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Abstract: Marine molluscs are of enormous scientific interest due to their astonishing diversity in
terms of their size, shape, habitat, behaviour, and ecological roles. The phylum Mollusca is the second
most common animal phylum, with 100,000 to 200,000 species, and marine molluscs are among the
most notable class of marine organisms. This work aimed to show the importance of marine molluscs
as a potential source of nutraceuticals as well as natural medicinal drugs. In this review, the main
classes of marine molluscs, their chemical ecology, and the different techniques used for the extraction
of bioactive compounds have been presented. We pointed out their nutraceutical importance such
as their proteins, peptides, polysaccharides, lipids, polyphenolic compounds pigments, marine
enzymes, minerals, and vitamins. Their pharmacological activities include antimicrobial, anticancer,
antioxidant, anti-inflammatory, and analgesic activities. Moreover, certain molluscs like abalones
and mussels contain unique compounds with potential medicinal applications, ranging from wound
healing to anti-cancer effects. Understanding the nutritional and therapeutic value of marine molluscs
highlights their significance in both pharmaceutical and dietary realms, paving the way for further
research and utilization in human health.

Keywords: marine molluscs; chemical ecology; extraction techniques; nutraceutical importance;
biological properties; bioactive compounds

1. Introduction

The size of the oceans and the rich biodiversity of the organisms living there make
the marine environment an ideal source for bioactive compounds [1]. Oceans make up
more than 70% of the Earth’s surface and have more than 200,000 species of animal and
plant life [2]. As a result, there may be a great chance to discover new compounds in the
maritime environment [3–5]. Marine ecosystems are incredibly complicated, with pressure
restrictions varying from 1 to 1000 atm, nutrient limits (oligotrophic or eutrophic), and
thermal parameters ranging from 0 ◦C in the Antarctic to 350 ◦C in deep hydrothermal
areas [6]. To endure the high stressors present in marine environments, marine species
developed chemically or structurally unique bioactive secondary metabolites as part of their
various biosynthetic pathways. These secondary metabolites were believed to be caused by
a variety of chemically mediated interactions that have been studied, such as interactions
between planktonic organisms and predators–prey and seaweed–herbivores, as well as
chemical defences against pathogenic marine microbes and fouling organisms [7,8]. Among
the marine organisms that inhabit the marine ecosystem are the marine molluscs from the
phyla Mollusca which fall under marine invertebrate species [9]. Molluscs are among the
class of marine organisms that make up 7% of all marine animals, and the phylum Mollusca
is the second most common animal phylum, with 100,000 to 200,000 species, of which more
than 52,000 have been found and classified [10]. This indicates that Mollusca offers a broad
spectrum of organisms [11,12].
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In the search for bioactive metabolites, the scientific world has paid phylum Mollusca
significant attention. Soft-bodied molluscs without shells are the most frequently chosen for
natural product isolation because it is thought that they will be a rich source of protective
secondary metabolites [10,13,14]. Due to their sessile or slow-moving nature and lack
of a protective covering, which leaves them exposed to predators, they must develop
chemical defences [10,13,15]. The shell-covered molluscs must stretch their muscular foot
outside into a hostile environment full of predators and microbial infections to feed and
move [16–18]. The quantity of compounds isolated from molluscs and the growing body of
research on molluscs, however, do not correspond to the diversity of the available species.
In fact, less than 1% of molluscan species has undergone chemical analysis, as numerous
studies have examined the same species in various ecological environments [10]. The
importance of marine molluscs as alternatives to traditional fisheries has significantly
increased during the past several decades in many different parts of the world [19]. As a
result, the development of potential therapeutic leads, functional foods, nutraceuticals, and
pharmaceutical products benefited greatly from coastal ecosystems [20]. The present review
article extensively comprehended the importance of marine molluscs as a potential source of
nutraceuticals as well as natural medicinal drugs. Future research endeavours, particularly
concerning the development of functional foods, nutraceuticals, and therapeutic leads
with multiple bioactivities, might benefit from this comprehensive review of the molluscan
phylum owing to the diverse number of species.

2. Definition and Types of Marine Molluscs

A broad group of invertebrate organisms that make up the phylum Mollusca are
known as marine molluscs, or simply molluscs [21]. They can be found in a variety of
marine settings, including oceans, seas, and estuaries, and they play a variety of ecological
roles in marine ecosystems [22,23]. Molluscs are distinguished by their soft bodies, which
are frequently shielded by hard shells; however, not all molluscs have shells [21,24]. Snails,
clams, squids, and octopuses are among the well-known and significant creatures that
belong to this phylum [20,25,26]. Based on their anatomical characteristics and ecological
functions, molluscs can be roughly divided into seven main groups as mentioned in Figure 1
below, with each having distinct characteristics and adaptations [27].
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Molluscs contribute to biodiversity and the dynamics of marine environments by
acting as both predators and prey, and their largest group is called the Gastropoda [28].
Most Gastropod species have a single, coiling shell, but some do not. They can be found in
various maritime locations and have different feeding habits [29]. They walk on a muscular
foot, and their radula (a feeding organ) is frequently well-developed [30,31]. Snails, sea
slugs, and nudibranchs are a few examples [32]. In the Bivalvia class, the two-part, hinged
shell of Bivalves is what distinguishes them from other animals; as examples, we have
clams, mussels, oysters, and scallops [33]. Bivalves are filter feeders that draw food particles
from the water with the help of their gills [34,35]. The third largest group of molluscs,
called Cephalopoda, includes some of the smartest and most active individuals [36,37]. They
are recognized for their sophisticated behaviours and intricate nerve systems and are
carnivorous [38]. They possess a distinct head, a shrunken or internalized shell (or, in
rare cases, no shell at all), and a group of strong tentacles that are fitted with suckers [39].
Squids, octopuses, nautiluses, and cuttlefish are other examples [40,41].
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The molluscs in the Polyplacophora class are also known as chitons, and polypla-
cophorans have an oval body shape with eight overlapping armoured plates covering
it [42]. They are mostly found in intertidal areas, and their unique feeding organ, the
radula, is used to scrape algae off rocks [43]. The molluscs belonging to the Scaphopoda
class are often known as "tusk shells" because of their long and tubular shells [44]. They are
organisms that live in soft sediments and burrow, feeding on debris or tiny particles [45].
The Monoplacophora class is scarce and those that are extinct have been discovered to be
characterized by segmented bodies and a single, cap-like shell [46]. Before the discovery
of living specimens in deep water, they were believed to be extinct [47]. Another less
well-known molluscan group called Aplacophorans consists of tiny, worm-like organisms
that lack a shell or have scaled-down, spicule-like features [15]. They frequent locations in
deep water and consume tiny invertebrates [48]. They can be classified as Caudofoveates
and Solenogasters [10,49,50].

Among all these classes of molluscs, the three that can be classified as the major classes
are viz Gastropods, Bivalves, and Cephalopods, and we can find their main similarities in
Figure 2, below [10].

Mar. Drugs 2024, 22, x  3 of 31 
 

 

The molluscs in the Polyplacophora class are also known as chitons, and polyplacoph-
orans have an oval body shape with eight overlapping armoured plates covering it [42]. 
They are mostly found in intertidal areas, and their unique feeding organ, the radula, is 
used to scrape algae off rocks [43]. The molluscs belonging to the Scaphopoda class are often 
known as "tusk shells" because of their long and tubular shells [44]. They are organisms 
that live in soft sediments and burrow, feeding on debris or tiny particles [45]. The Mono-
placophora class is scarce and those that are extinct have been discovered to be character-
ized by  segmented bodies and a single, cap-like shell [46]. Before the discovery of living 
specimens in deep water, they were believed to be extinct [47]. Another less well-known 
molluscan group called Aplacophorans consists of tiny, worm-like organisms that lack a 
shell or have scaled-down, spicule-like features [15]. They frequent locations in deep wa-
ter and consume tiny invertebrates [48]. They can be classified as Caudofoveates and Sole-
nogasters [10,49,50]. 

Among all these classes of molluscs, the three that can be classified as the major clas-
ses are viz Gastropods, Bivalves, and Cephalopods, and we can find their main similarities in 
Figure 2, below [10]. 

  
Figure 2. Major classes of living molluscs and their characteristics. 

3. Marine Molluscs and Chemical Ecology 
Chemical compounds are frequently used by various marine organisms including 

marine molluscs for communication, self-defence from predators and pathogens, attract-
ing mates, attacking prey, and competing for resources [51–53]. Chemical defences are a 
common strategy used by marine molluscs to ward off predators [54]. To avoid being 
consumed, they may discharge toxic substances like toxins or ink [55]. For instance, cone 
snails are renowned for injecting their prey with powerful venom by utilizing specialized 
radula (a feeding organ) [56]. The vibrant sea slugs known as nudibranchs can retain the 
toxic compounds from their food, such as sponges or cnidarians, and employ them for 
self-defence. Certain compounds, including kahalalide F, have proven to be predator-de-
fensive in sacoglossan prey [57]. Investigations into Antarctic animals have also shown how 
natural compounds can fend off predators [58]. They store these toxins in their bodies to 
act as a deterrence to possible predators [55]. Molluscs emit chemical cues that can either 
draw in or drive away predators and prey [27]. For instance, certain predatory molluscs 
use chemical cues emitted by their prey to identify them, whereas possible prey species 

Figure 2. Major classes of living molluscs and their characteristics.

3. Marine Molluscs and Chemical Ecology

Chemical compounds are frequently used by various marine organisms including
marine molluscs for communication, self-defence from predators and pathogens, attracting
mates, attacking prey, and competing for resources [51–53]. Chemical defences are a
common strategy used by marine molluscs to ward off predators [54]. To avoid being
consumed, they may discharge toxic substances like toxins or ink [55]. For instance, cone
snails are renowned for injecting their prey with powerful venom by utilizing specialized
radula (a feeding organ) [56]. The vibrant sea slugs known as nudibranchs can retain the
toxic compounds from their food, such as sponges or cnidarians, and employ them for self-
defence. Certain compounds, including kahalalide F, have proven to be predator-defensive
in sacoglossan prey [57]. Investigations into Antarctic animals have also shown how natural
compounds can fend off predators [58]. They store these toxins in their bodies to act as a
deterrence to possible predators [55]. Molluscs emit chemical cues that can either draw
in or drive away predators and prey [27]. For instance, certain predatory molluscs use
chemical cues emitted by their prey to identify them, whereas possible prey species may
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release chemicals to warn other creatures of the presence of predators, causing them to take
protective measures [27,59].

In marine chemical ecology, the feeding stimulants and compounds that entice con-
sumers to food sources are significant yet understudied. Certain compounds, including
lipids, carbohydrates, and amino acids, can draw or keep away marine Gastropods [60].
Crabs and oysters use scent plumes to find and detect their bivalve prey [61–63]. It is
believed that because there are more consumers in tropical areas, these organisms have
greater defences against them [64]. Secondary metabolites may frequently act as consumer
defences, according to geographic trends in their prevalence [65,66]. Secondary metabolites
frequently exhibit intraspecific variation that can differ within and between individuals,
groups, and geographical areas. Intraspecific diversity in chemical defences may result
from induction brought on by consumer attack or physical stress [67]. Studying various
prey features and their integration is crucial for understanding chemical defences because a
prey’s nutritional quality and chemical defences interact to impact that prey’s susceptibility
to consumers [68].

Their nutritional sources have an impact on the chemical diversity of molluscs as
well [69]. According to research, in addition to molluscs being able to biosynthesize com-
pounds de novo, they also bioaccumulate them from their diets (especially algal diets)
or bioaccumulate then sequester (chemically modify) them [70,71]. Both Gastropods and
Bivalves contain all known secondary metabolites, although due to their involvement in
reproduction, terpenes predominate in gastropods whereas sterols are more common in
bivalves [72]. Both types contain alkaloids and polyproprionates, although aliphatic nitroge-
nous chemicals are less frequent. Analogs, which share a similar structure, are frequently
discovered in small groups and in several locations for the same species [10]. The sea hare
Aplysia kurodai, for instance, produced 25 different compounds, including terpenes, nitroge-
nous aliphatic compounds, macrolides, and fatty acid derivatives. Aplysia dactylomela, a
similar species, generated 58 chemicals, mostly terpenes, which they probably got from
their algal meals [10]. This explains why related species—especially those in the same fam-
ily but inhabiting diverse habitats—share similar feeding metabolites and biosynthesized
substances [69].

Molluscs’ survival, reproduction, growth, and adaption methods are ultimately shaped
by the composition of their lipids, especially their fatty acids, which are affected by ele-
ments like nutrition, metabolic processes, ambient conditions, and reproductive cycles [69].
Different species of molluscs have different feeding behaviours, such as filter feeding or
eating detritus, which causes variations in their fatty acid profiles [73]. Specific fatty acids,
including C20:5: ω3 from diatoms and C22:6: ω3 from dinoflagellates, are found in diets
high in dinoflagellates and diatoms, and they help to make up the fatty acid profile of
molluscs [74,75]. A major environmental component influencing fatty acid profiles is tem-
perature, with greater summertime temperatures causing more lipid build-up, especially of
polyunsaturated fatty acids (PUFAs) [76,77]. This build-up most likely has something to
do with preserving the melting point of cellular lipids under changing circumstances [77].
Fatty acid levels and patterns are also significantly influenced by metabolic processes,
especially reproductive cycles [78]. There may be a link between reproductive cycles and
fatty acid profiles since reproductive processes require a significant amount of energy,
primarily in the form of fatty acids [79]. Additionally, high energy levels are needed for
growth processes, and the requirements for fatty acids vary depending on the organ [80,81].

It is worth noting that molluscan chemicals are produced in response to environmental
conditions like temperature, salinity, and seasonal changes. Chemical components may
differ because of changes to these parameters [69]. For instance, certain temperature and
salinity conditions have an impact on fatty acids and amino acids. The composition of
chemicals in molluscs is ultimately influenced by environmental and biological factors,
including food availability and metabolic activity [69].
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4. Extraction Techniques of Bioactive Compounds from Marine Molluscs

Marine molluscs are known to contain various bioactive compounds (secondary
metabolites in different structural classes: terpenes, polypropionates, those that are ni-
trogenous (aromatic), those that are nitrogenous (aliphatic), polypeptides, macrolides, fatty
acid derivatives, sterols, miscellaneous) with potential health benefits [10,82]. Bioactive
molecules are ‘concealed’ in the primary structures of the tissue samples of molluscs which
are released by mechanical and chemical processes [83]. Extracting these compounds in-
volves a series of techniques to successfully isolate and concentrate the desired components.
Several extraction techniques have been developed to isolate bioactive compounds accord-
ing to their chemical characterization, such as proteins/amino acids, carbohydrates, and
lipids [84]. It is standard procedure to remove non-functional components from an isolate
to make it amenable for analysis. The right choice of solvents, buffers, pH ranges, tempera-
tures, etc., will produce optimal conditions for the extraction of the desired compounds [85].
With a few small variations, the extraction methods for bioactive chemicals, whether they be
crude or refined isolates, are fundamentally the same. Additional approaches for isolating
compounds from mixtures include centrifugation and filtering. These isolates are concen-
trated by drying. The primary variables in the isolation of a targeted compound and its
inherent bioactivities are the solvents and extraction conditions [86]. Therefore, extraction
techniques influence the structure, composition, and beneficial properties (mechanism of
action) of mollusc-derived extracts, so it is important to match the extraction method with
the desired outcome (target compounds) as well as molluscs species to obtain the specific
isolate [83]. These techniques will also differ according to the extraction yield and time,
the reproducibility, the volume of organic solvents used, and the co-extraction of other
compounds [87]. We can then classify the common extraction techniques used for the
extraction of active compounds from marine molluscs into two general categories which
are conventional and non-conventional.

4.1. Conventional Techniques

These techniques, also known as traditional extractions or solid–liquid extractions, are
the most frequently and commonly used extraction techniques [88]. This traditional extrac-
tion can be done in numerous ways, viz, boiling the sample and solvent with or without
stirring for a certain duration, refluxing using soxhlet, percolation, and maceration with
continuous stirring [89]. In these extractions, several solvents at high volumes are used in-
cluding water, methanol, ethanol, acetonitrile, ethyl acetate, acetone, and dichloromethane,
based on the compounds of interest [90]. It is important to mention that these techniques
are manual operations that may require more time to extract depending on the solvent diffu-
sion rate and time and there is a high chance of the degradation of thermolabile compounds
for temperature-dependent methods like soxhlet [86,91]. Due to practicality, economic,
environmental, and energy concerns, scaling up these technologies to an industrial scale
would also be challenging [92]. Thus, several recently developed extraction methods were
presented to address the methods’ shortcomings [93].

4.2. Non-Conventional Techniques

The growing recognition of the need for cost-effective and ecologically friendly meth-
ods has led to the development of a variety of alternative techniques. New non-traditional
extraction techniques, such as enzyme-assisted extraction (EAE), microwave-assisted ex-
traction (MAE), pressurized liquid extraction (PLE), subcritical water extraction (SWE),
supercritical fluid extraction (SC-CO2), and ultrasound-assisted extraction (UAE) have
been developed to overcome the drawbacks of conventional methods [85]. These methods,
which will be discussed below, produce high yields of better quality for the recovery of
bioactive chemicals and are quick, non-toxic, and affordable [85]. The advantages and
disadvantages of these modern extraction methods are shown in Table 1.
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4.2.1. Enzyme-Assisted Extraction (EAE)

Enzyme-assisted extraction (EAE) has several benefits compared to traditional extrac-
tion techniques, such as a lower operating temperature and the use of environmentally
acceptable solvents. Although EAE is not a brand-new technique for extracting bioactives
from marine organisms, it is a developing field of study due to ongoing efforts to optimize
and intensify the extraction process and find new reliable enzymes [94]. The EAE method
involves a catalytic hydrolysis reaction to disrupt the cell wall under optimal experimental
conditions and release intracellular components into the extraction medium [95]. Proteases
and carbohydrases, which are food-grade digestive enzymes, can be employed to macerate
tissues and disintegrate natural matrices’ cell walls to release the contents of the cells. Ad-
ditionally, important factors to consider include the temperature, pH, the ratio of substrate
to enzyme, the kind of solvent (water or a buffer with the right pH), and agitation [95].
The EAE has been utilized in extracting fatty acids (C13:0, C14:0, C16:0, C16:1ω7, C16:2ω6,
C18:1ω9, C18:2ω5, C18:2ω6, C18:4ω3, C20:1ω7, C20:1ω9, C20:5ω5, C22:6ω3) from the
molluscan species Patinopecten yessoensis Jay using papain enzyme [96]. The yields recov-
ered were 23.7%, 19.5%, and 55,4% for saturated fatty acids (SFA), monounsaturated fatty
acids (MUFA), and polyunsaturated fatty acids (PUFA), respectively [96].

4.2.2. Microwave-Assisted Extraction (MAE)

An efficient extraction method called microwave-assisted extraction (MAE) makes
use of microwave radiation to quickly remove various chemicals from natural sources.
MAE is a straightforward method with a wide range of uses that uses little organic solvent
and few molecules. An oscillating electric field with frequencies between 300 MHz and
300GHz or a wavelength in MAE between 1mm and 1m is used in this approach. These
frequencies induce polar molecules to oscillate, which results in friction between and
within molecules. The collision of these frictions and ion charges results in rapid heating.
Increased heating leads to the collapse of the membrane and cell wall through pressure.
When the pressure inside the sample cells rises, the chemicals move into the extraction
solvent more quickly [85]. Polar solvents are preferable to non-polar solvents when using
the MAE approach because they have larger dielectric strengths, which allow them to
absorb more energy and raise the solvent’s temperature faster. Water, methanol, ethanol,
acetone, ethyl acetate, and hexane are the solvents with decreasing dielectric constants [97].
This method was employed in the extraction and determination of four widely used
antidepressants (venlafaxine, citalopram, sertraline, and fluoxetine) and two metabolites (o-
desmethylvenlafaxine and norsetraline) from marine organism species (fish, echinoderms,
molluscs, and algae). Three main antidepressants were detected, but only two could be
quantified: citalopram: 5.83 ng g−1 and sertraline: 6.58 ng g−1 [98].

4.2.3. Subcritical Water Extraction (SWE)

Subcritical water extraction (SWE) is a green extraction method that produces excel-
lent yields in a short amount of time while using less organic solvent. SWE is a system
that is good for the extraction of substances from biologically active compounds [99]. To
preserve the liquid condition, this method uses water at high pressures and temperatures
(100–374 ◦C). SWE differs from conventional extraction methods due to several characteris-
tics of water, including its strong polarity, high dielectric and high boiling point relative
to its mass [100]. The SWE approach is predicated on the idea that higher temperatures
alter the properties of water. In the SWE process, a temperature increase causes the permit-
tivity to drop. This increases the rate of diffusion and lowers the water’s surface tension
and viscosity. This improves the mass transfer of the water, which raises the yield and
extraction rate. Another characteristic that changes during subcritical water extraction is
the dielectric constant. In its native liquid state, water has a high dielectric constant and
is strongly polar. The dielectric constant of water decreases to levels like those of organic
solvents when it reaches a subcritical temperature. For bioactive compounds with lower
polarity, especially those in the medium polarity range, lowering the dielectric constant
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enhances selectivity [99,100]. The SWE technique has been employed in extracting bioactive
compounds from Haliotis iris, where the effect of subcritical water temperature (110–280 ◦C)
on extraction performance was studied [101]. Temperatures between 220 and 250 ◦C were
shown to have the maximum concentration of bioactives, glycogen and phenolic content,
and antioxidant activity. The carbohydrate content peaked at 110 ◦C and subsequently
began to break down at higher temperatures; moreover, when the temperature rose over
160 ◦C, the amounts of protein and amino acids similarly dropped [101].

4.2.4. Supercritical Fluid Extraction (SC-CO2)

The method of separating a component from a matrix component by utilizing super-
critical fluid as an extracting solvent is known as supercritical fluid extraction. Any material
at a temperature and pressure higher than the critical point is referred to as a supercritical
fluid. The precise pressure and temperature above which there are no liquid or gas phases
is known as the critical point [102]. The density and viscosity of the supercritical fluid (SFE)
are like those of a liquid and a gas, respectively, while the fluid’s dispersion is in between
the two states. SFE dissolves components as a liquid after passing through the solid as
a gas. Typically, supercritical extraction uses CO2 to extract valuable compounds from
natural sources at a high pressure. As a co-solvent, organic solvents can change the solvent
polarity, allowing for a greater variety of extraction methods due to the poor solubility of
supercritical CO2 [103]. It is cheap, tasteless, odourless, non-flammable, and non-toxic to
extract supercritical CO2 from the water. As there is no surface tension and the viscosities
are smaller than in those in liquids, dispersion happens more quickly in supercritical fluids.
This makes the procedure quick because solvents may flow through tiny matrix pores that
liquids cannot reach. Nutraceutical, fragrance, essential oil, food, and fuel industries are
among the businesses that can greatly benefit from this technology [103]. SC-CO2 was
used for the recovery of bioactive Tyrian purple precursors including tyrindoleninone,
6-bromoisatin, and tyriverdin from the marine mollusc Dicathais orbita [104]. In this study,
at 15, 30, and 50 MPa CO2, the impact of pressure on the selective extraction of brominated
indoles was examined and contrasted with the composition and yields of conventional
chloroform extract. More lipophilic tyrindoleninone at 35 and 29% and tyriverdin at 23
and 40% of the extract composition were solvated by supercritical CO2 at pressures of 30
and 50 MPa, respectively, while extracts obtained from 15 MPa selectively concentrated
6-bromoisatin at 78% of the extract composition [104].

4.2.5. Ultrasound-Assisted Extraction (UAE)

Ultrasound-assisted extraction is a useful non-conventional technology that offers
higher product extraction yields in less time. This method is appropriate for the extraction
of bioactive compounds because it can yield large amounts of the compounds in a brief
time [105]. Sound waves ranging from 20 to 100 kHz are used in ultrasonic-assisted
extraction. The system receives energy in direct proportion to the variation in acoustic
pressure caused by passing waves, which produce zones of high and low pressure. By
increasing the solvent’s penetration into materials and the surface area that encounters
the liquid and solid phases, ultrasound increases the efficacy of extraction [106]. This
method was used for the extraction of bioactive compounds from Nerita albicilla (gastropod),
Perna viridis (mussel), and brachyuran crabs Ozius rugulosus [82].

It is worth noting that few researchers have used non-conventional extraction tech-
niques in the extraction of bioactive compounds from marine molluscs. However, more
work needs to be done to conclude which non-conventional method is the best for ex-
tracting various groups of bioactive compounds from marine molluscan species. The
optimal method will depend on the rate at which different parts of molluscan bodies
dissolve by disrupting intermolecular interactions, breaking cell membranes, and releasing
cellular contents.
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Table 1. Advantages and disadvantages of non-conventional extraction methods.

Extraction Methods Advantages Disadvantages References

Enzyme-assisted
extraction (EAE)

(i) It is a non-toxic, environmentally
beneficial method.

(ii) It enables the production of large yields of
bioactive compounds.

(iii) It transforms raw materials that are
insoluble in water into those that are soluble.
(iv) The approach is rather inexpensive due

to the utilization of food-grade enzymes.

(i) Enzyme treatment is often a lengthy
process that might take hours or even days. [107,108]

Microwave-assisted
extraction (MAE)

(i) Minimal solvent usage and
treatment duration.

(ii) Elevated extraction yields.

(i) It is only possible to utilize solvents with
strong dielectric characteristics.

(ii) The most thermolabile compounds may
degrade over time when using

open vessels.
(iii) Substantial energy use.

[109,110]

Subcritical water
extraction (SWE) (i) Use of non-toxic solvents.

(i) Expensive prices for the necessary
high-pressure apparatus.

(ii) Thermolabile compounds may degrade
because of high-temperature extractions.

[111,112]

Supercritical fluid
extraction (SC-CO2)

(i) Increased selectivity due to the ability to
control a compound’s solubility in a

supercritical fluid.
(ii) The extraction is solvent-free as the CO2

is eliminated and leaves no trace.
(iii) Ideal for extracting

thermolabile compounds.

(i) Substantial expenses for the necessary
high-pressure apparatus.

(ii) Toxic modifiers, such as methanol, are
necessary for the extraction of polar

chemical compounds.
(iii) May require more time than the other

available methods.

[113,114]

Ultrasound-assisted
extraction (UAE)

(i) Minimal solvent usage and
treatment duration.

(ii) A high degree of cell disruption efficiency.
(iii) High extraction yields.

(iv) Inexpensive.

(i) It works best with solvents with low
vapor pressure, low viscosity, and low

surface tension.
(ii) Oversonication has the potential to

degrade extract quality.

[115,116]

5. Nutraceutical Importance of Marine Molluscs

The molluscs are classified as edible shellfish, which have been traditionally utilized
as a functional food with health benefits [117]. The scientific community gave marine
molluscs a lot of consideration since they play a significant role as useful ingredients for
the food industry and offer a variety of advantages for human health, either directly or
after processing [12]. The nutraceutical and functional food industry is currently growing
in popularity throughout the world, as an alternative to the pharmaceutical industry [118].
Due to their high nutritional value, marine molluscs have been a staple food for many
societies for ages [119]. They are great suppliers of important nutrients such as omega-3
fatty acids, vitamins, minerals, and proteins [120]. Out of these seven classes of molluscs,
Bivalves (mussels, oysters, clams, and scallops), Cephalopods (squid, cuttlefish, and octopus),
and Gastropods (whelks, sea snails, cockle, and abalone) represent economically consider-
able molluscs and they constitute common edible seafood items in human consumption
which were used as a balanced protein resource [20]. Additionally, these molluscan species
offer vital amino acids, which are important for both overall health and the development of
muscles [121]. Therefore, the species belonging to this phylum represent rich sources of
chemical diversity and health products, allowing for the evolution of nutritional supple-
ments, and it is worth noting that the nutraceutical content of marine molluscs can vary
based on factors such as their species, habitat, diet, and harvesting methods [11,12,20].

The compounds from marine molluscs that have shown beneficial health effects and
potential uses in food and medical applications include proteins and peptides (collagen,
gelatin, and albumins), polysaccharides (carrageenan, agar-agar, fucans, fucanoids, chitin,
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chitosan, and derivatives), lipids (phospholipids, sterols, and fatty acids), polyphenolic
compound pigments (phlorotannins, β-carotene, chlorophylls, and lutein), enzymes (gastric
proteases, pepsins, gastricsins, chymosins, serine, cysteine, lipases, and transglutaminase),
and fat- and water-soluble vitamins [12,121].

5.1. Proteins and Peptides

Marine molluscs are rich in high-quality proteins, making them valuable sources of
essential amino acids/bioactive peptides (collagen, gelatine, and albumins) with poten-
tial antioxidant, antihypertensive, and anticoagulant properties [122]. These compounds
may contribute to cardiovascular health, tissue repair, immune function, and muscle
growth [123]. Albumin extracted from molluscs has anticoagulant and antioxidant proper-
ties and is applied as a whipping, suspending, or stabilizing agent [124]. Gelatin extracted
from giant squid tunics (Dosidicus gigas) demonstrated antioxidant activity after hydrolysis
with trypsin, chymotrypsin, or pepsin. Bivalve (Sepia officinalis) protein hydrolysates and
peptides possess antioxidant activity [125].

5.2. Polysaccharides

Marine molluscs, such as certain types of shellfish, can be a source of various polysac-
charides (carrageenan, agar-agar, fucans, fucanoids, chitin, chitosan, and derivatives) with
potential applications in the food industry [126]. Polysaccharides derived from the shells
of marine molluscs include chitin and chitosan, as well as their derivatives, which are used
as gelling agents, edible protective films, fruit clarification, and de-acidification, and have
antitumor, bactericidal, and fungicidal properties [127]. They also have increased dietary
fiber contents and reduced lipid absorption [124]. The several species of chiton, mollus-
can species Rapana venosa’s eggs, and cephalopod sepia prashadi have chitin and chitosan
which possess antioxidant, anti-microbial, anti-viral, and anti-hypertension properties [125].
Bivalve Perna canaliculus exhibit Glycosaminoglycans/Biolane and Glycosaminoglycans/
GlycOmega-PLUS with anti-inflammatory and anti-arthritic properties, respectively [125].

5.3. Lipids

The lipid content of molluscs is their most significant nutritional feature and lipids
perform essential biological roles as signalling molecules, components of the cell mem-
brane’s structure, and molecules that store energy [128,129]. Molluscan-derived lipids
consist of molecules such as fatty acids and their derivatives (i.e., tri-, di monoglycerides,
and phospholipids), as well as other sterol-containing molecules (i.e., cholesterol) [130,131].

Phospholipids are the most dominant lipids in marine molluscs, probably because
they are one of the main lipid structural components of biological membranes [132]. Phos-
pholipids have various health benefits including anti-inflammatory properties since they
can act as lipid mediators of inflammation that can influence immunological processes
at the cellular level (i.e., Platelet Activating Factor (PAF); 1-O-alkyl-2-acetyl-sn-glyceryl-
3-phosphorylcholine) [133]. The analysis of the composition of lipids of nudibranch
species (Chromodoris tinctoria, C. michaeli, C. geometrica, Chromodoris sp., Glossodoris cincta,
G. atromarginata, Risbecia tryoni, and Platydoris sp.) showed that the major lipid class was
phospholipids with a concentration range from 73.8% in Chromodoris geometrica to 81.7%
in Glossodoris cincta of the total lipids [129]. In a comparable study, lipid analysis was
conducted on two nudibranch molluscs, Chromodoris sp. and Phyllidia coelestis, and phos-
pholipids were the dominating lipid class (85.7 and 54.9% of the total lipids) [134]. The
principal phospholipids from the bivalve mollusc Anadara broughtonii have been discovered
to be phosphatidylcholine and phosphatidylethanolamine (PEA), with their total content of
45.0–54.0% of the phospholipids mass. A similar conclusion was drawn from phospholipids
from Mytilus bivalve molluscs, (i.e., M. edulis and M. galloprovincialis) with a total content
of 36.8–43.1% and 25.3–38.5% for phosphatidylcholine and phosphatidylethanolamine,
respectively [135].
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Marine sterols are one of the lipids that are often found in molluscan species in-
cluding Chromodoris tinctoria, C. michaeli, C. geometrica, Chromodoris sp., Glossodoris cincta,
G. atromarginata, Risbecia tryoni, and Platydoris sp. [129]. Due to their anti-inflammatory
and antioxidant characteristics, marine sterols such as fucosterol and saringasterol have
been studied for several health benefits, including anti-cancer, anti-obesity, anti-diabetes,
anti-aging, and anti-Alzheimer’s effects [136]. The content of sterols in Chromodoris tinctoria,
C. michaeli, C. geometrica, Chromodoris sp., Glossodoris cincta, G. atromarginata, Risbecia tryoni,
and Platydoris sp. ranged from 13.5% to 16.1% of the total lipids, and 13% of the total lipids
for Chromodoris sp. and Phyllidia coelestis [129,134].

Almost all marine molluscs, especially fatty fish like squid and octopuses, are excellent
sources of omega-3 polyunsaturated fatty acids (PUFA), such as eicosapentaenoic acid (EPA)
and docosahexaenoic acid (DHA) [137]. These fatty acids are known to have cardiovascular
benefits in reducing the risk of heart disease, and neurodevelopment abilities in promoting
brain health, and they also possess anti-inflammatory properties. They are currently used
in the industry as nutraceuticals (fish oil and capsules), for the fortification of livestock,
feed, and infant formula [124]. Due to the presence of polyunsaturated fatty acids (PUFA)/
lipinol, the bivalve molluscan Perna canaliculus has anti-inflammatory and anti-arthritis
properties [125]. However, their fatty acid content is usually low compared to that of their
phospholipids and sterols. Moreover, the storage components of the cells, triacylglycerols,
and monoalkyl diacylglycerols are usually minor components, ranging between 2.6% and
3.4% of the total lipids [129].

5.4. Polyphenolic Compounds Pigments

Marine polyphenols are found in a variety of natural sources, including molluscs. Shell-
fish, such as shrimps, clams, and oysters, are a source of marine polyphenols and other minor
nutrients [138]. The most common compounds found in shellfish are carotenoids such as
astaxanthin and zeaxanthin, which have antioxidant and anti-inflammatory properties [139].
These polyphenols are derived from algae and other marine organisms that are consumed
by shellfish as part of their diet [140]. One example of a marine polyphenol is the catechins,
which are also found in tea, and procyanidins, which are found in various fruits, vegetables,
and brown seaweeds [141]. These polyphenols are believed to have a range of health
benefits, including antioxidant and anti-inflammatory effects [138].

5.5. Marine Enzymes

Serine and cysteine protease enzymes are found in molluscs are they are used to
prevent unwanted colour changes in food products, in meat tenderizing, in the curing
of herring, and in squid fermentation [124]. The discovery of the molluscan enzymes
is currently underway. The fucoidanase enzyme was isolated and purified from the di-
gestive glands of the marine mollusk Lambis sp. [142]. Moreover, the Nacella concinna
molluscan species produced proteolytic (keratinolytic) and glycolytic (α-L-rhamnosidases)
enzymes [143]. The bacterial isolates (GS 1-4, GS 2-1, and GS 2-12) isolated from gastropod
species, namely Conus ebraeus L.1758 and Morula aspera, as well as one bivalve species,
Hiatula chinensis, showed potent enzymatic activity [144].

5.6. Minerals and Vitamins

Almost all molluscan species (such as oysters and mussels) are often high in essential
minerals such as calcium, iron, zinc, selenium, copper, manganese, and iodine and water-
soluble vitamins, including B vitamins (B12, B6, and riboflavin), vitamin D, and vitamin
A [117]. The minerals are crucial for bone health, immune function, antioxidant defence,
and thyroid regulation, and vitamins play important roles in energy metabolism, immune
support, vision, and overall health, and they are currently used in food, pharma, and
nutraceutical industries [124]. The Bivalve class is mostly rich in calcium, iron, zinc, and
phosphorus, making it applicable as a food supplement [125].
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6. Medicinal Importance of Marine Molluscs

The pharmaceutical sector is expanding quickly and consistently [145]. Despite the
massive number of pharmaceuticals that are generated annually, the need for new drug
discovery remains critical [146]. The emergence of new diseases and infections, the ap-
pearance of new challenges in old diseases like AIDS, the rise of drug-resistant infectious
diseases, and the highly toxic nature of some currently used drugs are some of the factors
driving the search for new medications [21]. Many molluscan species are used in traditional
Chinese, Indian, South African, and Middle Eastern medicines, as well as in homeopathic
remedies [18,118,120]. Traditional medicines have included molluscan shells, soft tissues,
basal portions, mucilage, and even complete molluscan organisms for treating cancer,
inflammations, dotage, and other ailments [11]. Diverse marine molluscs have yielded
many bioactive compounds which in turn are the driving force towards bioprospecting
and drug discovery to reveal their potential to produce novel bioactive compounds with
pharmaceutical applications. Researchers have found compounds with potential medicinal
properties in the venoms and secretions of various mollusc species that show promise as
anti-microbial (antibacterial, antiviral, antifungal), anti-inflammatory, antioxidant, and
anti-cancer agents [147].

6.1. Anti-Microbial Properties

In recent decades, attempts have been made to produce anti-bacterial and immuno-
logical drugs to treat and prevent several infectious diseases that affect humans and are
caused by germs [148]. The decades of research have shown that marine organisms offer
tremendous opportunities to harvest anti-microbial substances as well as provide cues
for their laboratory synthesis [147]. Antimicrobial compounds have been generated by
marine molluscs like snails, clams, and mussels as defences against infections in their
aquatic surroundings. These compounds have antimicrobial effects on viruses, fungi, and
bacteria. There are several basic mechanisms that many of these antimicrobial agents
have, yet the modes of action can vary depending on the structure of the compound. The
antimicrobial compounds are responsible for Disrupting the integrity of microbial cell
membranes, creating pores, or causing the leakage of essential components, leading to cell
death. Examples include the Myticin and Mytilin from marine mussels, which operate
through this mechanism [149].

Inhibiting key enzymes like DNA gyrase and RNA polymerase, disrupting bacterial
replication and transcription. These enzymes are essential for microbial growth and sur-
vival and may be involved in metabolic pathways or cell wall synthesis [150]. Examples
include conotoxins targeting ion channels and neurotransmitter receptors in nerve cells
and Aplisynin, a compound isolated from sea hare Aplysia kurodai [151].

Causing oxidative stress in bacteria by generating reactive oxygen species (ROS),
damaging cellular components like DNA, proteins, and lipids. Marine molluscs like
mussels produce molecules like superoxide dismutase or metal-binding proteins that
facilitate ROS production such as Mytimycin C which can induce oxidative stress in
bacteria [152].

Marine molluscs have yielded several compounds with anti-microbial properties, in-
cluding glycoproteins, peptides, indole alkaloids, and chlorinated acetylenes [20]. Among
these compounds, we have Scutinin A (1) isolated from the Australian limpet Scutus antipodes,
5’-deoxy-5’-methylthio-adenosine (MTA) (2) from a Dorid nudibranch [153], and a deoxy
analog of manoalide (3) from Chromodoris willani [20]. We also have Tartrolon E (4) obtained
from a shipworm [153], Hexadecylglycerol (5) from Archidoris montereyensis, Kelletinin-I
and II (6,7) from Kelletia kelletii [154], and Chromodorolide-A (8) from the nudibranch
Chromodoris cavae [155]. More compounds like Homarine (9) from Marionia blainvillea and
Aglaja tricolorata, Diemenensins A (10) from Siphonaria spp. and Siphonaria diemenensis,
Pectinatone (11) from Siphonaria pectinate [13], iso-obtusol (12) from Aplysia Parvula, and
Pacifenol (13) from A. dactylomela have been isolated [156]. Anti-microbial peptides (AMPs)
represent the most universal immune effectors and they are divided into four families,
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which are defensins, myticins, mytilins, and mytimycins. Several Bivalves including
Mytilus galloprovincialis, M. edulis, M. trossolus, Crassostrea virginica, Ruditapes philippinarum,
and Gastropods like Biomphalaria glabrata, Haliotis discus hannai, H. discus discus, and H. laevigata
form important sources of AMPs. This entails that so far, AMPs have been isolated only
from these two major groups of molluscs (Figure 3) [147].
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6.2. Anti-Cancer Properties

Oceans are now considered a treasure trove of bioactive compounds possessing anti-
cancer (antioxidant/cytotoxicity/anti-tumour) activities [147]. According to the Food and
Drug Administration (FDA) and the European Agency for the Evaluation of Medicinal
Products, among the newly discovered metabolites with promising anti-tumour proper-
ties, some are from the marine environment [157,158]. However, the marine bioactive
compounds constitute a small percentage, which suggests the need for more effort to
discover novel anti-tumour compounds [147]. Chemical investigations of the phylum
Mollusca have described various compounds as potential anticancer drugs based on their
ability to overcome cancer cell resistance chemotherapy. The reason behind the selection of
mollusc-derived anticancer drug candidates was due to their ability to target the biological
characteristics of cancer cells, and their potency, selectivity, and mechanisms of action along
with their alimentary behaviour [20]. Molluscan compounds including peptides were
found to possess anticancer properties through different mechanisms of action in the killing
of cancer cells such as apoptosis induction, cell cycle arrest, angiogenesis inhibition, and
metastasis inhibition. Some of the bioactive compounds possessing anti-tumour/anticancer
properties from marine molluscs include the linear peptide Dolastatin 10 (14) and de-
sipeptide Dolastatin 15 (15) isolated from Dollabella Auricularia and Kahalalide F (16) from
Elysia rufescens [147]. The Keenamide A (17) obtained from Pleurobranchus forskalii has also
shown these properties, as well as the alkyl amino alcoholic compound Spisulosine ES-285
(18) from the arctic surf clam Spisula polynyma, and Lamellarin D (19) from Lamellaria [147].
Other compounds have similarly been reported to possess these activities, like Zalyp-
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sis (20) isolated from the pacific nudibranch mollusc Joruna funebris, Aplyronine A (21)
from Aplysia kurodai [20], Jorumycin (22) from the doridacean nudibranch Jorunna funebris
and Bursatellanin (23) from Bursatella leachii [13]. We also noted 5α,8α-epidioxysterols
(24) isolated from Aplysia punctate, the cyclic monoterpene aplysia terpenoid A (25) from
Aplysia kurodai, and Thyrsiferol (26) from Laurencia thyrsifera [156], which exhibited this
activity (Figure 4).
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6.3. Anti-Inflammatory and Analgesic Properties

Inflammation is the complex biological response of the vascular system which arises
as the product of oxidative stress [159]. It is usually associated with pains and other suf-
ferings requiring immediate medication. Great progress has been made in recent decades
towards understanding the neural substrates of pain relief and identifying novel molec-
ular targets for anti-inflammatory and analgesic drug development [160]. A series of
bioactive compounds with promising anti-inflammatory and analgesic properties have
been identified and isolated from marine molluscs [147]. Peptides and proteins having
analgesic and anti-inflammatory characteristics are a frequent mechanism of action for
these properties [161]. Conotoxins are one prominent case in point. Conus snails’ (genus
Conus) venom contains tiny peptides known as conotoxins [14]. These toxins are used
by cone snails, a type of marine mollusc, to paralyze their prey [162]. In the neurological
system, conotoxins can interact with ion channels and receptors. Some of them target
nicotinic acetylcholine receptors, calcium channels, or voltage-gated sodium channels [163].
Conotoxins can interfere with pain signals and lessen inflammation by blocking or altering
the activation of these channels [147]. Several reported marine molluscs have bioactive
compounds possessing anti-inflammatory/ analgesic properties including the Ziconotide
(27) isolated from Conus geographus and Conus magus [147], 6-bromoisatin (28) from the
Australian marine mollusc Dicathais orbita [20], and tetrodotoxins (29) from bivalves and
gastropod samples [164]. We also noted the Malyngamide S derivative (30) obtained from
Bursatella leachii, the lactonic disecosteroid 9-disecoergosta-8-en-α-homo-6a-oxa-1-one (31)
from Babylonia spirata, the phenylacetyloxy-trimethylpicene-23-carboxylate derivative (32)
from Crassostrea madrasensis, and the benzo[h]naphtho[1,2-c] chromene derivative (33) from
Perna viridis [20]. Other compounds exhibited this analgesic property, among which was
1-methyl-isoguanosine (34) isolated from the nudibranch Anisodoris nobilis [154], Scalara-
dial (35) from Glossodoris pallida, Punaglandin (36) from Tritonia sp. and Dactyloditerpenol
acetate (37) from Aplysia dactylomela [13]. A polybrominated diphenyl ether (38) isolated
from Aplysia dactylomela [156], and 17-eicosatetraenoic acid (39) from Perna canaliculus have
also been reported [165] (Figure 5).

6.4. Antioxidant Properties

The excessive reactive oxygen species (ROS) (including hydroxyl radical (•OH), super-
oxide anion (O2

•-), hydrogen peroxide (H2O2), nitroxide radicals (NO•), and peroxyl radi-
cals (ROO-)) results in oxidative stress which can cause the pathogenesis of various chronic
diseases such as atherosclerosis, diabetes, cancer, arthritis, and the ageing process [166].
In the past few years, mollusc-derived antioxidants (including taurine, carotenoids, α-
tocopherol and n-3 polyunsaturated fatty acids, polysaccharides, and peptides), especially
those from bivalve and gastropod groups of molluscs, were discovered [83]. The biological
pathways of these natural antioxidants are either unknown or not well understood; how-
ever, n-3 polyunsaturated fatty acids used as a dietary supplement have been known to
mitigate oxidative stress through the induction of cellular antioxidant responses [83]. These
compounds could alleviate oxidative stress-mediated diseases by scavenging free radicals.
This, in turn, relieves the cellular damage caused by oxidation, and they have been added
to health supplements, food additives, and pharmaceuticals [167]. On the other hand,
polyphenols are well-known, strong antioxidants due to their common mechanism of do-
nating hydrogen atoms or electrons to neutralize free radicals the effect could be explained
by three distinct mechanisms, including scavenging the ROS, regulating the antioxidant sys-
tem, or oxidative stress-mediated signaling pathways [166]. Some compounds exhibiting
antioxidant properties include 3,5-dihydroxy-4-methoxybenzyl alcohol (40) isolated from
Crassostrea gigas [83], and Chlorophyllonic acid A methyl ester (41) and Chlorophyllone A
(42) from Ruditapes philippinarum [20]. Chromenyl derivative methyl 9-(tetrahydro-3-oxo-
3H-isochromen-5-yl) hexanoate (43) obtained from the spineless cuttlefish Sepiella inermis
also exhibited this activity as well as Ramosane (44) from Chicoreus ramosus, Octahydroazu-
lenopyrandione (45) from Amphioctopus marginatus, and Astaxanthin (46) from Octopus
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and cuttlefish species [20]. We also noted that polyether macrocyclic lactone (47) isolated
from Babylonia spirata [168], 23-gem-dimethylcholestaenol and methyldihomocholest-5,
22-dienol (48, 49) from Paphia malabarica [169], and O-spirocyclic ether derivatives and
irregular meroterpenoid derivatives (50, 51, 52) from Villorita cyprinoides have been reported
for their activities [170] (Figure 6).
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stood; however, n-3 polyunsaturated fatty acids used as a dietary supplement have been 
known to mitigate oxidative stress through the induction of cellular antioxidant responses 
[83]. These compounds could alleviate oxidative stress-mediated diseases by scavenging 
free radicals. This, in turn, relieves the cellular damage caused by oxidation, and they have 
been added to health supplements, food additives, and pharmaceuticals [167]. On the 
other hand, polyphenols are well-known, strong antioxidants due to their common mech-
anism of donating hydrogen atoms or electrons to neutralize free radicals the effect could 
be explained by three distinct mechanisms, including scavenging the ROS, regulating the 
antioxidant system, or oxidative stress-mediated signaling pathways [166]. Some com-
pounds exhibiting antioxidant properties include 3,5-dihydroxy-4-methoxybenzyl alco-
hol (40) isolated from Crassostrea gigas [83], and Chlorophyllonic acid A methyl ester (41) 
and Chlorophyllone A (42) from Ruditapes philippinarum [20]. Chromenyl derivative me-
thyl 9-(tetrahydro-3-oxo-3H-isochromen-5-yl) hexanoate (43) obtained from the spineless 
cuttlefish Sepiella inermis also exhibited this activity as well as Ramosane (44) from Chico-
reus ramosus, Octahydroazulenopyrandione (45) from Amphioctopus marginatus, and 
Astaxanthin (46) from Octopus and cuttlefish species [20]. We also noted that polyether 
macrocyclic lactone (47) isolated from Babylonia spirata [168], 23-gem-dimethylcholestae-
nol and methyldihomocholest-5, 22-dienol (48, 49) from Paphia malabarica [169], and O-
spirocyclic ether derivatives and irregular meroterpenoid derivatives (50, 51, 52) from Vil-
lorita cyprinoides have been reported for their activities [170] (Figure 6). 
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The presence of certain functional groups in the compound determines its affinity
for specific receptors and enzymes, thereby influencing its pharmacological activity and
therapeutic effects [171,172]. Some compounds have shown high potency and have been
successful in reaching clinical trials and the pharmaceutical market, as shown in Table 2.

Table 2. Therapeutic effects and modes of action of notable market-approved mollusc-derived
compounds.

Compound Mollusc Species Therapeatic Effect Associated Com-
pany/institution Mode of Action References

Ziconotide
(ω-conotoxin) (27)

Conus geographus and
Conus magus

Anti-inflammatory
and analgesic Elan corporation

Disrupts the calcium channel at
the neuromuscular junction that is

involved in the transmission of
nerve impulses. The pain

sensitivity is associated with
calcium channels.

[173]

Dolastatin 10 (14) Dollabella auricularia Anti-cancer
Celltrion

pharmaceutical
company

Interferes with and hinders
mitotic cell division. Due to its

potent capacity to block the
mitotic cell cycle, it may be able to

specifically target cancer cells.

[174,175]

Kahalalide-F (16) Elysia rufescens Anti-cancer Pharmamar

Induces oncosis in cancerous cells
via the lysosomal induction and

permeabilization of the cell
membrane. Furthermore, the

compound also suppresses the
expression of genes involved in

DNA replication and cell
proliferation, which may prevent
tumour development and spread.

[175]

7. Limitations, Gaps, and New Perspectives

Taking consideration of the biodiversity of the molluscan species, there is currently
limited research on the extraction of bioactive compounds from them. Even though some
marine molluscs have been the subject of substantial research due to their nutritional and
therapeutic value, such as certain species of gastropods, bivalves, and cephalopods, many
others have received comparatively little attention. We are unable to fully comprehend
the range of health benefits and bioactive compounds found in various molluscan species
due to a dearth of studies. In addition, the utilization of non-conventional extraction
techniques in extracting bioactive compounds from marine molluscs remains relatively
understudied compared to conventional methods. Non-conventional extraction techniques
often involve a range of parameters, such as frequency and power for ultrasound-assisted
extraction or temperature and pressure for supercritical fluid extraction, which can influence
extraction efficiency and compound yield. There is limited research on the mode of action
of discovered molluscan bioactive compounds. The study of the mode of action of bioactive
compounds helps researchers to

(1) Understand how these compounds exert their effects on biological systems, whether it
is by targeting specific molecular pathways, receptors, enzymes, or other mechanisms;

(2) Identify potential therapeutic targets for drug development. This knowledge can lead
to the creation of new drugs or therapeutic interventions that have specific effects on
biological processes;

(3) Optimize treatment regimens, dosages, and combinations. This knowledge can help
improve the efficacy of treatments and reduce potential side effects.

Furthermore, incorporating cultural and indigenous knowledge into scientific re-
search can improve molluscan research, as since ancient times, coastal communities and
indigenous populations have relied on marine molluscs for food and medicine. They also
frequently have traditional knowledge of the benefits of these molluscs. Scientific research
can benefit from the inclusion of this indigenous knowledge to foster culturally aware
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methods of using molluscs and gain important insights into their potential as medicines.
Ultimately, resolving these limitations and investigating fresh angles in the research on the
medicinal and nutraceutical significance of marine molluscs will enhance our understand-
ing of these intriguing organisms and unlock their full potential for promoting human
health and well-being.

8. Conclusions and Outlooks

This review gives us a broad spectrum of marine molluscs, their means of extraction
and crucial components, as well as their being vital sources for human nutrition and
medicine. They are subjects of continuous research and economic interest due to their wide
variety of bioactive compounds and nutritional benefits, emphasizing their significance in
both ecological and human contexts. Further research on their medicinal and nutraceutical
potential could improve people’s health and advance medical science. Additionally, further
investigation is required to completely comprehend their modes of action, recommended
consumption patterns, and potential adverse effects.
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