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Abstract: Critical environmental and human health concerns are associated with the 

rapidly growing fields of nanotechnology and manufactured nanomaterials (MNMs).  

The main risk arises from occupational exposure via chronic inhalation of nanoparticles. 

This research presents a chance-constrained nonlinear programming (CCNLP) optimization 

approach, which is developed to maximize the nanaomaterial production and minimize the 

risks of workplace exposure to MNMs. The CCNLP method integrates nonlinear 

programming (NLP) and chance-constrained programming (CCP), and handles uncertainties 

associated with both the nanomaterial production and workplace exposure control.  

The CCNLP method was examined through a single-walled carbon nanotube (SWNT) 

manufacturing process. The study results provide optimal production strategies and 

alternatives. It reveal that a high control measure guarantees that environmental health and 

safety (EHS) standards regulations are met, while a lower control level leads to increased 

risk of violating EHS regulations. The CCNLP optimization approach is a decision support 

tool for the optimization of the increasing MNMS manufacturing with workplace safety 

constraints under uncertainties. 

  

OPEN ACCESS 



Int. J. Environ. Res. Public Health 2013, 10 1232 

 

 

Keywords: manufactured nanomaterials (MNMs); occupational exposure; environmental 

health and safety standards (EHS); emerging risk management; nonlinear programming; 

chance-constrained programming; uncertainty analysis  

 

1. Introduction 

Manufactured nanomaterials (MNMs) are man-made particles having at least one dimension of 

roughly 1–100 nm [1]. MNMs have been employed in a wide spectrum of industrial sectors in recent 

years, including energy, medicine, electronics, environmental protection, cosmetics, food, agriculture 

and many other areas. This is due to their unique properties, such as small size and associated large 

surface area to mass ratio, increased surface reactivity, and altered physico-chemical properties [2,3]. 

The unique chemical and physical properties of MNMs have raised issues regarding occupational 

health and safety (EHS) in manufacturing facilities [4], particularly when handled in large amounts [5]. 

MNMs can be released to the occupational atmosphere during industries producing processes,  

where MNMs are synthesized, purified, and packaged, thereby becoming commercial products. As a 

result, MNMs can enter worker’s body through inhalation, skin contact and ingestion during 

manufacturing [6]. Recent publications indicate that chronic occupational exposure to MNMs may  

lead to a number of negative health and reproductive problems, including hepatic injury [7], 

genotoxicity [8,9], carcinogenicity [10], cytotoxicity (apoptosis) and risks of cardiovascular  

diseases [11,12], and reproductive damage [13,14].  

So far, relatively few publications have directly approached modelling MNMs occupational 

exposure risks, which include Monte Carlo models that compare various levels of environmental 

health and safety (EHS) standards for single wall carbon nanotube (SWCNT) manufacturing [15],  

and expert opinions on development of exposure-response functions for nanomaterials [16].  

To minimize the risks of MNMs to workers’ health as well as to maximize their economic benefits, 

optimization models are efficient tools to manage MNMs manufacturing processes and reduce 

occupational exposure. Usually, optimization algorithms involve geometric programming, dynamic 

programming, and linear programming methods [17]. However, most MNMS-producing processes are 

complex systems with inherent nonlinearities, where the systems are best described by nonlinear 

optimization method [18]. 

Previously, nonlinear programming (NLP) has been widely employed in technological optimization 

of manufacturing processes, such as agriculture [16], electronics industry [19,20], and construction [21]. 

NLP is one of the most frequently applied operational algorithms for real world problems as its 

fundamental theories have been well studied and as a result, a wide spectrum of user-friendly solution 

software with powerful computational capabilities have been developed. One limitation of NLP is that 

it relies heavily on the inherent assumption that all relevant variables have deterministic values [22]. 

Unfortunately most real-life problems involve a certain amount of uncertainties making the 

implementation of NLP a difficult task [23]. For instance, work-related exposures to MNMs are 

associated with a number of uncertainties in relation to control options and risk quantification. 

Uncertain variables for a nonlinear MNMS manufacturing system analysis may include: (1) MNMS 
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workplace release data. Previous studies indicated a pressing need to distinguish background 

nanoparticles’ concentrations, process-generated nanoparticles’ concentrations and MNMs in workplace 

risk assessment [24]; (2) Occupational exposure limits: it may take several years to establish human 

no-effect levels (NELs) for each kind of MNM, so in many cases no nano-specific occupational health 

and safety standards are available [25]; and (3) MNM occupational exposure control efficiency and 

control cost. Data on efficiency and cost of MNM control methods are vague [15]. It is seen that the 

above-mentioned uncertainties have not been well quantified in the previous studies.  

Considering uncertainties in the optimization, application of chance-constrained programming 

(CCP) has been reported to environmental management problem [26]. CCP is an effective way to deal 

with various uncertainties, where uncertain parameters are considered random variables and described 

using probability density functions. CCP can be used to convert a stochastic programming model into 

an equivalent deterministic model, and also to incorporate other uncertain optimization methods, such 

as fuzzy mathematical programming, within the nonlinear programming general framework [27]. 

Therefore, combining CCP with NLP is an approach that could be used to deal with various 

uncertainties pertaining to MNM and workplace exposure control. 

The objectives of this study are: (1) development of a nonlinear optimization approach for modeling 

the MNM manufacturing process towards a maximum nanomaterial production at a minimum cost of 

workplace exposure control under a number of constraints; (2) development of chance-constrained 

nonlinear programming (CCNLP) through an integration of NLP and CCP to address the system 

uncertainties including the randomness of exposure data; and (3) examination of the developed model 

to a single-wall carbon nanotube (SWNT) manufacturing process.  

2. Methodology 

2.1. The Nanotechnology Manufacturing Process 

There are two main engineering design methods for preparing nanoparticles, top-down and  

bottom-up. The top-down approach works on the basis of breaking down a large piece of material into 

smaller pieces, and in the case of nanostructures these dimensions are in the nanometer range: 1 to  

100 nm. The bottom-up approach relies on increasing the size of small molecules or atoms up to the 

size of MNMs via techniques such as nucleation, self-assembly and evaporation. Generally, bottom-up 

techniques are less waste-producing than top-down techniques. It is often suggested that bottom-up 

techniques should be the ultimate tools for sustainable manufacturing, as they allow for  

customized design of reactions and processes at the molecular level, thereby minimizing waste [28]. 

Synthesized MNMs should be processed further, e.g., to be purified, inspected, packaged, and then 

becoming commercial products. Here, we take the single-walled nanotube (SWNT) production  

process as our example. 

High-Pressure Carbon Monoxide (HiPco) Process for Manufacturing Single-Walled  

Nanotubes (SWNTs)  

Single-walled nanotubes (SWNTs) are cylindrical molecules of graphite with diameters of 1 to 2 nm 

that have attracted considerable interest due to their superior electrical, mechanical, and thermal properties, 
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and particularly, their fascinating ability to withstand high current density (109 Amps/cm
2
) [29,30].  

The use of SWNTs has raised concerns because of their resemblance to asbestos in terms of 

dimensions, rigidity and solubility, as these factors determine fiber toxicity leading to lung fibrosis, so 

consequently carbon nanotubes known as high aspect ratio nanoparticles (HARN) have engendered 

concern about their potential for a similar risk as that from the asbestos [31].  

Among the several methods available for producing carbon nanotubes, three technical processes are 

commonly used: arc ablation (arc), chemical vapor deposition (CVD) and high-pressure carbon 

monoxide (HiPco). Because the HiPco process is significantly less costly ($450/g vs. $1,830/g and 

$1,586/g for arc ablation and CVD, respectively) [16], we focused on the HiPco manufacturing method 

in the CCNLP model to explore profits under various EHS standards (High, Medium, Low). In the 

HiPco process, it is proposed that iron clusters form first, then solid carbon nucleates and grows 

SWNTs. Iron pentacarbonyl (Fe(CO)5) is injected into a stream of CO gas at high temperature  

(800–1,000 °C) and pressure (≥10 atm). The iron clusters form by aggregation of iron atoms from the 

decomposition of Fe(CO)5 via Equation (1) (see below) around 250 °C. There are two main functions 

for the iron clusters. They act as catalysts for carbon source decomposition as well as SWNT formation 

sites. The clusters grow by collision with additional metal atoms and other clusters, eventually 

reaching a diameter comparable to that of a SWNT, 0.7–1.4 nm, corresponding to 50–200 iron atoms. 

By the time they reach this size, CO can disproportionate (a specific type of redox reaction) on the 

surface of such cluster via the Boudouard reaction (Equation (2)) to yield solid carbon, and SWNTs 

will nucleate and grow from these clusters [32]. Figure 1 shows the material flows in the 

manufacturing reactor. The SWNTs and iron particles pass through the reactor propelled by the hot, 

dense gas flow, and into the product collection apparatus. The CO gas recalculates back through the 

gas flow system and reactor using a compressor. The product contains Fe particles and other  

by-products and requires subsequent purification [33,34].  

Fe(CO)5    Fe + 5CO (1) 

2CO(g)    C(s) + CO2(g) (2) 

Figure 1. Schematic diagram of the HiPco synthesis process. 
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2.2. Optimization for Occupational Exposure Risk Management of SWNT Manufacturing 

2.2.1. The Nonlinear Programming (NLP) Approach for Occupational Exposure Risks Management  

of SWNT Manufacturing 

As one of the most important tools of optimization, nonlinear programming (NLP), which is a type 

of deterministic optimization, is implemented here to manage nanoparticles exposure risks in the 

workplace. It is an objective function which is subject to a set of linear constraints, where the objective 

function is nonlinear. For a given nano-manufacturing plant, the general form of this optimization 

approach is written as follows:  

Objective function = (1) – (2) – (3) 

where:  

(1) = profits from nanoparticle manufacturing per year; 

(2) = production costs of nanoparticles per year; 

(3) = exposure control costs per year. 

Constraints include: 

(a) mass balance constraints; 

(b) production volume constraints; 

(c) occupational exposure limit constraints. 

The model below was developed using the optimization method to evaluate cost and exposure 

control trade-offs of the SWNT manufacturing process:  

 
 

  

 

 

 

 

  

(3) 

where x1, x2 are the feed rate of Fe(CO)5 and CO (in g/h), respectively; x3 is the SWNT material 

production rate (g/hr); P is the revenue from each gram of SWNT manufactured ($/g); q1, q2 is the cost 

of Fe(CO)5 and CO for each gram of SWCNT produced, respectively ($/g); F is the total costs of 

SWCNT except for the raw materials ($/g; the raw materials are included in the above parameters);  

Ci is the exposure control cost of SWCNT per gram produced ($/g) in every scenario; N is the number 

of production lines; Hr is the working hours per day (hours/day); SPY is the synthesized product 

(carbon nanotube) yield (%); PY is the SWCNT purification yield (%); D is the working days per year 

(days/year); a11, a12 are the percentages of Fe(CO)5 and CO used to synthesize SWCNTs, respectively 

(%); PV1 and PV2 are the minimum and maximum production volume of SWCNTS per year (g/yr);  

max
1 1 2 2 3[ ( ) ]i rP q x q x F C N SPY PY D H x         

. .s t
11 1 12 2 3 0a x a x x  

1 3 2rPV N SPY PY D H x PV      

1 1 ( )(1 )( / )i s Fee x Hr V OEL   

2 2 ( )(1 )( / )i s COe x Hr V OEL   

3 3 ( )(1 )( / )
si s PSWNTe x Hr V OEL   

1 2 3, , 0,x x x  1, 2,3, 4i 
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ηi is the removal efficiency of MNMs emissions at each control levels (%); e1, e2, e3 represent the 

emission coefficients of nano-sized Fe, CO and SWCNTs, respectively (They are used to quantify the 

emission of nano-sized Fe, CO and SWCNTs from a unit production of SWNTs and are calculated );  

V is the volume of the workplace (m
3
); OELs(Fe), OELs(CO), OELs(SWNTs) are the occupational exposure 

limits for iron powder, CO and SWNTs, respectively (mg/m
3
).  

The value of the objective junction  is the 

annual net profits of SWCNT manufacturing; (q1x1 + q2x2) represents the cost of the two raw materials 

used for each gram of SWCNTs produced; F includes the expense of direct labour, energy, equipment, 

installation, tools, building and fixed overhead [35]; N × SPY × PY × D × Hr × x3 is the annual 

production volume of SWCNTs; q1, q2 are the cost of Fe(CO)5 and CO for each gram of SWCNTs 

produced, respectively.  

The production volume is the number of manufacturing (production) lines multiplied by the 

throughput for a single line. And the annual throughput rate of one HiPco synthesis production line is 

calculated as: Throughput = SPY × PY × D × Hr × x3, where the SWCNT synthesis product  

yield represents the relative amount of carbon nanotubes (single-wall carbon nanotubes and  

multi-wall carbon nanotubes) expected from the converted carbon; and the purification yield  

indicates the percent of SWCNT removed from the carbon product compared to the total SWNT 

created from the synthesis step.  

Five constraints are material flow balance, annual production volume and cumulative exposure to 

three hazardous materials, which will be explained as follows: (1) Material flow balance. From 

Equations (1) and (2), we know that SWNT is synthesized from the carbon elements of CO and 

Fe(CO)5, e.g., 10 moles of CO (or Fe(CO)5) produce 5 moles of SWNT and 5 moles CO2. (2) Annual 

production volume. The production volume should within a certain range [36]. (3) The emissions of 

nano-sized Fe, CO and SWNTs should be less than the allowable amount in relation to their 

occupational exposure limits.  

2.2.2. Chance-Constrained Nonlinear Programming (CCNLP) Calculations for Occupational  

Exposure Risk Management of SWNT Manufacturing 

Chance-constrained programming (CCP) is a typical stochastic programming model for risk-based 

decision making. The CCP model maximizes the objective function subject to constraints with 

specified predetermined confidence levels, where these confidence levels are provided as appropriate 

safety margins by the decision-makers. The CCP model provides information on the trade-offs 

between the objective function’s tolerance values of the constraints, and the prescribed level of 

probability, which could be valuable to decision makers. A mathematical program with  

chance-constrained parameters is presented as follows: 

max  

subject to  

 
(4) 

where x is an n-dimensional decision vector, ξ is a stochastic vector,  is the return function, 

and 
 
are stochastic constraint functions, j = 1, 2, …, p,  denotes the probability of the 

1 1 2 2 3[ ( ) ]i rP q x q x F C N SPY PY D H x         

1 2( , ,..., )nf x x x

 Pr ( , )f x f  

 Pr ( , ) 0, 1,2,...,jg x j p   

( , )f x 

( , )jg x  Pr 
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event in , and α, β are predetermined confidence levels of the constraint and objective, respectively.  

The detailed model formulated using this optimization approach for our Texas factor case study is 

described in the next section. In the single-wall carbon nanotube exposure control case study discussed 

above, emission coefficients of the theee pollutants (i.e., nano-sized Fe, CO and SWCNTs) were 

uncertain. A: emission coefficient can be calculated as follows [37]: 

 (5) 

where Con is the estimated concentration of pollutant (μg/m
3
·h or mg/m

3
·h); V is the volume of the 

workplace (m
3
); Hr is the working hours per day (h/day); D is the working days per year (days/year); 

PV is the average production volume of SWCNTS per year (g/yr); Tr is the transformation factor 

(1,000,000 when the unit for Con is μg/m
3
·h and 1,000 if the unit is mg/m

3
·h. For a specific MNM 

manufacturing section, V, Hr, D, PV and Tr are deterministic values. Con is an uncertain variable 

which can be presented as a probability density function. Thus, emission coefficient (e) also can be 

described by a probability density function. Assuming these emission coefficients contain random 

variables, then the model can be rewritten as: 

 
 

  

 

 

 

 

  

(6) 

where ζ1, ζ2, and ζ3 , which are functions containing random variables, replace e1, e2, e3 to represent 

emission coefficients of nano-sized Fe, CO and SWCNTs, respectively. 
 
means that the 

cumulative exposure should be less than the “no observable effect” level(NOEL) ≥ α of the time. 

Figure 2 shows a framework of the CCNLP optimization method.  

3. Case Study 

3.1. Overview of the Case Study 

A study case was adapted from a SWNT manufacturing plant located in Houston, TX, USA [35], 

where nano-specific occupational environmental health and safety (EHS) standards were voluntarily 

implemented. In the plant, the HiPco method is used to produce 87% pure SWNT. There are nine 

HiPco synthesis lines in one production room with a size of 30 m × 20 m × 3 m. The plant operates 

eight hrs/day and 365 days/year. Each line produces SWNTs with 97% synthesis product yield and 

90% purification yield. During the production, three air pollutants are emitted that workers are exposed 

to: SWNTs, nano-size iron powder and carbon monoxide.  

  



Con V Hr D
e

PV Tr

  




max
1 1 2 2 3[ ( ) ]i rP q x q x F C N SPY PY D H x         

. .s t
11 1 12 2 3 0a x a x x  

1 3 2rPV N SPY PY D H x PV      

1 1 ( )Pr[(1 )( / ) ]i s Fex Hr V OEL      

2 2 ( )Pr[(1 )( / ) ]i s COx Hr V OEL      
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Figure 2. Framework of the CCNLP optimization method. 

 

Table 1. Summary of environmental health and safety (EHS) levels and the related 

exposure control measures (adapted from [14]).  

 EHS levels 

Type of EHS Control Low Medium  High 

Engineering Controls    

General exhaust-

ventilation 

24 h, 28.31 m2 

ventilation rate, 

$10,000 capital cost, 

$ 3,000/year 

operating cost 

24 h, 28.31 m2 

ventilation rate,  

$10,000 capital cost,  

$ 3,000/year  

operating cost 

24 h, 28.31 m2 ventilation  

rate, $10,000 capital cost,  

$ 3,000/year operating cost 

Fume hoods  $4,000 capital  

cost for 0.58 m2 

equipment and $9,500 

for 2.3 m2 equipment 

$4,000 capital cost for  

0.58 m2 equipment and  

$9,500 for 2.3 m2 equipment 

Enclosure of processes   50% decrease in labor productivity, 

50% extra equipment cost 

Administrative controls    

Annual worker training 8 h of training, 

$560/year instructor 

cost 

8 h of training, 

$560/year  

instructor cost 

8 h of training,  

$560/year instructor cost 

Air monitoring Monthly 

monitoring, 

$20,000/equipment 

capital cost 

Weekly monitoring, 

$20,000/equipment 

capital cost 

Biweekly monitoring, 

$20,000/equipment capital cost 

Medical monitoring   $950/worker/year 
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3.2. The NLP and CCNLP MNM Workplace Model Information and Scenarios 

As shown in Table 1, 4 levels of EHS standards were used in our model (None, Low, Medium and 

High). This are defined to represent the possible strategies under which nano-EHS standards might be 

imposed [38]. Control costs and reduced manufacturing efficiency possible at each EHS control level 

are defined in Table 2.  

Table 2. Assumed control cost and reduced efficiency for each levels of control (adapted from [15]).  

Control Level Cost ($/g) 
Reduced 

Efficiency (η) 

No 0.00 0.0 

Low 10.00 0.1 

Medium 78.00 0.5 

High 210.00 0.8 

We assume that the emission coefficients of nano-sized Fe, CO and SWCNTs are normally 

distributed random variables with known means and standard deviations (Table 3). For the  

chance-constrained programming of SWNT exposure, the predetermined confidence levels in four 

scenarios were tested at 90%, 95% and 99% levels, respectively. 

Table 3. Mean and standard deviations of the emission coefficients of nano-sized Fe, CO and SWCNT. 

 Mean SD Reference  

nano-sized Fe (ζ1) 0.00135 0.00070 (Calculated from [25]) 

CO (ζ2) 0.03700 0.00040 (Calculated from [39]) 

SWCNT (ζ3) 0.00287 0.00227 (Calculated from [25]) 

The main assumptions of this model include that: (1) the manufacturing reactions are conducted 

under the conditions of 1,050 °C and 30 ; (2) the reactions reach the dynamic balance very 

quickly; (3) no other source of Fe, CO and SWCNT pollution exists in the workplace; (4) the 

concentrations of Fe, CO and SWCNT in the air of the manufacturing room are homogeneous, and 

then no agglomeration is considered; (5) workers do not have access to safety clothing and respirators. 

The values of parameters used based on references are given in Table 4.  

Table 4. Summary of Parameters for NLP and CCNLP methods. 

Symbols Units Definition Values Reference 

P $/g price of SWCNT 1,000.00 [36] 

q1 $/g 
cost of Fe(CO)5 per  

gram SWCNT produced 
0.2 [33] 

q2 $/g 
cost of CO per  

gram SWCNT produced 
37.0 [34] 

 

atm
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Table 4. Cont. 

Symbols Units Definition Values Reference 

F $/g 
total cost of SWCNT  

other than the raw material 
411.3 (calculated from [36]) 

N \ number of production lines 9 [36] 

SPY % synthesis product yield 97 [36] 

PY % purification yield 90 [36] 

D days/year working days per year  365 [36] 

Hr hours/day working hours per day 8 [36] 

a11 % 
% Fe(CO)5 used to  

synthesize SWCNT 
15.0 (calculated from [32]) 

a12 % % CO used to synthesize SWCNT 21.0 (calculated from [32]) 

PV1 g/yr 
minimum production  

volume of SWCNT per year  
0.0 [36] 

PV2 g/yr 
maximum production  

volume of SWCNTS per year 
20,000 [36] 

e1 \ 
emission coefficient of  

nano-sized Fe 
0.003 [5] 

e2 \ emission coefficient of CO 0.037 (calculated from [40]) 

e3 \ emission coefficient of SWCNT 0.005 [5] 

OEL(Fe) μg/m3 
occupational exposure (OE) limit 

for nano-sized Fe and Fe(CO)5 
7.9 [41,42] 

OEL(CO) mg/m3 OE limitfor CO 40.0 [43] 

OELs(SWNTs) μg/m3 OE limit for SWCNT 7.0 [42] 

4. Results and Results Analysis 

4.1. Results of the Nonlinear Programming (NLP) Calculations 

As Figure 3 shows, the total annual net profits for no control, low control, medium control and high 

control are $4.32 M/yr, $4.26 M/yr, $6.53 M/yr and $4.76 M/yr, respectively. The corresponding 
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worker occupational exposures to SWNTs are 7.75, 7.02, 7.97, and 3.87 μg/m
3
 (Figure 4). The results 

suggest that SWNTs are the major threat to workers’ health, compared to CO and nano-Fe, because in 

the no, low and medium control scenarios, their concentrations are higher than the occupational 

exposure limit (OEL) [39,44]. Table 5 describes the production volumes, production costs, annual net 

profits, and atmospheric concentrations of SWNT, nano-Fe and CO in the factory under four different 

management scenarios, where the production volumes, costs, profits and concentrations are obtained 

from the nonlinear programming (NLP) calculations.  

Figure 3. The annual net profits calculated from NLP method. 

 

Figure 4. SWNT exposure results from NLP method.  

 

Table 5. Results of the NLP method.  

Control 

Level 

Production 

Volume (g/yr) 

Production 

Cost ($/g) 

Profit 

($M/yr) 

SWNT 

Exposure 

(μg/m
3
) 

CO 

Exposure 

(μg/m
3
) 

Fe Exposure 

(μg/m
3
) 

No 8,003 459.94 4.32 7.75 213.14 1.00 

Low 8,049 460.30 4.26 7.02 209.46 0.90 

Medium 16,452 524.83 6.53 7.97 218.21 0.50 

High 20,000 552.08 4.76 3.87 135.64 0.20 
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If no any protection strategies are adopted, the optimum solution is obtained, in which the profit is 

$4.32 M/yr when production volume is 8,003 g/yr, production cost is 459.94 $/yr and SWNT 

concentration is 7.75 μg/m
3
 (1.11 higher than the OEL). The no-control scenario is set as the base line.  

When a low level control option is taken, the 10% particle removal efficiency only slightly (0.5%) 

raises the production volume, while the total cost (production cost plus control cost) increase 2%. As a 

result, the released SWNT concentration decreases to 7.02 μg/m
3
 (1.003 higher than the OEL) and the 

profit decreases 14%.  

In the medium control scenario, the production volume increase significantly (106%) due to the 

50% removal efficiency, and then the SWNT exposure and profit reach the highest level: 7.97 μg/m
3
 

(1.15 higher than the OEL) and $6.53 M/yr, although the total cost increases by 31%.  

When a high level of protection is implemented, the production volume would reach the maximum 

20,000 g/yr (150%), and the total cost would also increase significantly (66%), which generates the 

second highest profit of $4.76 M/yr. Its 90% removal efficiency decreases the SWNT exposure to 45% 

below the OEL.  

The results indicate that, under the high control option, the significant limiting constraint is not the 

OEL but the MNMs production constraint. The maximum production volume of this study plant is 

20,000 g/yr due to the limited space, labor and investment. Thus, although the OELs allow much 

higher production volume in the high control scenario, only 20,000 g SWCNT could be produced per 

year as shown in the results. Low production and high control efficiency (90%) lead to a low 

concentration of emitted pollutants. For Fe exposure, exposure in medium control option is almost 

twice of the high control level, like SWCNT and CO. For profits of high control level, the control cost 

at 210.00 $/g is much higher than medium control level at 78.00 $/g, low production and high control 

cost lead to low profits.  

In general, the SWNT exposure concentrations and profits increase with the rise of the 

manufacturing production volume caused by the stricter standards and reach the maximum when the 

medium level control option is adopted. Nevertheless, they decrease later because the effects of 

increasing production volume have been neutralized by the effects of the rise of remove efficiencies 

(total costs).  

4.2. Results of the Chance-Constrained Nonlinear Programming (CCNLP) Model 

Figures 5 and 6 show the worker exposure ranges of SWNT and CO under different confidence αi 

levels and Figure 7 shows the corresponding SWNT manufacturing profits obtained using the CCP 

calculations. Table 6 describes the CCP model calculated results for SWNT production volume, 

production costs, net profits and estimated worker exposure ranges for the three air pollutants (SWNT, 

nano-Fe and CO) at different confidence levels. In general, the αi levels represent a set of probabilities 

at which the constraints can be violated (i.e., the admissible risk of violating the constraints). 

Therefore, the relation between the profits and the confidence levels demonstrates a trade-off between 

production volume and control constraint-violation risk. A decreasing α level means a decreasing 

limitation for the OEL constraints, which may then result in an increased production volume.  

The increased production volume would potentially increase the profits and risks of violating the EHS 

standards. A lower α level brings on a higher profits but a higher risk of violating the EHS constraints; 
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meanwhile, a higher α level results in a lower profits but an increased reliability of satisfying the 

occupational standards. These alternatives represent a compromise between economic benefit and 

environmental health and safety (EHS) requirements.  

Figure 5. Cumulative probability distributions of SWNT exposure results from CCP method. 

 

 

Figure 6. Cumulative probability distributions of CO exposure results from CCP method. 
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Figure 7. The annual net profits results from CCNLP method.  

 

Table 6. Results of the CCNLP method. 

Confidence 

Level 

Control 

Level 

Production 

Volume 

(g/yr) 

Production 

Cost ($/g) 

Profit 

($M/yr) 

SWNT 

Exposure 

(μg/m
3
) 

CO Exposure 

(μg/m
3
) 

Fe 

Exposure 

(μg/m
3
) 

0.9 No 6,263 446.59 3.47  0.00–12.42 201.85–218.72 0.00–1.60 

Low 6,952 451.87 3.74 0.00–12.41 202.52–219.44 0.00–1.60 

Medium 12,504 494.51 5.35 0.00–12.40 205.74–222.93 0.00–1.60 

High 20,000 552.08 4.76 0.00–7.90 132.74–143.84 0.00–1.02 

0.95 No 5,483 440.60 3.07 0.00–10.88 202.52–219.44 0.00–1.40 

Low 6,080 445.18 3.31 0.00–10.85 176.13–190.85 0.00–1.40 

Medium 10,944 482.53 4.81 0.00–10.85 179.66–194.05 0.00–1.40 

High 20,000 552.08 4.76 0.00–7.90 132.74–143.84 0.00–1.40 

0.99 No 4,428 432.49 2.51 0.00–8.78 140.13–151.84 0.00–1.13 

Low 4,910 436.19 2.72 0.00–8.76 140.70–152.45 0.00–1.13 

Medium 8,856 466.49 4.03 0.00–8.78 144.59–156.67 0.00–1.13 

High 20,000 552.08 4.76 0.00–7.90 132.74–143.84 0.00–1.13 

5. Discussion 

5.1. Comparison between the Modeling Results and Literature Data 

NLP and CCNLP models also serve as cost models for the HiPco SWNT manufacturing process. 

Results from these two models are compared with data of the earlier cost model [40]. For the NLP 

model, the production cost range is from 459.94 to 552.08 $/g when the production volume is from 

8,003 to 20,000 g/yr, and Isaacs et al. [36] reported a range of production costs from 440 to 510 $/g for 

the same production volume and a HiPco manufacturing process. It is seen that results from the NLP 

and previous cost analysis are close to the literature data (with a maximum 8% difference). 

For the CCNLP model, Table 6 gives a production cost range from 440.60 to 552.08 $/g when 

production volume is from 5,483 to 20,000 g/yr, and previous cost model gives a range from 440.60 to 

552.08 $/g under the same conditions. It is seen that the CCNLP model and Isaacs et al. [36] SWNT 

production cost model also share the same range and trend under the same conditions (with a 

maximum 8% difference).  
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5.2. Comparison of the NLP and CCNLP Models 

NLP is an easier-to-use optimization method than CCNLP when all parameters have deterministic 

values, where the results are expressed by point values. As an extension of NLP method, CCNLP is 

not only an optimization approach, but also an uncertainty estimation method to handle random values, 

whose results are expressed as ranges. Results from the nonlinear programming (NLP) SWNT model 

and chance-constrained nonlinear programming (CCNLP) SWNT model indicate that they can provide 

alternative risk-benefit management schemes in the engineered nanoparticle production process. For 

instance, in the NLP model, a desire to acquire the highest economic benefit will run the risk of 

violating occupational health and safety standards, when the control level is medium (the NLP model 

predicts if profits are $6.53 M/yr, then SWNT emission will be 1.14 higher than the suggested safety 

levels). Willingness to compromise and accept a 27% lower but sill reasonably high economic benefit 

(in this case $4.76 M/yr of profits at the higher level of occupational health and safety control with the 

lowest worker SWNT exposure, which is 3.90 μg/m
3
) will guarantee satisfactory air quality 

requirements, and fewer employee health issues.  

The CCNLP model predicts that if profits reach maximum value, which is $5.35 M/yr, with the 

medium level of EHS control with 0.90 confidence level, the SWNT pollutant emission could be 1.8 

higher than the recommended occupational exposure limit. To reduce SWNT pollutant level to the 

minimum (the high control level with 0.99 confidence level), the model suggests that profits must be 

reduced by 11% (low to $4.76 M/yr). Since workers’ MNMs-related diseases would result in large 

class-action lawsuits cost hundreds of millions in the future caused by chronic overdosed exposure to 

MNMs, the model predict that it is economically better to comply with the recommended EHS 

guidelines rather than violate it [45].  

When decision makers chose different levels of MNM emissions, the trade-off between profits and 

violation risks can be analyzed by the NLP and CCNLP model. And, results from both models 

demonstrate that voluntary implementation of the high level of EHS protection can lead to reduce 

MNMs exposure risks with insignificant decrease in profits. 

The advantages of the chance-constrained nonlinear programming (CCNLP) optimization are:  

(1) it can be used to simulate the relationship between MNM production rate and worker occupational 

exposure level in a manufacturing settings based on limited information; (2) it can be used as a MNM 

quantitative exposure estimation model to predict the range of exposure concentrations possible in the 

workplace under a given set of conditions; (3) it is a good tool for decision makers to help analyze 

trade-offs between manufacturing revenue and the risk of violating environmental health and safety 

(EHS) standards. For example, as discussed above, if short term (about 20 years) maximum profit is 

prioritized, the medium level of EHS control with 0.90 confidence level may be the best choice, but if 

worker’s health is prioritized, managers may choose the high control level with 0.99 confidence level.  

NLP and CCNLP model results also indicate that a higher level EHS control and higher stringent 

enforcement lead to a lower probability of EHS constraint violation and a lower manufacturing 

profitability and vice versa, and implementation of the highest level of EHS standards and most 

stringent enforcement with lower economic profits would be the optimal solution in the long run, by 

examining the relationships between economic benefits and security (the occupational exposure limits-

violation risk). 
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5.3. Uncertainty and Sensitivity 

This study has provided a modeling tool to optimize the MNMs manufacturing process with main 

the sources of uncertaintities being quantified, thus to minimize environmental concerns associated 

with nanotechnology industry. In a real world application, OEL selection and other sources of 

uncertainties should be scrutinized. For example, in this study as the resulted exposure concentration 

of nano-sized Fe (and Fe(CO)5) is at a very low level compared to OELs(Fe) [39], also significantly 

lower than other nano-sized species, as shown in Table 5, sensitivity analysis of model runs has proved 

that variation of OELs(Fe) does not change the modeling results. Also, it is unlikely that the MNMs will 

be homogeneously diluted in the manufacturing room, fate and transport of MNM in the environment 

including its agglomeration effects can be studied [46].  

6. Conclusions 

In this research, a chance-constrained nonlinear programming (CCNLP) approach is developed for 

modeling and planning of nanomaterial manufacturing under an acceptable workplace exposure risk 

scenario. In the CCNLP, methods of chance constrained programming and nonlinear programming are 

combined within an optimization framework to effectively reflect uncertainties that present in different 

formats. In particular, the developed CCNLP model allows dynamic trade-off analyses of objectives 

from different stakeholders. 

NLP and the CCNLP model results indicate that a higher level of EHS control and more stringent 

enforcement lead to a lower probability of EHS constraint violations and a lower manufacturing production 

and vice versa, and implementation of the highest level of EHS standards and most stringent enforcement 

with lower economic profits would be the optimal solution in the long run, considering the 

relationships between economic and exposure risk control priorities. The advantages of the proposed 

chance-constrained nonlinear programming (CCNLP) model are: (1) it can be used to quantify the dynamic 

relationship between MNM production rate and worker occupational exposure level in manufacturing 

settings with practically limited information; (2) it could serve as an MNM exposure estimation model to 

predict the range of exposure concentrations possible in the workplace under given manufacturing 

conditions; (3) it is an effective tool for decision makers to help analyze trade-offs between manufacturing 

revenue and the risk of violating environmental health and safety (EHS) standards. For example, as 

aforementioned, if short term (about 20 years) maximum profit is prioritized, the medium level of EHS 

control with 0.90 confidence level may be a good decision point, but if the workplace exposure risk is of 

high concern, we may choose the high risk control level with 0.99 confidence level. As a new extension of 

mathematical programming methods for dealing with system uncertainties, the developed CCNLP 

approach could be used by decision makers based on the projected applicable conditions and the 

interrelationships between system uncertainties, risk probabilities, and economic objectives.  
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