
  

Mar. Drugs 2011, 9, 2793-2808; doi:10.3390/md9122793 

 

Marine Drugs  
ISSN 1660-3397 

www.mdpi.com/journal/marinedrugs 

Article 

Inhibitory Effects of Ecklonia cava Extract on High  
Glucose-Induced Hepatic Stellate Cell Activation  

Kumiko Yokogawa 1, Isao Matsui-Yuasa 1,2, Akiko Tamura 1, Masaki Terada 3 and  

Akiko Kojima-Yuasa 1,* 

1 Department of Food and Human Health Sciences, Graduate School of Human Life Science,  

Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan;  

E-Mails: kumi_sr_93528@yahoo.co.jp (K.Y.); yuasa-i@hotmail.co.jp (I.M.-Y.);  

azsxd_22@yahoo.co.jp (A.T.) 
2 Faculty of Education, Wakayama University, 930 Sakaedani, Wakayama 640-8510, Japan 
3 JP Renew Distributors, LLC., 1906 Lombard Street, San Francisco, CA 94123, USA;  

E-Mail: macterad@bc4.so-net.ne.jp 

* Author to whom correspondence should be addressed; E-Mail: kojima@life.osaka-cu.ac.jp;  

Tel.: +81-6-6605-2865; Fax: +81-6-6605-2810. 

Received: 10 November 2011; in revised form: 9 December 2011 / Accepted: 13 December 2011 / 

Published: 20 December 2011 

 

Abstract: Nonalcoholic steatohepatitis (NASH) is a disease closely associated with obesity 

and diabetes. A prevalence of type 2 diabetes and a high body mass index in cryptogenic 

cirrhosis may imply that obesity leads to cirrhosis. Here, we examined the effects of an 

extract of Ecklonia cava, a brown algae, on the activation of high glucose-induced hepatic 

stellate cells (HSCs), key players in hepatic fibrosis. Isolated HSCs were incubated with or 

without a high glucose concentration. Ecklonia cava extract (ECE) was added to the culture 

simultaneously with the high glucose. Treatment with high glucose stimulated expression of 

type I collagen and α-smooth muscle actin, which are markers of activation in HSCs, in a 

dose-dependent manner. The activation of high glucose-treated HSCs was suppressed by the 

ECE. An increase in the formation of intracellular reactive oxygen species (ROS) and a 

decrease in intracellular glutathione levels were observed soon after treatment with high 

glucose, and these changes were suppressed by the simultaneous addition of ECE. High 

glucose levels stimulated the secretion of bioactive transforming growth factor-β (TGF-β) 

from the cells, and the stimulation was also suppressed by treating the HSCs with ECE. 

These results suggest that the suppression of high glucose-induced HSC activation by ECE 
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is mediated through the inhibition of ROS and/or GSH and the downregulation of TGF-β 

secretion. ECE is useful for preventing the development of diabetic liver fibrosis.  

Keywords: type I collagen; Ecklonia cava; reactive oxygen species; transforming growth 

factor-β; high glucose; hepatic stellate cells 

 

1. Introduction  

A prevalence of type 2 diabetes mellitus and a high body mass index in cryptogenic cirrhosis may 

imply that obesity leads to cirrhosis [1,2]. In addition, hyperglycemia and hyperinsulinemia may 

accelerate liver fibrosis and cirrhosis [3]. It has also been reported that advanced glycation end 

products (the final reaction products of proteins with sugars) induce reactive oxygen species (ROS) 

generation and intensify the proliferation and activation of hepatic stellate cells (HSCs), key players in 

hepatic fibrosis [4]. 

It has been shown that an induction of collagen gene expression in renal fibroblasts by high glucose 

levels is one of the mechanisms of diabetic nephropathy. Moreover, hyperglycemia has been shown to 

be functionally related to fibrogenesis in a model of diabetic nephropathy in which the progressive 

accumulation of extracellular matrix (ECM) components was observed in the glomerular mesangium 

and tubulointerstitium [5]. HSCs are a major source of ECM, and during fibrogenesis, they undergo an 

activation process that is characterized by increased proliferation and collagen synthesis. Therefore, it 

is important to establish an in vitro model of diabetic fibrosis with HSCs to clarify the mechanism of 

high glucose-induced fibrogenesis in nonalcoholic steatohepatitis (NASH). In this regard, Sugimoto et al. 

have shown that high glucose concentrations (450 and 600 mg/dL) stimulate HSCs to proliferate and 

express type I collagen to a greater extent than normal serum concentrations of glucose (100 mg/dL) and 

that high glucose concentrations induce the growth of HSCs via MAP kinase pathways, which are 

activated by ROS produced by the NADPH oxidase system under the regulation of protein kinase C [6]. 

It is now widely accepted that ROS play a critical role in the development of hepatic fibrosis by 

increasing the deposition of ECM [7,8]. Various studies have demonstrated that an increase in ROS by 

a hepatic injury induces proinflammatory cytokines, such as tumor necrosis factor-α, transforming 

growth factor-β (TGF-β), interleukin-1β, and interleukin-6, which are critical for HSC activation  

and perpetuation [5]. Among these, TGF-β is thought to be an important cytokine in regulating the 

production, degradation, and accumulation of ECM proteins.  

Ecklonia cava, which is abundantly produced on Juju Island in Korea, is popular in Japan and 

Korea, where this valuable brown algae is utilized as an ingredient for food, animal feed, fertilizers and 

medicine. Polyphenolic compounds are in the blown algae are called as phlorotannins. Phlorotannin 

components, which are oligomeric polyphenols composed of phloroglucinol units, are responsible for 

the pharmacological activities of Ecklonia cava, and phlorotannins, such as eckol (a closed-chain trimer 

of phloroglucinol), 6,6'-bieckol (a hexamer) and phlorofucofuroeckol (a pentamer), were identified in the 

Ecklonia cava species [9]. Many researchers have reported that the Ecklonia species exhibits radical 

scavenging [10,11], anti-plasmin inhibiting [12,13], anti-mutagenic [14], bactericidal [15], HIV-1 

reverse transcriptase and protease inhibition [16] and tyrosinase inhibitory [17] activities. It has also 
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been reported that the amount of total polyphenolic compounds in Ecklonia cava is greater than that in 

other brown seaweeds [18].  

In the present study, we examined the influence of Ecklonia cava extract (ECE) on high  

glucose-induced HSC activation and found that ECE suppressed the activation by decreasing the 

production of ROS and TGF-β

2. Results 

2.1. Changes in α-Smooth Muscle Actin Expression and Cell Proliferation after Hepatic Stellate Cell 

(HSC) Isolation 

It is known that HSCs spontaneously demonstrate an activated phenotype and begin to proliferate after 

being plated. To ascertain when the phenotypical activation and proliferation of the HSCs are induced in 

our experimental conditions, we cultured HSCs for 13 days. The cell number was significantly increased 

after 7 days of culturing (Table 1). Similarly, the expression of α-smooth muscle actin (α-SMA), the most 

reliable marker for HSC activation, was observed in control HSCs after 7 days (Figure 1). The staining 

for α-SMA, using a computer with NIH image, were 15.7 ± 9.1, 16.1 ± 2.9, 22.4 ± 8.7, 37.6 ± 9.1 and 

53.5 ± 6.7 pixels at 3, 5, 7, 9, 11 and 13 days after HSC isolation, respectively. Based on cell 

proliferation and the expression of α-SMA, HSCs that were cultured for 5 days were quiescent. 

Table 1. Time-dependent effect of HSC proliferation. 

Days after HSC isolation Cell number (cells/field) 
3 40.2 ± 8.2 a 
5 56.3 ± 7.1 a 
7 77.5 ± 7.8 b 
9 119.9 ± 20.9 c 
11 151.8 ± 18.8 d 
13 166.5 ± 13.9 d 

HSCs cultured for 3, 5, 7, 9, 11 or 13 days were counterstained with hematoxylin. Data are 
presented as means ± SD. Means with different superscript letters are significantly different  
(p < 0.01). Five independent experiments were performed.  

Figure 1. Time-dependent effect of α-SMA expression in HSCs. HSCs were cultured for 3, 

5, 7, 9, 11 or 13 days. At the end of the incubation, cells were fixed with 4% 

paraformaldehyde overnight at 4 °C. An anti-α-SMA monoclonal antibody was used as the 

primary antibody. HSCs were cultured for (a) 3 days; (b) 5 days; (c) 7 days; (d) 9 days or 

(e) 13 days. Scale bars, 20 μm. 
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Figure 1. Cont. 

 

2.2. Effect of ECE on High Glucose-Induced HSC Activation 

In our previous study, we found that high glucose levels induced the activation of quiescent HSCs 

that were cultured for 5 days. To investigate the effect of ECE on high glucose-induced HSC 

activation, we examined the effect of ECE on the high glucose-induced increase in the expression of 

type I collagen in HSCs. HSCs were incubated for 24 h with 400 mg/dL glucose and various 

concentrations of ECE. As shown in Figure 2, treatment with ECE suppressed the high  

glucose-induced increase in the expression of type I collagen in HSCs. The staining for type I collagen, 

using a computer with NIH image, were 10.6 ± 3.8, 45.7 ± 5.7, 24.4 ± 7.1, 13.4 ± 3.4 and 14.9 ± 8.1 pixels, 

in the cells for control (100 mg/dL glucose), 400 mg/dL glucose, 400 mg/dL glucose plus 6.25 μg/mL 

ECE, 400 mg/dL glucose plus 12.5 μg/mL ECE and 400 mg/dL glucose plus 25 μg/mL ECE, 

respectively. The most effective concentration by immunostaining was found to be 12.5 µg/mL ECE, 

and this concentration was used for the following experiments. To quantitatively detect the expression 

of type I collagen, we measured the levels of intracellular type I collagen by Western blot analysis and 

showed that treatment of HSCs with 12.5 μg/mL ECE for 24 h markedly suppressed the high  

glucose-induced increase in the expression of type I collagen (Figure 3). 

Figure 2. The effect of ECE on the high glucose-induced increase in the expression of type I 

collagen in HSCs. HSCs were incubated for 24 h with 400 mg/dL glucose. ECE (6.25, 12.5 

or 25 μg/mL) was added simultaneously with the glucose. At the end of the incubation, 

cells were fixed with 4% paraformaldehyde overnight at 4 °C. An anti-type I collagen 

polyclonal antibody was used as the primary antibody. (a) Control (100 mg/dL glucose); 

(b) 400 mg/dL glucose; (c) 400 mg/dL glucose plus 6.25 μg/mL ECE; (d) 400 mg/dL glucose 

plus 12.5 μg/mL ECE; and (e) 400 mg/dL glucose plus 25 μg/mL ECE. Scale bars, 20 μm. 
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Figure 2. Cont. 

 

Figure 3. The effect of ECE on the high glucose-induced increase in the expression of  

α-SMA in HSCs. HSCs were treated with 400 mg/dL glucose for 24 h. ECE (12.5 μg/mL) 

was added simultaneously with the glucose. Cell lysis and western blot analysis were 

performed as described in the Materials and Methods section. Data shown are representative 

of three independent experiments. 

 

2.3. Effect of ECE on the Proliferation of High Glucose-Treated HSCs 

To investigate the effect of ECE on high glucose-induced HSC activation, we also examined the 

effect of ECE on the high glucose-induced increase in the proliferation of HSCs. HSCs were incubated 

for 24 h with 400 mg/dL glucose and 12.5 μg/mL ECE. As shown in Figure 4, treatment with ECE 

reduced the high glucose-induced cell proliferation to the level of the control cells. 
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Figure 4. The effect of Ecklonia cava extract (ECE) on the proliferation of high  

glucose-treated HSCs. HSCs were treated with 400 mg/dL glucose for 24 h. ECE  

(12.5 μg/mL) was added simultaneously with the glucose. Cell viability was measured 

using an MTT assay. Each value is the mean ± SD. Values without a common letter are 

significantly different (p < 0.01). Five independent experiments were performed. 

 

2.4. Effect of ECE on Intracellular ROS Levels of High Glucose-Treated HSCs 

To investigate the relationship between high glucose-induced HSC activation and ROS  

formation, we measured the level of intracellular ROS using 2',7'-dichlorodihydrofluorescein diacetate  

(DCFH-DA), which is converted to the highly fluorescent DCF in the presence of intracellular ROS. 

The increase in ROS formation in high glucose-treated HSCs was inhibited by the addition of ECE 

(Figure 5).  

Figure 5. The effect of ECE on the intracellular ROS levels of high glucose-treated HSCs. 

HSCs were incubated for 2 h with 400 mg/dL glucose. ECE (12.5 μg/mL) was added 

simultaneously with the glucose. During the last 30 minutes of culture, the cells were 

incubated with 2.4 mM DCFH-DA. (a) Control (100 mg/dL glucose); (b) 400 mg/dL glucose; 

and (c) 400 mg/dL glucose plus 12.5 μg/mL ECE. The data shown are representative of 

three independent experiments. Scale bars, 20 μm. 
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2.5. Effect of ECE on the Intracellular MDA Levels of Glucose-Treated HSCs 

We examined the effect of ECE on the high glucose-induced increase of intracellular lipid 

peroxidation using a TBARS assay. HSCs were incubated for 6 h with 400 mg/dL glucose and  

12.5 μg/mL of ECE. The ECE treatment returned the intracellular MDA level to the level of the 

control cells (Figure 6). 

Figure 6. Effect of ECE on MDA levels in high glucose-treated HSCs. HSCs were treated 

with 400 mg/dL glucose for 6 h. ECE (12.5 μg/mL) was added simultaneously with the 

glucose. After incubation, the intracellular MDA levels were assayed using a TBARS 

assay, as described in the Materials and Methods section. Data are presented as means ± SD. 

Values without a common letter are significantly different (p < 0.01). Five independent 

experiments were performed. 

 

2.6. Effect of ECE on the Intracellular GSH Levels of High Glucose-Treated HSCs 

To investigate the relationship between intracellular GSH levels and high glucose-induced HSC 

activation, we measured the intracellular GSH levels in HSCs using HPLC. As shown in Figure 7, the 

levels of intracellular GSH 2 h after a high glucose treatment were lower than those of the control 

cells. However, ECE not only reversed the decrease in GSH but also induced higher GSH levels than 

those in control cells. 

2.7. Effect of ECE on Bioactive TGF-β1 in High Glucose-Treated HSCs 

TGF-β1 is a potent profibrogenic signaling factor that triggers the expression, accumulation and 

deposition of collagen [19,20]. Therefore, we measured the levels of TGF-β1 in the cell culture 

medium using a Quantikine TGF-β1 ELISA kit (R&D Systems). As shown in Figure 8, a high glucose 

concentration (400 mg/dL) stimulated the cells to secrete bioactive TGF-β1, and the stimulation was 

suppressed upon treatment of the HSCs with ECE. 
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Figure 7. The effect of ECE on the intracellular GSH levels of high glucose-treated  

HSCs. HSCs were treated with 400 mg/dL glucose for 2 h. ECE (12.5 μg/mL) was added 

simultaneously with the glucose. After the incubation, the intracellular GSH levels were 

assayed by HPLC, as described in the Materials and Methods section. Data are presented as 

means ± SD. Values without a common letter are significantly different (p < 0.01).  

Five independent experiments were performed. 

 

Figure 8. The effect of ECE on the secretion of bioactive TGF-β1 by high glucose-treated 

HSCs. HSCs were treated with 400 mg/dL glucose for 24 h. ECE (12.5 μg/mL) was added 

simultaneously with the glucose. After the incubation, the levels of secreted bioactive 

TGF-β1 were determined by an ELISA, as described in the Materials and Methods section. 

Data are presented as means ± SD. Values without a common letter are significantly 

different (p < 0.01). Five independent experiments were performed. 
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3. Discussion  

The significant finding of this study is that ECE suppressed the high glucose-induced HSC activation 

in vitro. To the best of our knowledge, the involvement of ROS and/or GSH inhibition and the 

downregulation of TGF-β secretion by ECE are novel.  

Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease that ranges in severity 

from steatosis to cirrhosis. The prevalence of NAFLD has been estimated to be between 20% and 30% 

in the general population, but this value is much higher (~70–80%) in patients with type 2 diabetes 

mellitus, who are also at a higher risk of developing advanced fibrosis and cirrhosis [21]. In addition, 

Picardi et al. showed that hyperglycemia and hyperinsulinemia might accelerate liver fibrosis and 

cirrhosis [3]. Nan et al. have shown that rosiglitazone, which is used as a clinical treatment for insulin 

resistance in patients with type 2 diabetes mellitus, ameliorated hepatic fibrosis by activating PPARγ, 

which can inhibit HSC activation and suppress the expression of TGF-β1 and connective tissue growth 

factor. When the drug was given to mice fed a high-fat, methionine-choline deficient diet for 8 weeks 

to induce hepatic fibrosis, it decreased the severity of the liver disease [22]. Currently, no agents or 

natural products have been confirmed as preventing the activation of HSCs in diabetic liver fibrosis. In 

this study, we examined the effect of ECE on high glucose-induced HSC activation. 

In cirrhotic livers, HSCs are responsible for the increased production and deposition of the  

ECM. Activation of HSCs in vivo and in vitro includes the increased expression of type I collagen, the 

expression of cytoskeleton markers such as α-SMA, and increased proliferation [23,24]. Sugimoto et al. 

have shown that high glucose concentrations stimulated the cell proliferation of HSCs and the production 

of type I collagen by HSCs. However, the mechanisms of hepatic fibrosis, which is promoted by high 

glucose concentrations, are not well defined [6]. We confirmed that high glucose concentrations (400 and 

600 mg/dL) stimulated cell proliferation and type I collagen expression by HSCs to a greater extent 

than normal serum glucose concentrations (100 mg/dL) (data not shown). In this study, we showed that 

the secretion of TGF-β1 and the formation of ROS were stimulated and that the intracellular GSH 

levels were decreased in HSCs at high glucose concentrations. 

ROS has been thought to be an important trigger for HSC activation and for promoting the 

expressions of fibrogenic molecules such as α-SMA, TGF-β, and type I collagen. TGF-β plays a 

critical role in the development of hepatic fibrosis through its stimulating effect on matrix protein 

generation and its inhibitory effect on matrix protein removal [20,25]. The expression of TGF-β is 

increased in various models of human liver disease, which range from cholestatic liver disease and 

hepatitis to liver cirrhosis [26–28]. Recent studies have demonstrated that TGF-β is a potent inducer of 

both the α-1(I) and α-2(I) collagen genes. In addition, a TGF-β-responsive element has been mapped to 

the promoter region of the α-2(I) collagen gene [29]. The finding of this study that a high glucose 

concentration intensified the generation of ROS, which was then followed by HSC activation in 

association with enhanced TGF-β secretion, adds new information to the mechanism of liver 

fibrogenesis. The increases in ROS formation and TGF-β secretion in high glucose-induced HSCs 

were inhibited by the addition of ECE.  

The levels of ROS are modulated not only by the amount of ROS produced but also by antioxidant 

levels. The production of ROS leads to antioxidant depletion, thereby amplifying the biological 

consequences of oxidant stress. GSH has been implicated in various cellular events, such as the 
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inflammatory response, regulation of cell proliferation, modulation of redox-regulated signal 

transduction and remodeling of the extracellular matrix [30]. In this experiment, we found that the 

level of intracellular GSH was decreased after treatment with high glucose when compared to that of 

the control cells. The decrease in GSH levels in high glucose-treated HSCs was suppressed by 

treatment with ECE. ECE not only reversed the decrease in GSH but also induced greater GSH levels 

than those in control cells. Kang et al. have shown that phloroglucinol, a phlorotannin compound 

isolated from Ecklonia cava, restored the level of GSH and the protein expression of the catalytically 

active subunit glutamate-cysteine ligase, which is a rate-limiting enzyme in GSH biosynthesis, in cells 

exposed to γ-rays [31]. 

Polyphenolic compounds are abundant in seaweeds, and the polyphenolic compounds that are 

contained in brown algae are called phlorotannins. Ecklonia cava, which is a brown algae, has various 

phlorotannins that are highly hydrophilic compounds [32]. Ahn et al. investigated the potential 

antioxidant activities of three phlorotannins (phloroglucinol, eckol and dieckol) purified from Ecklonia 

cava and indicated that those phlorotannins showed notable radical scavenging activities; in particular, 

eckol had a superior scavenging activity for free radicals and inhibited DNA damage [33].  

These studies suggested that ECE is useful for preventing the development of diabetic liver  

fibrosis. However, further studies are required to ascertain whether ECE may be beneficial in high 

glucose-induced or NASH-associated hepatic fibrosis in animals. 

4. Materials and Methods 

4.1. Materials 

Nycodenz was obtained from Nycomed Pharma AS (Oslo, Norway). Pronase E was purchased  

from Merck (Darmstadt, Germany). Deoxyribonuclease I was obtained from Roche LTD (Basel, 

Switzerland). Collagenase was purchased from Wako Pure Chemical Co., Ltd. (Osaka, Japan). DMEM 

was obtained from Nissui Pharmaceutical Co. Ltd. (Tokyo, Japan). Fetal bovine serum (FBS) was 

purchased from Nichirei Biosciences, Inc. (Tokyo, Japan). Monoclonal mouse anti-human smooth 

muscle actin antibody 1A4, biotinylated goat anti-mouse immunoglobulin and biotinylated goat  

anti-rabbit immunoglobulin and horseradish peroxidase-labeled streptavidin-biotin complex were 

obtained from DAKO A/S (Glostrup, Denmark). Rabbit anti-rat collagen type I polyclonal antibody 

was obtained from Chemicon International, Inc. (Temecula, CA, USA). The Quantikine TGF-β1 

ELISA kit was obtained from R&D Systems, Inc. (Minneapolis, Minnesota, MN, USA). Other 

chemicals used in this study were special-grade commercial products purchased from WAKO Pure 

Chemical Co., Ltd. (Osaka, Japan). 

4.2. Ecklonia cava Extract 

A commercially available polyphenol extract from Ecklonia cava (Seapolynol, Livechem Inc, Jeju, 

Korea) was used. The total polyphenol content of the Ecklonia cava extract was 99.4%, as measured 

by the Folin-Ciocalteu reagent using phloroglucinol as a standard. Notable compounds in the Ecklonia 

cava extract that were identified by HPLC were dieckol (8.2%), 8,8'-bieckol (2.8%), 2-O-(2,4,6-

trihydroxyphenyl)-6,6'-bieckol (2.1%), 6,6'-bieckol (1.5%), phlorofurofucoeckol-A (1.4%),  
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eckol (0.6%), 2-phloroeckol (0.4%), 7-phloroeckol (0.4%) and phlorotannin A (0.4%) (Waters, 

column: CAPCELL PAK ODS column (4.6 × 250 mm); eluent: 30% aqueous MeOH;  

flow rate: 0.8 mL/min) [11]. 

4.3. Animals  

Male Wistar rats, which weighed 300–350 g, were purchased from Japan SLC Inc. (Shizuoka, 

Japan) and housed at constant temperature with free access to water and standard rat chow (Labo MR 

stock; Japan SLC, Inc., Shizuoka, Japan). Animal experiments followed our institution’s criteria for 

the care and use of laboratory animals in research, which were in accordance with the guidelines for 

animal experimentation at Osaka City University. 

4.4. Isolation and Culturing of HSCs 

HSCs were isolated from male Wistar rats as previously described [34]. HSCs were identified by 

their typical star-like configuration and a vitamin A autofluorescence. The purity was always higher 

than 95%. In the experiments to ascertain changes in α-smooth muscle actin α-SMA) expression and 

cell proliferation after HSC isolation, the cells were plated at 5 × 105 cells/mL on uncoated culture 

dishes in 1.5 mL of DMEM containing 10% FBS and supplemented with antibiotics (105 U/L of 

penicillin G and 500 mg/L of streptomycin) until 13 days. The medium was changed to fresh DMEM 

containing 10% FBS every 2 days. For the experiments on high glucose-induced HSC activation, the 

cells were plated at 5 × 105 cells/mL on uncoated culture dishes in 1.5 mL of DMEM containing 10% FBS 

and supplemented with antibiotics for 2 days and then cultured in fresh medium without serum for 24 h. 

After a pre-incubation, the cells were cultured in DMEM with different concentrations of glucose. 

4.5. Immunohistochemistry 

At the end of the incubation, the HSCs were fixed with 4% paraformaldehyde overnight at 4 °C. We 

used either an anti-α-SMA monoclonal antibody (1:100 dilution) or an anti-type I collagen polyclonal 

antibody (1:200 dilution) as the primary antibody. The samples were sequentially incubated with 0.3% 

hydrogen peroxide, followed by normal goat serum, then with the primary antibody for 1 h at room 

temperature, and afterwards with the biotinylated anti-mouse or anti-rabbit goat immunoglobulins  

for 30 min. This was then followed by an incubation with the horseradish peroxidase-labeled 

streptavidin-biotin complex for 30 min. For the peroxidase reaction, 3,3'-diaminobenzidine 

tetrahydrochloride (DAB) with a nickel chloride color modification was incubated for 5 min until the 

desired color intensity had developed. Quantification of the intensity of α-SMA and type I collagen 

expression was analyzed using a computer with the NIH image version 1.62 (National Institutes of 

Health, Bethesda, MD, USA).  

4.6. Western Blot Analysis of α-SMA 

Cells were harvested, washed twice with cold PBS and then dissolved with lysis buffer X (10 mM 

HEPES (pH 7.6), 10 mM KCl, 0.1 mM EDTA, 0.5% Nonidet P40, 1 mM dithiothreitol, 0.5 mM 

phenylmethylsulfonyl fluoride). After freezing and thawing twice with liquid nitrogen, the cells were 
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sonicated and centrifuged at 800 × g for 10 min at 4 °C. The supernatant was collected for the cytosolic 

fraction. The precipitant was dissolved with lysis buffer Y (150 mM NaCl, 50 mM tris (pH 7.2),  

1 mM EDTA, 1% Nonidet P40, 10 µg/mL leupeptin, 10 µg/mL pepstatin A and 100 µg/mL 

phenylmethylsulfonyl fluoride) for 30 min. Finally, the solution was sonicated and centrifuged at  

2000 × g for 20 min at 4 °C, and the supernatant was collected for the nuclear fraction. Equal amounts 

of protein were loaded into the lanes of 10% SDS-PAGE gels, and the separated proteins were blotted 

to 0.45 µm polyvinylidene difluoride (PVDF) membranes (Amersham Pharmacia Biotech, Inc., 

Uppsala, Sweden). After blocking overnight with 0.1% Tween-20 and 5% non-fat dry milk in TBS, the 

membrane was incubated with an anti-α-SMA antibody for 1 h at room temperature. After washing, 

the membrane was re-incubated with biotinylated anti-mouse goat immunoglobulin (diluted 1:1000) 

for 1 h at room temperature. Next, the membrane was washed several times and then incubated with 

horseradish peroxidase-coupled streptavidin (diluted 1:200) for 1 h at room temperature. After several 

washing steps, the color reaction was developed with DAB. Densitometric analysis of the protein 

bands was performed using the software Scion Image (Scion Corporation, Frederick, MD, USA).  

4.7. Determination of Intracellular GSH Levels  

The intracellular GSH levels were determined according to the method of Sack et al. [35]. Cells 

were collected with Tris-HCl buffer (25 mM Tris adjusted to pH 7.5 with HCl). After sonication and 

centrifugation, the supernatant was used for an HPLC assay. For assaying GSH, 300 µL of supernatant 

was mixed with 300 µL of borate buffer (0.56 N boric acid adjusted to pH 10.4 with NaOH) and 50 µL 

of an OPA solution (10 mg/mL OPA in 10% methanol). GSH was separated on an ODS-II column  

(4.6 × 150 mm; particle size 5 µm; Shimadzu Techno-Research, Kyoto, Japan) using solvents A  

(30 mM sodium acetate adjusted to pH 6.0 with acetic acid) and B (92.3% methanol/7.7% acetonitrile, 

v/v). The sample was eluted with 96% solvent A and 4% solvent B and then with a programmed 

solvent gradient using a linear gradient curve. The gradient changed from 4 to 10% of solvent B from 0 

to 5 min, from 10 to 14.9% of solvent B from 5 to 15 min, and from 14.9 to 4% of solvent B from  

20 to 21 min at a flow rate of 0.45 mL/min. The fluorescence of the eluted fractions was measured 

using an RF1520 fluorescence monitor at excitation and emission wavelengths of 230 and 445 nm, 

respectively, to assay the GSH levels (JASCO Corporation, Tokyo, Japan).  

4.8. MTT Assay  

The MTT [3(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium-bromide] assay, an index of cell 

viability and growth, is based on the ability of viable cells to reduce a yellow water-soluble dye to a 

dark-blue insoluble formazan product. After 24 h of culture, the cells were incubated with the MTT 

solution for 2 h. The cells showing an MTT reaction were quantified at 600 nm using a multilabel 

counter (Wallac 1420 ARVOsx, Perkin Elmer Inc., Waltham, MA, USA). Cell survival was estimated 

as a percentage of the value of the untreated controls. 
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4.9. Intracellular ROS Formation 

A relatively specific probe for the presence of hydrogen peroxide, 2',7'-dichlorodihydrofluorescein 

diacetate (DCFH-DA), was used to analyze the intracellular ROS formation [36,37]. Cells were 

incubated with 2.4 mM DCFH-DA (5 µL) for the last 30 min of the glucose treatment. Cells were 

washed with PBS twice and resuspended in Hank’s solution. The fluorescence intensities were 

measured using a multilabel counter (Wallac 1420 ARVOsx, Perkin Elmer Inc.) with an excitation 

wavelength of 485 nm and an emission wavelength of 535 nm. The amount of intracellular ROS  

was calculated from a standard curve derived from 2',7'-dichlorofluorescein (DCF). The protein 

concentration was measured using the Bradford method [38]. For visualization of the intracellular 

fluorescence, the cells were observed with an FSX100 Bio Imaging Navigator, which is an all-in-one 

fluorescence imaging system (Olympus Corporation, Tokyo, Japan). 

4.10. Evaluation of Intracellular Lipid Peroxidation 

Lipid peroxidation was assessed by determining the rate of production of thiobarbituric acid  

(TBA)-reactive components, which mainly detect malonaldehyde (MDA) [39]. After incubating  

for 6 h, the HSCs were collected and resuspended in 500 µL of Hank’s solution. After freezing and 

thawing, the 250 µL suspension was diluted to 500 µL with distilled water and then mixed with 15 µL 

of 50 mM butylated hydroxytoluene (BHT) and 1 mL of the thiobarbituric acid (TBA) solution. The 

mixtures were heated at 95 °C for 15 min. The fluorescence intensities were measured using a 

multilabel counter (Wallac 1420ArVOsx, Perkin Elmer Inc.) with an excitation wavelength of 485 nm 

and an emission wavelength of 535 nm. Tetramethoxypropane was used for a standard, and the results 

are expressed as nmol equivalents of MDA. 

4.11. Measurement of Activated TGF-β1 Concentrations 

TGF-β1 was analyzed using a Quantikine TGF-β1 ELISA kit (R&D Systems, Inc.) according to the 

manufacturer’s instructions. The assay employs the quantitative sandwich enzyme immunoassay 

technique. The intensity of the color was measured at 450 nm by a multilabel counter (Wallac 1420 

ARVOsx, Perkin Elmer Inc.). The concentrations of the total TGF-β1 was calculated from a standard 

curve derived from various defined concentrations of recombinant TGF-β1.  

4.12. Statistical Analysis 

Results are presented as the means ± S.D. Statistical comparisons were performed between groups 

by a one-way analysis of variance and a post-hoc multiple comparison using a Tukey’s test. A p-value 

less than 0.05 was considered significant. 

5. Conclusions  

In conclusion, the results obtained in this study indicate that high glucose concentrations trigger an 

increase in collagen synthesis by HSCs, and this may be related to or involved in an increased 

formation of ROS, a depletion of the intracellular GSH content and an increase in the expression of 
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TGF-β1. The suppression of the high glucose-induced HSC activation by ECE was mediated by an 

inhibition of the ROS and/or GSH signal and a downregulation of TGF-β1 secretion. ECE may be 

useful in preventing the development of diabetic liver cirrhosis. 
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