-fluoro-2,4-dinitrophenyl-5-D-alanine
amide) as a 1% (w/v) solution in acetone (40 µL) at 40 ◦C for 1 h, after which the reaction
was neutralized with 1 M HCl (20 µL), diluted with MeCN (200 µL) and filtered (0.45 µm
PTFE) prior to analysis.

3.4.2. Standard Marfey’s HPLC Method #2

An aliquot of Marfey’s derivatized analyte (3 µL) (see method #1) was subjected to
HPLC-DAD-MS analysis using a binary solvent system (Phase A: 95% H2O: 5% MeCN:
0.1% formic acid; Phase B: 95% MeOH: 5% MeCN: 0.1% formic acid) on an Agilent Poroshell
120 SB-C8 2.7 µm, 3.0 × 150 mm column, at 50 ◦C with a 0.8 mL/min linear gradient over
29 min from 16% to 63% Phase B in A, and with DAD (340 nm) and ESI(±)MS monitoring,
supported by single ion extraction (SIE) methodology, and with comparison to authentic
standards of Marfey’s derivatized amino acids.

3.4.3. Marfey’s HPLC Method #3 Optimized for Resolving N-Me-Ala Derivatives

An aliquot of Marfey’s derivatized analyte (3 µL) (see method #1) was subjected to
UPLC-DAD-MS analysis using the same binary solvent system and detection as described
above (method #2), but with an isocratic 0.8 mL/min elution at 23% Phase B in A using an
Agilent Poroshell 120 EC-C18 2.7 µm, 3.0 × 150 mm column at 50 ◦, with comparison to
authentic standards of Marfey’s derivatized amino acids (Figures 3 and S38).

3.4.4. Marfey’s HPLC Method #4 Optimized for Resolving Leu, Ile and allo-Ile Derivatives

An aliquot of Marfey’s derivatized analyte (3 µL) (see method #1) was subjected to
UPLC-DAD-MS analysis using the same binary solvent system and detection as described
above (method #2), but with an isocratic 0.8 mL/min elution at 37% Phase B in A, with
comparison to authentic standards of Marfey’s derivatized amino acids (Figures 4 and S39).

3.4.5. Marfey’s Analysis of Talarolides A–D (1–4)

Samples of talarolides A–D (1–4) (50 µg) were subjected to standard Marfey’s hydroly-
sis and derivatization (method #1), after which individual aliquots of Marfey’s derivatized
analytes (3 µL) were subjected to each of methods #2, #3, and #4 to unambiguously identify
the following amino acid constituents:

Talarolide A (1): L-Ala, N-Me-D-Leu, D-allo-Ile, D-Ala, N-Me-L-Ala, N-Me-L-Tyr
(see Figures 3, 4 and S34)

Talarolide B (2): Gly, L-Ala, N-Me-D-Leu, D-allo-Ile, D-Ala, N-Me-L-Ala, N-Me-L-Tyr
(see Figure S35)
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Talarolide C (3): L-Ala, N-Me-D-Leu, D-Val, D-Ala, N-Me-L-Ala, N-Me-L-Tyr (see
Figure S36)

Talarolide D (4): L-Ala, N-Me-D-Leu, D-allo-Ile, D-Ala, L-Ala, N-Me-L-Tyr (see
Figure S37)

3.5. Two-Dimensional Marfey’s Analysis of Talarolide B
3.5.1. Two-Dimensional Marfey’s Method #5 Partial Hydrolysis of Talarolide B

A sample of talarolide B (2) (50 µg) was subjected to the standard Marfey’s hydrol-
ysis conditions (method #1) but with a reduced reaction time from 12 to 3 h, and after
derivatization yielded a dipeptide attributed to L-FDAA-D-allo-Ile-Ala (unspecified Ala
configuration) based on an HPLC-DAD-MS (Marfey’s method #2) [tR 22.3 min, m/z 455
(M + H)] (Figure S40).

3.5.2. Synthesis of Dipeptides L-FDAA-D-allo-Ile-L-Ala and L-FDAA-D-allo-Ile-D-Ala

Syntheses were performed using standard peptide synthesis on a 2-chlorotrityl chlo-
ride (2-CTC) resin (substitution ratio: 1.55 mmol/g, 0.1 mmol scale, 64.5 mg) using hexafluo-
rophosphate azabenzotriazole tetramethyl uranium (HATU) and N,N-diisopropylethylamine
(DIPEA) coupling, and fluorenylmethoxycarbonyl (Fmoc) protection chemistry.

3.5.3. Coupling of the First Amino Acid

After swelling the 2-CTC resin for 20 min in dry CH2Cl2 (2 mL), a solution of either
Fmoc-L-Ala-OH or Fmoc-D-Ala-OH (1.2 eq.) and DIPEA (44 µL, 0.25 mmol, 2.5 eq.) in dry
CH2Cl2 (2 mL) was added to the resin and mixed for 2 h. The resin was filtered and MeOH
(200 µL) was added and mixed for 15 min to cap the resin. The resin was washed with dry
CH2Cl2 (5 × 1 min), 1:1 CH2Cl2/MeOH (5 × 1 min) and MeOH (2 × 1 min).

3.5.4. Coupling of Fmoc-D-allo-Ile

Coupling of Fmoc-D-allo-Ile was achieved by dissolving Fmoc-D-allo-Ile (0.32 mmol,
3.2 eq.), in 0.4 M HATU/DMF (0.75 mL, 0.3 mmol, 3.0 eq.), followed by the addition of
DIPEA (105 µL, 0.6 mmol, 6.0 eq.). The coupling cycle consisted of Fmoc deprotection with
20% of piperidine in DMF (twice, 5 and 10 min), a 5 min DMF flow-wash, followed by
coupling with preactivated Fmoc-D-allo-Ile (3.2 eq.) over 2 × 30 min.

3.5.5. Derivatization with L-FDAA

Fmoc deprotection was achieved by the addition of 20% of piperidine in DMF (twice,
5 and 10 min), a 5 min DMF flow-wash, followed by coupling with L-FDAA reagent,
1% solution in acetone (3.2 eq.), in the presence of DIPEA (105 µL, 0.6 mmol, 6.0 eq.) for 1 h.
The resin was washed with acetone (5 × 1 min), dry CH2Cl2 (5 × 1 min), 1:1 CH2Cl2/MeOH
(5 × 1 min) and MeOH (2 × 1 min), then dried (vacuum desiccator).

3.5.6. Cleavage of L-FDAA Derivatized Dipeptide from Resin

After swelling the 2-CTC resin for 20 min in dry CH2Cl2 (2 mL) the resin was mixed
with 20% hexafluoro-2-propanol (HFIP)/CH2Cl2 (2 mL × 3 × 20 min) and the com-
bined filtrate evaporated in vacuo to yield analytical samples of L-FDAA-D-allo-Ile-L-Ala
[HRESI(+)MS m/z 477.1722 [M + Na]+ (calcd for C18H26N6O8Na 477.1704) and L-FDAA-D-
allo-Ile-D-Ala [HRESI(+)MS m/z 477.1692 [M + Na]+ (calcd for C18H26N6O8Na 477.1704),
both of which were shown to be pure by HPLC-DAD-MS (method as described in general
experimental section) (Figures S46 and S47).

3.5.7. Marfey’s Method #6 Optimized for L-FDAA-D-allo-Ile-Ala Diastereomers

An aliquot of Marfey’s derivatized analyte (3 µL) (see method #5) was subjected to
UPLC-DAD-MS analysis using the same binary solvent system and detection as described
above (method #2), but with an isocratic 0.6 mL/min elution at 37% Phase B in A, and with
comparison between natural and synthetic Marfey’s derivatized dipeptides (Figure S41).



Mar. Drugs 2023, 21, 487 15 of 17

3.6. Synthesis of Talarolide B
3.6.1. Coupling of the First Amino Acid

After swelling the 2-CTC resin for 20 min in dry CH2Cl2 (2 mL), a solution of Fmoc-
Gly-OH (1.2 eq.) and DIPEA (44 µL, 0.25 mmol, 2.5 eq.) in dry CH2Cl2 (2 mL) was added
to the resin and mixed for 2 h. The resin was filtered, then MeOH (200 µL) was added and
mixed for 15 min to cap the resin. The resin was washed with dry CH2Cl2 (5 × 1 min), 1:1
CH2Cl2/MeOH (5 × 1 min) and MeOH (2 × 1 min).

3.6.2. Elongation of Peptide Sequence

Amino acid activation was achieved by dissolving an Fmoc-amino acid (0.32 mmol,
3.2 eq.) in a 0.4 M HATU/DMF solution (0.75 mL, 0.3 mmol, 3.0 eq.), followed by
the addition of DIPEA (105 µL, 0.6 mmol, 6.0 eq.). The coupling cycle consisted of
Fmoc deprotection with 20% of piperidine in DMF (twice, 5 and 10 min), and a 5 min
DMF flow-wash followed by coupling with preactivated Fmoc-amino acid (3.2 eq.) over
2 × 30 min, or 2 × 3 h for coupling of Fmoc-amino acids to sterically hindered N-Me-
amino acids. Upon completion of the synthesis the resin was washed with DMF, CH2Cl2,
and MeOH, then dried (vacuum desiccator) as described above in the synthesis of the
dipeptides.

3.6.3. Cleavage of Linear Protected Peptide

After swelling the 2-CTC resin for 20 min in dry CH2Cl2 (2 mL), the resin was mixed
with 20% hexafluoro-2-propanol (HFIP)/CH2Cl2 (2 mL × 3 × 20 min and the combined
filtrate concentrated in vacuo to give the protected linear peptide (64 mg). The product
was confirmed by HPLC-DAD-MS (method as described in general experimental section):
tR = 4.4 min, ESI(+)MS m/z 776 [M + H]+, and was used in the next step without further
purification.

3.6.4. Cyclization of Linear Protected Peptide

A solution of the linear protected peptide (0.5 mg/mL in DMF (128 mL, 64 mg,
0.082 mmol) was stirred vigorously and treated by dropwise addition over 30 min with
a mixture of 0.4 M HATU (618 µL, 0.247 mmol, 3 eq.), hydroxybenzotriazole (HOBT)
(34 mg, 0.247 mmol, 3 eq.) and collidine (33 µL, 30 mg, 0.247mmol, 3 eq.) in DMF (2 mL).
After 14 h, HPLC-DAD-MS analysis of the mixture showed the cyclization was completed.
The DMF was evaporated, and the residue dissolved in MeCN (10 mL), filtered (0.45 µm
filter), and purified by preparative HPLC (Agilent Zorbax Rx-C8 7 µm, 21.2 × 250 mm
column, with a 20 min gradient elution at 20 mL/min from 90% H2O/MeCN to 100%
MeCN with an isocratic 0.01% trifluoroacetic acid/MeCN modifier). After lyophilization,
the protected cyclic peptide was obtained as an amorphous powder. The product was
confirmed by HPLC-DAD-MS (method as described in general experimental section):
tR = 5.8 min, ESI(+)MS m/z 758.5 [M + H]+

3.6.5. Cyclic Peptide Deprotection

The protected cyclic peptide was mixed with an aqueous solution of 90% formic
acid (3 mL) for 40 min, after which it was concentrated under a stream of nitrogen gas
and the residue dissolved in MeCN (2 mL) and purified by preparative HPLC (Agilent
Zorbax Rx-C8 7 µm, 21.2 × 250 mm column, with a 20 min gradient elution at 20 mL/min
from 90% H2O/MeCN to 100% MeCN with an isocratic 0.01% trifluoroacetic acid/MeCN
modifier) to yield synthetic talarolide B (16 mg, 23% overall yield); NMR (DMSO-d6),
see Figures S50–S52; HRESI(+)MS m/z 724.4008 [M + Na]+ (calcd for C35H55N7O8Na
724.4004); identical with natural talarolide B (2), including by co-injection HPLC-DAD-MS
(Figure S48).
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3.7. Three-Dimensional Solution Structure Calculations

The distance restraints used in calculating the structure for talarolide A (1) in DMSO-d6
were derived from ROESY spectra (recorded at 298 K) using mixing time (spin-lock) of 300
ms with 41 NOEs (see Supplementary Materials). NOE cross-peak volumes were classified
manually as strong (upper distance constraint ≤ 2.7Å), medium (≤3.5Å), weak (≤5.0Å),
or very weak (≤6.0Å). Standard pseudoatom distance corrections were applied for non-
stereospecifically assigned protons. To address the possibility of conformational averaging,
intensities were classified conservatively and only upper distance limits were included in
the calculations to allow the largest possible number of conformers to fit the experimental
data. Backbone dihedral angle restraints were inferred from 3JNHCHα coupling constants
in 1D spectra, using the Karplus equation [15] with angle ± 30◦. There was one cis-amides
bond between N-Me-L-Ala6-N-Me-L-Tyr7 (i.e., strong CHα-CHα (i, i + 1) NOEs); the rest
were in trans configuration (ψ-angles were set to trans (ψ = 180◦)). Starting structures with
randomized φ and ψ angles and extended side chains were generated using an ab initio
simulated annealing protocol. The calculations were performed using the standard force-
field parameter set (PARALLHDG5.2.PRO) and topology file (TOPALLHDG5.2.PRO) in
XPLOR-NIH with in-house modifications to generated N-methylated and N-hydroxylated
residues. Refinement of structures was achieved using the conjugate gradient Powell
algorithm with 4000 cycles of energy minimization and a refined forcefield based on the
program CHARMM [12]. Structures were visualized with Pymol and analyzed for distance
(>0.2Å) and dihedral angle (>2◦) violations using noe.inp files. 1H NMR (DMSO-d6) vari-
able temperatures for 1 was obtained from 298 K to 318 K in five degrees stepwise on a
Bruker Avance III 600 MHz NMR spectrometer. The chemical shift differences of amide
NH and N-OH were plotted against temperature to generate the temperature coefficient
(∆δ/T) using Prism version 10.0.2 (Figure 8).

4. Conclusions

Application of an integrated program of cultivation (MATRIX) and chemical (HPLC-
DAD and GNPS) profiling to the marine-derived fungus Talaromyces sp. CMB-TU011
enabled access to talarolide A (1), along with three new analogues, talarolides B–D (2–4).
Detailed spectroscopic analysis, supported by chemical degradation and derivatization, and
partial and total syntheses, permitted assignment of structures to 1 (revised) and 2–4. The
talarolides include rare examples of natural cyclic peptides incorporating a hydroxamate
moiety, with a solution structure on 1 revealing H-bonding from the N-OH-Gly1 across
the macrocyclic ring to the D-Ala5 carbonyl oxygen, which both defined and stabilized
a unique conformation. This contrasts with the deoxy analogue 2 (i.e., Gly1) where the
NMR data indicate two interconverting conformers. Knowledge of the talarolides draws
attention to the possible inclusion of hydroxamate moieties in other cyclic peptides (natural
and synthetic), as a means to access new and unusual conformations with potentially new
biological properties including improved oral bioavailability [16].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/md21090487/s1. MATRIX study of CMB TU011; NMR spectro-
scopic data (tabulated data and spectra), Marfey’s analysis, and MS/MS spectra of 1–4; NMR spectra
comparison of natural and synthetic talarolide B (2); 3D calculations of talarolide A (1).
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