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Abstract: A series of 14 new analogs of α-conotoxin PnIA Conus pennaceus was 

synthesized and tested for binding to the human α7 nicotinic acetylcholine receptor 

(nAChR) and acetylcholine-binding proteins (AChBP) Lymnaea stagnalis and 

Aplysia californica. Based on computer modeling and the X-ray structure of the 

A. californica AChBP complex with the PnIA[A10L, D14K] analog [1], single and 

multiple amino acid substitutions were introduced in α-conotoxin PnIA aimed at 

compounds of higher affinity and selectivity. Three analogs, PnIA[L5H],  

PnIA[A10L, D14K] and PnIA[L5R, A10L, D14R], have high affinities for AChBPs or  

α7 nAChR, as found in competition with radioiodinated α-bungarotoxin. That is why we 

prepared radioiodinated derivatives of these α-conotoxins, demonstrated their specific 

binding and found that among the tested synthetic analogs, most had almost 10-fold higher 

affinity in competition with radioactive α-conotoxins as compared to competition with 

radioactive α-bungarotoxin. Thus, radioiodinated α-conotoxins are a more sensitive tool for 

checking the activity of novel α-conotoxins and other compounds quickly dissociating 

from the receptor complexes.  

Keywords: α-conotoxin analogs; nicotinic acetylcholine receptors; acetylcholine-binding 

proteins; computer modeling; radioligand analysis 
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1. Introduction 

α-Conotoxins are at present the most precise tools for research on nicotinic acetylcholine receptors 

(nAChRs), mainly due to their relatively high specificity for different nAChR subtypes and small size, 

enabling solid-phase synthesis of α-conotoxins in large amounts (see, for example, reviews [2–5]). 

Involvement of distinct nAChR subtypes in muscle dystrophies, psychiatric, and neurodegenerative 

diseases [6–8] makes practical application of different cholinergic ligands crucial, including  

α-conotoxins as selective markers of the respective subtypes in normal state and pathologies, as well as 

for designing new drugs. At present several α-conotoxins are at different stages of preclinical 

tests [9,10]. The search for new naturally occurring α-conotoxins and design of α-conotoxin analogs is 

very active as seen from our recent review [11]. 

Here we tried to make new α-conotoxin analogs of higher affinity and selectivity to a 

homooligomeric α7 nAChR. This subtype is one of the best presented, especially in the brain, and 

appears to play an important role in Alzheimer’s disease [12,13]. That is why there is a need in specific 

labeling and quantitative measurement of the α7 nAChR levels. Among α-conotoxins, for some time 

such a role was ascribed to α-conotoxin ImI [14,15] but later its binding to some other subtypes was 

registered [16,17]. Another candidate was α-conotoxin PnIA, a α3β2 nAChR blocker, where a single 

A10L mutation shifted its specificity in favor of α7 nAChR [18,19]. We took this peptide as a basis for 

designing new α-conotoxins acting on α7 nAChR. 

To choose the amino acid substitutions, we relied upon computer modeling, based mainly on the  

X-ray structures of the Aplysia californica and Lymnaea stagnalis acetylcholine-binding proteins 

(AChBPs) and their complexes. These proteins are excellent structural models for the ligand-binding 

domains of all nAChR subtypes and pharmacologically are closest to α7 nAChR [20,21]. Since the  

X-ray structures of both these proteins are known, as well as the X-ray structures of 

Aplysia californica AChBP with three different α-conotoxins [1,22–24], it seemed to be a good system 

to design α-conotoxins with a higher selectivity. In view of this, the activity of the synthesized 

compounds was tested by radioligand analysis with human α7 nAChR in the GH4C1 cell line, and also 

with the AChBPs of the two species. Moreover, it was carried out not only in competition with the 

[125I]-α-bungarotoxin ([125I]-αBgt), but with the radioiodinated derivatives of our novel α-conotoxins. 

2. Results and Discussion 

2.1. Computer Modeling and Choice of Amino Acid Substitutions 

Computer modeling of α-conotoxin PnIA analogs and their docking to AChBPs and nAChRs was 

performed using the X-ray structures of α-conotoxins PnIA and PnIB [25,26] and the techniques and 

programs earlier employed with different α-conotoxins [1,27,28] and α-neurotoxins [29]. Models of 

the two AChBPs in complexes with α-conotoxin PnIA analogs were built on the basis of the X-ray 

structure for Aplysia californica AChBP in complex with PnIA[A10L, D14K] [1], taking into account 

also the AChBP complexes with α-conotoxins ImI and TxIA[A10L] [22–24] and with α-cobratoxin [30]. 

For analysis of complexes with the α7 nAChR, the Torpedo marmorata nAChR electron microscopy 

structure [31] was used. 
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Docking allowed us to choose several substitutions in the α-conotoxin PnIA amino acid sequence 

which might increase the affinity and/or selectivity. A higher selectivity might result also due to a drop 

in binding to other targets, yet saving the original affinity towards a certain receptor subtype. These 

peptides are shown in Table 1. The largest changes could be expected on introduction of charged 

residues into positions 5, 7 and 14 making possible strong ionic interactions between α-conotoxins and 

the targets. 

Table 1. Structures and molecular masses of synthesized α-conotoxin PnIA analogs  

with amino acid substitutions suggested by computer modeling. Positively charged 

substitutions are marked in red; negatively charged—in blue; aliphatic or aromatic 

substitutions—in gray. PnIA[A10L], PnIA[A10L, D14K] and PnIA[L5R, A10L] were 

described earlier [1,18,19,24]. For comparison, the sequence of wild type α-conotoxin 

PnIA is included. 

Analogs of α-conotoxin PnIA Sequences and mutations 

Molecular masses 

Measured 
(MH+) 

Calculated 

PnIA GCCSLPPCAANNPDYC-NH2 - - 

PnIA[L5H] GCCSHPPCAANNPDYC-NH2 1646.6 1645.6 

PnIA[L5H, D14R] GCCSHPPCAANNPRYC-NH2 1687.3 1686.6 

PnIA[A10L] GCCSLPPCALNNPDYC-NH2 1664.7 1663.7 

PnIA[L5D, A10L] GCCSDPPCALNNPDYC-NH2 1666.7 1666.4 

PnIA[L5R, A10L] GCCSRPPCALNNPDYC-NH2 1707.6 1706.6 

PnIA[P7D, A10L] GCCSLPDCALNNPDYC-NH2 1682.4 1681.6 

PnIA[P7R, A10L] GCCSLPRCALNNPDYC-NH2 1723.7 1722.9 

PnIA[A10L, D14K] GCCSLPPCALNNPKYC-NH2 1677.6 1676.8 

PnIA[L5D, P7R, A10L] GCCSDPRCALNNPDYC-NH2 1725.7 1724.9 

PnIA[L5D, P7R, A10V] GCCSDPRCAVNNPDYC-NH2 1711.6 1710.8 

PnIA[L5R, P7D, A10L] GCCSRPDCALNNPDYC-NH2 1725.4 1724.6 

PnIA[L5R, A10L, D14R] GCCSRPPCALNNPRYC-NH2 1748.5 1747.7 

PnIA[L5D, P7R, A10L, D14R] GCCSDPRCALNNPRYC-NH2 1766.7 1766.0 

PnIA[L5R, P7D, A10L, D14R] GCCSRPDCALNNPRYC-NH2 1766.5 1765.7 

PnIA[L5Y, P6R, P7R, A10L, D14R, Y15W] GCCSYRRCALNNPRWC-NH2 1896.8 1895.8 

Interestingly, charged residues in positions 5 and 7 (D5 and R7) are present in all known α-conotoxins 

of the “4/3 subgroup” (α-conotoxins ImI, ImII and RgIA), which have certain affinity to several 

nAChR subtypes including α7 nAChR [14,15,17,32], as well as in α-conotoxin RgIA which is a highly 

specific antagonist of α9α10 nAChR [33,34]. Another α9α10 nAChR specific ligand—α-conotoxin 

Vc1.1 of the “4/7 subgroup”—also has D5 and R7 residues in its amino acid sequence [35]. On the other 

hand, a positively charged R5 is present in α-conotoxin TxIA, a potent blocker of α3β2 nAChR and 

efficient ligand of Lymnaea stagnalis AChBP [24]. Histidine in position 5 can be found in the 

sequences of several α-conotoxins (GIC, PeIA, OmIA) acting on different neuronal nAChRs [36–38]. 

The increase in the affinity due to incorporation of a positive charge into the C-terminal region has 

been demonstrated previously both for α-conotoxins targeting the muscle-type nAChRs [27] and for  

α-conotoxin PnIA interacting with neuronal nAChRs [1]. 
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2.2. Preparation of Synthetic α-Conotoxin Analogs 

Novel α-conotoxin analogs were prepared by the solid phase peptide synthesis, similarly to the earlier 

described syntheses of PnIA[A10L] and PnIA[A10L, D14K] [1]. The structures of all α-conotoxins 

purified by HPLC (see some in Figure 1) were confirmed by MALDI-TOF mass-spectrometry  

(see Table 1). 

Figure 1. HPLC re-chromatography of selected α-conotoxin PnIA analogs. 

 

2.3. Binding Assays with α-Conotoxin Analogs 

Competition Radioligand Assay with [125I]-Labeled α-Bungarotoxin 

All the synthesized compounds were tested in competition with [125I]-labeled α-bungarotoxin 

([125I]-αBgt) for binding to human α7 nAChR in the GH4C1 cell line and to AChBPs. The results are 

presented in Table 2 and are also depicted as a histogram (Figure 2). It shows a change in the analog 

affinity relative to one peptide chosen as a control, as a logarithm of the ratio of the two respective IC50 

values. α-Conotoxin PnIA[A10L] has been selected as a control because it has a single substitution 

present in the majority of other analogs. This scheme is a vivid demonstration of changes in the 

affinity for all targets brought about by amino acid substitutions. 
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Table 2. Activity of α-conotoxin PnIA analogs tested in competition binding assays. All 

listed peptides were tested in competition with [125I]-labeled α-bungarotoxin ([125I]-αBgt) 

for binding to AChBPs and human α7 nAChR. The presented IC50 values (in nM) and Hill 

coefficients (nH) were calculated using ORIGIN 7.5 with the mean ± s.e.m. of duplicate 

data obtained in two or three (n = 2 or 3) independent experiments for most analogs. More 

data were collected for analogs PnIA[L5H], [L5R, A10L, D14R], [A10L], [A10L, D14K] 

and [L5R, A10L] with n = 5, 5, 5, 6 and 8, respectively. 

Mutations in PnIA 
IC50 in nM and Hill slopes (nH) in [125I]-αBgt displacement from 

L. stagnalis AChBP A. californica AChBP human α7 nAChR 

[L5H] 220 ± 80 (0.71 ± 0.06) 3.1 ± 0.4 (1.13 ± 0.15) 26,000 ± 1000 (1.15 ± 0.05)

[L5H, D14R] 2900 ± 100 (1.18 ± 0.05) 1400 ± 100 (1.31 ± 0.09) 21,000 ± 1000 (1.01 ± 0.05)

[A10L] 200 ± 40 (0.89 ± 0.13) 55 ± 12 (1.18 ± 0.24) 14,000 ± 1000 (0.73 ± 0.04)

[L5D, A10L] 35,000 ± 3000 (1.45 ± 0.20) 5200 ± 1900 (1.03 ± 0.17) >100,000 (-) 

[L5R, A10L] 180 ± 20 (1.10 ± 0.10) 305 ± 19 (1.51 ± 0.25) 12,000 ± 2000 (1.03 ± 0.11)

[P7D, A10L] >>100,000 (-) 63,000 ± 11,000 (0.79 ± 0.11) >>100,000 (-) 

[P7R, A10L] >100,000 (-) 1250 ± 300 (1.00 ± 0.23) >>100,000 (-) 

[A10L, D14K] 8.2 ± 1.2 (1.01 ± 0.11) 47 ± 9 (0.77 ± 0.12) 7200 ± 700 (1.20 ± 0.11)

[L5D, P7R, A10L] 38,000 ± 8000 (0.69 ± 0.09) 51 ± 11 (1.38 ± 0.31) >>100,000 (-) 

[L5D, P7R, A10V] 6400 ± 1300 (1.04 ± 0.22) 45 ± 11 (1.35 ± 0.42) >100,000 (-) 

[L5R, P7D, A10L] 56,000 ± 2000 (1.48 ± 0.15) 28,000 ± 4000 (0.91 ± 0.09) >>100,000 (-) 

[L5R, A10L, D14R] 430 ± 90 (1.20 ± 0.30) 1400 ± 100 (1.27 ± 0.16) 670 ± 50 (1.20 ± 0.19)

[L5D, P7R, A10L, D14R] 1200 ± 250 (0.73 ± 0.10) 46 ± 8 (1.44 ± 0.28) 23,000 ± 1000 (0.91 ± 0.13)

[L5R, P7D, A10L, D14R] 4100 ± 200 (1.25 ± 0.07) 3200 ± 100 (0.73 ± 0.12) 72,000 ± 5000 (0.84 ± 0.06)

[L5Y, P6R, P7R, A10L, 

D14R, Y15W] 

10,000 ± 1000 (1.09 ± 0.05) 20,000 ± 2000 (1.26 ± 0.18) 19,000 ± 1000 (1.20 ± 0.26)

Figure 2. Bar presentation of the change in potency of each analog for (a) L. stagnalis 

AChBP, (b) A. californica AChBP, and (c) human α7 nAChR. This change was evaluated 

as logarithm of ratio of IC50 values for respective analog and PnIA[A10L]. A decrease in 

affinity to respective target for concrete analog as referred to PnIA[A10L] is represented in 

blue colored bars; and an increase—in red colored bars. 
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Radioligand analysis data allowed the following conclusions. Introduction of a charged residue 

(Arg or Asp) into positions 5 or 7 in most cases drastically decreases the affinity to all targets.  

The exception is PnIA[L5R, A10L], which was reported to have a 10-fold higher affinity for  

L. stagnalis AChBP than PnIA[A10L] [24], but in our case had only a 10% increase. We are inclined 

to explain this discrepancy by the essentially different procedures of displacement radioligand assay 

(see Experimental section).  

Introduction of the same substitution may result in different effects on distinct targets. For example, 

a double “mutation” [L5D, P7R] did not affect the affinity for A. californica AChBP, but decreased 

manifold the affinity for L. stagnalis AChBP and α7 nAChR. The reversed substitution [L5R, P7D] 

decreases the affinity for A. californica AChBP as well. 

The computer assessment of introducing the positively charged amino acid residue in position 14 

was more realistic. This additional “mutation” in some cases (PnIA[L5D, P7R, A10L, D14R]) 

increases the affinity for L. stagnalis AChBP and α7 nAChR, but does not affect the affinity for 

A. californica AChBP, which is in excellent agreement with our earlier data on the activity of the 

PnIA[A10L, D14K] analog (see Figure 2 and [1]). A positive result of computer modeling application 

is the addition to this analog (which was effective but not selective among the three mentioned targets) 

of a more potent α7 nAChR ligand, namely PnIA[L5R, A10L, D14R]. On the other hand, a PnIA[L5H] 

analog proved to have a high affinity and selectivity for A. californica AChBP, with IC50 3.1 ± 0.4 nM 

(Table 2). For the above-mentioned analog with three substitutions, IC50 varied in different 

experiments from 340 ± 40 to 670 ± 50 nM. 

These values need to be commented on because the [125I]-αBgt displacement by α-conotoxins from 

α7 nAChR in the GH4C1 cells usually is detected at micromolar concentrations. However, 

electrophysiology experiments, assessing the blocking effects on currents in α7 nAChRs, gave an IC50 

range of 13–260 nM for PnIA[A10L] and PnIA[A10L, D14K] [1,19]. Thus, this difference depends on 

the methods used. However, there are possibilities for improvement of radioligand assay results. 

Recalculation of the IC50 values into Kis could give more appropriate affinity parameters, especially 

for the targets with multiple binding sites. The second possibility, is using a radioligand which would 

be more appropriate in structure and kinetic characteristics for testing the competition of α-conotoxins. 

Almost irreversible binding of [125I]-αBgt makes the detection of competition for α-conotoxins quite 

difficult, having fast dissociation rates from the target surface. That is why it is desirable to assess 

binding of novel α-conotoxins in displacement not only of [125I]-αBgt, but of the radioactive  

α-conotoxins as well. We have earlier used such an approach for a number of α-conotoxins acting on 

the muscle-type nAChR [27,39] and in the present work: the three above-mentioned α-conotoxin 

analogs, (PnIA[A10L, D14K], PnIA[L5H] and PnIA[L5R, A10L, D14R]), were radioiodinated. 

2.4. Experiments with Radioactive Forms of α-Conotoxin Analogs 

2.4.1. Preparation of Radioactive Derivatives 

Chemical modification of PnIA[A10L, D14K], PnIA[L5H] and PnIA[L5R, A10L, D14R] in the 

presence of chloramine T gave their [125I]-labeled derivatives. Iodine incorporates mostly to the Tyr15 

phenol group, and for each iodinated peptide both mono- and di-iodinated derivatives were formed and 
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then separated by reverse-phase HPLC. Figure 3 shows the separation of the iodinated derivatives after 

modification of PnIA[L5R, A10L, D14R] with nonradioactive isotope [127I]. Iodinated derivatives of 

the other two α-conotoxins were prepared and separated in a similar way. The structures of all 

iodinated derivatives were confirmed by MALDI-TOF mass-spectrometry (found masses MH+ shown 

in Figure 3 are exactly the same as calculated). 

Figure 3. HPLC profile for the products of the [127I]iodination reaction of PnIA[L5R, 

A10L, D14R] analog. The peaks of oxidizer (chloramine T), non-modified analog and 

mono- and di-iodinated derivatives are marked with indicated molecular masses (MH+) 

measured by MALDI mass-spectrometry.  

 

Using this scheme and [125I] we prepared the PnIA [A10L, D14K] and PnIA [L5H] iodinated 

derivatives with the specific radioactivity of 2000 and 4000 Ci/mmol for mono- and di-iodinaned 

compounds, respectively. Taking into account the acting concentrations of PnIA [L5R, A10L, D14R] 

(see Table 2), its iodination was done with a mixture of [125I] and [127I] isotopes resulting in mono and 

di-iodinated products with the specific radioactivity ~5 and 10 Ci/mmol. In further experiments only 

mono-iodinated derivatives were used. 

2.4.2. Direct Radioligand Assay 

In the direct radioligand assay, [125I]-PnIA[A10L, D14K] revealed a capacity to bind with both 

AChBPs with sub-nanomolar affinity (Figure 4a), KD being 0.53 ± 0.17 nM and 0.36 ± 0.10 nM for  

L. stagnalis and A. californica AChBPs, respectively. [125I]-PnIA[L5H] (Figure 4b) showed similar 

high affinity for A. californica AChBP (KD 0.48 ± 0.20 nM) and, in addition, demonstrated a 

high selectivity without interacting under the same conditions with L. stagnalis AChBP or 

human α7 nAChR. 
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Figure 4. Specific binding curves of [125I]-labeled derivatives of (a) PnIA[A10L, D14K], 

(b) PnIA[L5H], and (c) PnIA[L5R, A10L, D14R] to AChBPs (from L. stagnalis (●) or 

A. californica (○)), A. californica AChBP and human α7 nAChR, respectively. Data from 

just one experiment (with mean ± s.e. of duplicate or triplicate for each point (n = 2 or 3))  

are represented; the respective KD values were (a) 0.53 ± 0.17 and 0.36 ± 0.10 nM;  

(b) 0.48 ± 0.2 nM; and (c) 190 ± 130 nM. 

 

 

Iodinated PnIA[L5R, A10L, D14R] showed specific binding to α7 nAChR (Figure 4c), but also had 

a very high nonspecific binding to the GH4C1 cells; the reasons for which are unclear. This made 

difficult accurate determination of the KD values which in different experiments varied from  

190 ± 130 nM (Figure 4c) to ~1600 ± 800 nM (mean ± s.e.); the averaged value from all experiments 

being ~900 ± 600 nM (mean ± s.e.m. for n = 6). 

In all cases, the measured KD values are in good agreement with the IC50 values found for the 

starting non-iodinated α-conotoxins in competition with [125I]-αBgt. It shows the applicability of 

radioiodinated α-conotoxins both for labeling the respective targets and for analysis of binding 

capacities for novel α-conotoxins. To verify the latter, we analyzed binding of several compounds in 

competition with [125I]-PnIA[L5H] and [125I]-PnIA[L5R, A10L, D14R] and compared results to same 

in competition with [125I]-αBgt. 

2.4.3. Competition Radioligand Assay with [125I]-Labeled Derivatives of α-Conotoxins 

The results for [125I]-PnIA[L5H] and [125I]-αBgt on A. californica AChBP are shown in Figure 5a,b 

and the calculated IC50 values are given in Table 3. For α-conotoxin PnIA[L5H], these values 
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practically coincide, while all the other compounds in competition with radioactive α-conotoxin show 

5–30-fold higher affinity. αBgt in competition with the radioactive α-conotoxin had less activity 

against A. californica AChBP, as earlier found in competition with [125I]-αBgt [1]. α-Conotoxin GI 

acting on muscle-type nAChR was inactive in both cases. It should be emphasized that using  

[125I]-labeled α-conotoxin instead of [125I]-αBgt gives better IC50 values for tested α-conotoxins which, 

because of their closer relation to the α-conotoxin radioligand, better reflects their affinity for the 

respective target. 

Figure 5. Inhibition of [125I]-labeled derivatives of (a) PnIA[L5H], and (b) α-bungarotoxin 

(αBgt) binding to A. californica AChBP with indicated α-conotoxins and αBgt:  

(1) α-conotoxin PnIA[L5H] (filled circles, thick line), (2) α-conotoxin PnIA[A10L] (thin 

line), (3) α-conotoxin GI (open circles, thin line) and (4) αBgt (dot line). The curves were 

calculated from the data of the means of four or five (n = 4 or 5) independent experiments 

in duplicate for each point. For simplicity the mean ± s.e.m. are presented only for 

PnIA[L5H] analog. The respective IC50 values are listed in Table 3. 

 

Table 3. Potency (presented as IC50 values in nM) and Hill coefficients (nH) of some  

α-conotoxins and α-conotoxin PnIA analogs, tested in competition with [125I]-labeled 

PnIA[L5H] or [125I]-αBgt for binding to A. californica AChBP (see respective inhibition 

curves in Figure 5), calculated using ORIGIN 7.5 with the mean ± s.e.m. of duplicate data 

obtained in n = 4 or 5 independent experiments. 

Compound IC50 in nM and Hill slopes (nH) in competition with 
[125I]-PnIA[L5H] [125I]-αBgt 

PnIA[L5H] 4.2 ± 0.3 (0.87 ± 0.05) 3.1 ± 0.4 (1.13 ± 0.15) 
PnIA[A10L] 9.5 ± 1.1 (1.40 ± 0.20) 36–55 *  
PnIA[A10L, D14K] 2.2 ± 0.6 (1.42 ± 0.49) 28–47 *  
α-conotoxin ImI 0.84 ± 0.15 (1.37 ± 0.29) 33 ± 5 **  
α-conotoxin GI >>1000 (-) 25,500 ± 6300 **  
α-bungarotoxin (αBgt) 60 ± 10 (0.77 ± 0.08) 130 ± 20 **  
* dispersion of the mean IC50 values in this study and experiments carried out by us earlier [1];  
** data from [1]. 
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Similar results were obtained for [125I]-PnIA[L5R, A10L, D14R] and [125I]-αBgt binding to human 

α7 nAChR in the GH4C1 cell line. Here we compared the most efficient ligands in our series acting on 

this receptor (Figure 6 and Table 4). The ratio of their affinities was the same in both cases, while the 

IC50 values were considerably lower when measured with radioactive α-conotoxin PnIA analog.  

Figure 6. Inhibition of [125I]-labeled derivatives of (a) PnIA[L5R, A10L, D14R], and  

(b) αBgt binding to human α7 nAChR with (1) PnIA[L5R, A10L, D14R] (filled circles, 

thick line) and (2) PnIA[A10L, D14K] (open circles, dashed line). The curves were 

calculated from the data of the mean of three (n = 3) or five (n = 5) independent 

experiments in duplicate for each point in the first or second case, respectively. The 

calculated IC50 values are listed in Table 4. 

 

Table 4. Potency (presented as the IC50 values in nM) and Hill coefficients (nH) of 

PnIA[L5R, A10L, D14R] and PnIA[A10L, D14K] analogs, tested in competition with 

[125I]-labeled PnIA[L5R, A10L, D14R] or [125I]-αBgt for binding to human α7 nAChR  

(see respective inhibition curves shown in Figure 6). The data were calculated using 

ORIGIN 7.5 with the mean ± s.e.m. of duplicate data obtained in n = 3 or 5 independent 

experiments, respectively. 

Compound 
IC50 in nM and Hill slopes (nH) in competition with 

[125I]-PnIA[L5R, A10L, D14R] [125I]-αBgt 
PnIA[L5R, A10L, D14R] 60 ± 7 (0.65 ± 0.05) 670 ± 50 (1.20 ± 0.19) 
PnIA[A10L, D14K] 1800 ± 600 (0.75 ± 0.14) 7200 ± 700 (1.20 ± 0.11) 

Choosing which α-conotoxin analogs to synthesize, we relied upon computer modeling and simple 

docking algorithms [1,27–29], without performing molecular dynamics. As shown in this paper, only 

three out of 14 chosen compounds gave results which agreed with the predictions. We have earlier 

described that docking predictions for α-conotoxin ImII agreed only in part with the experimental 

results obtained for the AChBPs, muscle and neuronal nAChRs with the aid of radioligand analysis, 

electrophysiology and surface plasmon resonance [40]. One of the reasons may be that amino acid 

substitutions in α-conotoxins, or mutations in the receptor binding site of a particular receptor subtype, 

may induce a change in the ligand orientation. This means that some of the interactions which were 

expected to take place as a result of the introduced receptor mutations or changes in the ligand 

structure, did not take place. Indeed, a small change in the orientation of the α-conotoxins in the 
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binding site of the A. californica AChBP was observed when comparing the X-ray structures for 

complexes of PnIA[A10L, D14K] and α-conotoxin TxIA[A10L] which have very similar chemical and 

spatial structures [1,24]. It has recently been shown that, according to photo-crosslinking data, bound 

azido-epibatidine has one orientation in the muscle-type nAChR, and two orientations, differing by 

180°, in the α4β2 nAChR [41]. Moreover, recent X-ray structures of the A. californica AChBP 

complexes with d-tubocurarine and strychnine, revealed not only their different orientations in the 

five binding sites of the same AChBP molecule, but even the presence of two ligands in some of 

them [42]. These results clearly show that more efficient use of computer modeling is necessary, as 

well as application of molecular dynamics and other mathematical approaches [42]. 

In spite of the discussed limitations, the main result of this work is that we have synthesized several 

α-conotoxins which might be useful both for fundamental research on nAChRs and for practical 

application. First of all, we should mention radioiodinated α-conotoxins for use in binding assays with 

distinct AChBPs. Among them there are the compounds which have KD ~ 0.3–0.5 nM in binding to 

AChBPs, which is among the highest affinities known for α-conotoxins. The affinity of radioiodinated 

α-conotoxin PnIA[L5R, A10L, D14R] is also relatively high for α7 nAChR, but a high level of 

nonspecific binding hampers practical application of this analog. However, what is more important for 

radioiodinated α-conotoxins is not the affinity as such, but their usefulness in assessing the activity of 

other α-conotoxins in competition tests. Tables 3 and 4 show that for the majority of analyzed  

α-conotoxins, their IC50 values, measured in competition with radioactive α-conotoxins, are about  

10-times lower than those found in competition with [125I]-αBgt. Thus, a combination of AChBPs with 

radioiodinated α-conotoxins appears to be very promising for testing new α-conotoxins, because it has 

distinct advantages over [125I]-αBgt with its virtually irreversible binding. 

3. Experimental Section 

3.1. Computer Modeling 

In this study we used partial comparative modeling under MODELLER 7v7 program [43]. The 

model of α7 nAChR was built using Swiss-Prot Server [44]. The programs DOCK [45], HEX [46], 

AUTODOCK [47], HADDOCK [48] were used for intermolecular docking simulations and energy 

calculations. Solutions that contradicted known pair-wise interactions were rejected. The detailed 

description for computer modeling and docking was published by us elsewhere [1,29]. 

3.2. Peptide Synthesis 

Solid-phase peptide synthesis was used for preparation of all α-conotoxin PnIA analogs. We 

applied two different approaches. The first one was the synthesis using the same trityl protection of the 

cysteine thiol groups followed by simultaneous deprotection and closing the disulfides. In the cases of 

formation of the second Cys-Cys isomer (in amounts of more than 15%), we carried out the synthesis 

with the use of the different protection groups for respective cysteine pairs and selective formation of 

the disulfides. The first protocol was utilized many times for preparation of various α-conotoxins and 

their analogs and was described in detail in [49]; the second one was given in full in [27], where it was 

applied for PnIA[A10L, D14K] synthesis. 
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3.3. Iodination 

Before preparation of radiolabeled derivatives of PnIA[A10L, D14K], PnIA[L5H] and PnIA[L5R, 

A10L, D14R] we carried out a series of experiments with nonradioactive [127I]-isotope to optimize  

the reaction and purification conditions, as well as to confirm the structures of iodinated products  

by MALDI TOF mass spectrometry. Peptides (3–5 nmoles) dissolved in 15 μL of 125 mM sodium 

phosphate buffer, рН 7.2, were incubated 15 min at room temperature with 3–5 nmoles of NaI (in 4 μL 

of the same buffer) and 4–10-fold molar excess of chloramine T (solved in 1 μL of water). Reaction 

products were separated by reverse-phase HPLC in aqueous gradient of acetonitrile containing 0.1% 

trifluoroacetic acid. The best separation of the reaction products were obtained: for PnIA[A10L, D14K] 

on a column Nucleosil C18 (250 × 4.6 mm) at a rate of 1 mL/min in acetonitrile gradient 10–50% for 40 

min; for PnIA[L5H] and PnIA[L5R, A10L, D14R] (see Figure 2) on a column Reprosil C18 AQ (5 μm; 

150 × 4 mm) at a rate of 0.5 mL/min and acetonitrile gradient 15–35% for 40 min and 10–40% for 60 

min, respectively. Purified peaks were analyzed by MALDI TOF mass spectrometry resulting in 

identification of non-modified, mono- and di-[127I]-iodinated compounds.  

The similar protocols (but with different amounts of reaction components) were applied for 

preparation of radioactive derivatives using Na[125I] solution: 

120 pmoles PnIA[A10L, D14K] + 90 pmoles Na[125I] + 1000 pmoles chloramine T 

or  

80 pmoles PnIA[L5H] + 65 pmoles Na[125I] + 4.4 nmoles chloramine T 

For PnIA[L5R, A10L, D14R] analog we used the isotopic mixture of Na[125I] and Na[127I] at the 

ratio of 1:333, so the reaction protocol was: 

9.6 nmoles PnIA[L5R, A10L, D14R] +10 nmoles Na[125+127I] + 44 nmoles chloramine T 

Reaction products were separated by HPLC under above-mentioned conditions and collected in  

0.5 min-fractions. The aliquots of all fractions were counted on γ-counter and mono- and di-[125I]iodinated 

derivatives (with approximate specific radioactivity of 2000 and 4000 Ci/mmol) of PnIA[A10L, D14K] 

and PnIA[L5H] analogs as well as PnIA[L5R, A10L, D14R] analog (with approximate specific 

radioactivity of 6 and 12 Ci/mmol) were collected in respective united samples. These samples were 

evaporated (approximately to 50% of initial volume) to remove acetonitrile and were kept at 4 °C in  

50 mM Tris-НС1 buffer, рН 7.5, containing 0.1 mg/mL BSA. 

We only used mono-[125I]iodinated derivatives of all analogs in our studies.  

3.4. Radioligand Assay 

In competition experiments with [125I]-αBgt, all synthesized α-conotoxin PnIA analogs (concentration 

range for concrete peptide was varied inside 1–100,000 nM) were pre-incubated 2.0–2.5 h at room 

temperature with the L. stagnalis or A. californica AChBPs (final concentrations of 2.4 and 140 nM, 

respectively) in 50 μL of buffer A (phosphate-buffered saline, 0.7 mg/mL of bovine serum albumin, 

0.05% Tween 20, pH 7.5) or with the GH4C1 cells (final 6.5 μg of total protein with 0.4 nM of  

toxin-binding sites) in 50 μL of buffer B (20 mM Tris–HCl buffer, 1 mg/mL of bovine serum albumin, 
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pH 8.0). After that, [125I]-αBgt was added to L. stagnalis AChBP, A. californica AChBP or GH4C1 

cells at final concentration 0.1, 0.3 or 0.2 nM and the mixtures were additionally incubated for 30 min, 

30 min or 5 min, respectively. The specific binding was determined by rapid filtration on double  

DE-81 filters (Whatman) pre-soaked in buffer A (for AChBPs) or on GF/F filters (Whatman)  

pre-soaked in 0.25% polyethylenimine (for GH4C1 cells) and the unbound radioactivity was removed 

from the filters by washes (3 × 3 mL) with the buffers A and B, respectively. Non-specific binding was 

determined in all cases in the presence of 2 μM α-cobratoxin (2.0–2.5 h pre-incubation). 

In competition experiments with [125I]-PnIA[L5H], selected α-conotoxin PnIA analogs or α-Bgt 

(concentration range for concrete compound varied within 1–1000 nM) were pre-incubated 1.5 h at 

room temperature with the A. californica AChBP (final concentration of 2.3 nM) in 50 μL of buffer A 

followed by adding radioligand (final 0.6–1.0 nM) and additional incubation during 1 h. Non-specific 

binding was determined in the presence of 3.8 μM α-cobratoxin. The filtration was performed as 

mentioned above for experiments with [125I]-αBgt on the AChBPs. 

In competition experiments with [125I]-PnIA[L5R, A10L, D14R], two analogs—PnIA[A10L, D14K] 

and PnIA[L5R, A10L, D14R] (from 10 to 30,000 nM)—were incubated 1.5 h at room temperature and 

permanent shaking with GH4C1 cells (0.4 nM of toxin-binding sites of α7 nAChR) in 50 μL of buffer B. 

After that, radioligand (final concentration of 180 nM) was added and the reaction mixture was 

incubated additional 1.5 h under the same conditions. Non-specific binding was determined by 1.5 h 

pre-incubation with 25 μM α-cobratoxin. The filtration was performed as mentioned above for 

experiments with [125I]-αBgt on the GH4C1 cells. 

Competition data analyses were fit using ORIGIN 7.5 (OriginLab Corporation, Northampton, MA, 
USA) to a one-site dose-response curve by Equation: % response = 100/{1 + ([toxin]/IC50)

nH}, where 

IC50 is the concentration at which 50% of the sites are inhibited and nH is the Hill coefficient. 

Equilibrium binding of [125I]-PnIA[A10L, D14K] with both AChBPs (final concentration 1.2 nM) 

was carried out in 50 μL of buffer A at room temperature. Various concentrations of radioligand 

(0.05–2.5 nM) were incubated with proteins for 30 min. Non-specific binding was determined in the 

presence of α-cobratoxin at a 500-fold molar excess over the radioligand (1 h pre-incubation). The 

filtration was performed as mentioned above for AChBPs.  

The similar protocol was applied for equilibrium binding of [125I]-PnIA[L5H] with A. californica 

AChBP. We incubated in this case 0.1–2.8 nM of radioligand with 2.3 nM of protein during  

2 h at room temperature. Non-specific binding was determined by 1 h pre-incubation with  

3.8 μM α-cobratoxin.  

Equilibrium binding of [125I]-PnIA[L5R, A10L, D14R] with human α7 nAChR transfected in  

rat GH4C1 cell line was carried out in 50 μL of buffer B at room temperature during 1.5 h with 

permanent shaking. Various concentrations of radioligand (6–1600 nM) were incubated with 0.4 nM 

of toxin-binding sites of α7 nAChR. Non-specific binding was determined by 1.5 h pre-incubation 

with 25 μM α-cobratoxin. The specific binding was determined by rapid filtration on GF/F or GF/C 

filters pre-soaked in 0.25% polyethylenimine and the unbound radioactivity was removed from the 

filters by washes (3 × 3 mL) with the buffer B. 

Equilibrium binding data were fit using ORIGIN 7.5 to a one-site model according to Equation: 

B(x) = Bmax/(1 + KD/x), where B(x) is the radioligand specifically bound at a free concentration x 

(determined by subtraction of the amount of bound and adsorbed radioligand from the total amount 
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added to incubation mixture), Bmax is the maximal specific bound radioligand, and KD is the 

dissociation constant. 

4. Conclusions 

Our work demonstrates that the available X-ray structures of AChBP complexes with α-conotoxins 

are a good starting point for design and subsequent synthesis of novel α-conotoxins having higher 

affinity and desired selectivity. In fact, we prepared several analogs of higher affinity, better 

discriminating the AChBPs from A. californica and L. stagnalis. Our achievements are more modest 

for α-conotoxins targeting the α7 nAChR, apparently because no X-ray structure is available either for 

this receptor or for its extracellular ligand-binding domain, and the used computer modeling and 

docking approaches were insufficient to take into account possible multiple orientations of bound  

α-conotoxin analogs. However, by preparing radioiodinated derivatives of several synthesized analogs, 

we demonstrated that the competition with such radioactive α-conotoxins is a better way to test new  

α-conotoxins than the radioligand analysis with radioiodinated α-bungarotoxin. 
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