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Abstract: Discharges of Combined Sewer Overflows (CSOs) into periurban rivers present 

risks for the concerned aquatic ecosystems. In this work, a specific ecotoxicological risk 

assessment methodology has been developed as management tool to municipalities 

equipped with CSOs. This methodology comprises a detailed description of the spatio-

temporal system involved, the choice of ecological targets to be preserved, and carrying 

out bioassays adapted to each compartment of the river receiving CSOs. Once formulated, 

this methodology was applied to a river flowing through the outskirts of the city of Lyon in 

France. The results obtained for the scenario studied showed a moderate risk for organisms 

of the water column and a major risk for organisms of the benthic and hyporheic zones of 

the river. The methodology enabled identifying the critical points of the spatio-temporal 

systems studied, and then making proposals for improving the management of CSOs. 

Keywords: Combined Sewer Overflows; ecotoxicological risk assessment; environmental 

management; river; bioassay 
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1. Introduction 

The general trend of urban sprawl generates increasing flows of pollutants discharged into the 

aquatic environment via urban sewage systems, which include individual wastewaters and rainwater 

management systems [1–4]. The sources of the pollutants discharged by the latter are many: 

wastewater pollutants, atmospheric pollutants, leached pollutants and particles washed away after 

accumulation on urban surfaces during dry periods, the erosion of urban materials, the return to 

suspension of sediments accumulated in sewer networks [5–7]. This mixture of urban waters 

discharged into aquatic environments during wet periods, called Combined Sewer Overflow (CSOs), 

has been the subject of a large number of studies in recent years [8–11]. The input of pollutants linked 

to these effluents in the natural environment has numerous consequences, such as increased turbidity 

due to suspended matter, deoxygenation of the environment due to the input of degradable organic 

matter and nitrous materials, and toxic effects on aquatic organisms via the input of chemical 

substances [9,12–15]. 

Up to now, no structured methodology for the predictive assessment of ecotoxicological risks 

related to these specific discharges has been proposed. The deployment of such a methodology is 

nonetheless vital when designing new rainwater drainage networks, in order to set up adapted 

management systems if a risk exists [16]. After recalling the fundamentals of ecological risk 

assessment at international level, this article focuses on the formulation of a risk assessment 

methodology specific to CSOs, and on its application to a discharge of CSOs located in the periphery 

of the city of Lyon in France. Finally, improvements to the methodology are proposed for optimising 

the assessment of risks incurred by host aquatic environments. 

2. Methodological Approach for the Ecological Risk Assessment 

The first Ecological Risk Assessment (ERA) methodologies emerged at the beginning of the 1990s 

with dawning awareness of the risks liable to impact ecosystems when they are exposed to substances 

of anthropic origin. In 1992, the United States EPA proposed a framework for the ecological risk 

assessment of contaminated industrial sites [17]. Following a certain number of works, especially 

those of Suter [18], this guide was improved to become “The Guidelines for Ecological Risk 

Assessment” [19] which has now become the reference regarding ERA [16,20]. Since then, this guide 

has been revised by many countries and adapted for the management of their polluted sites [21–23]. 

In addition, methodologies have been formulated to evaluate ecological risks linked to other 

problems. Mention can be made of the methodology drawn up by the European Union to evaluate risks 

relating to chemical substances placed on the market [22,24], and French works on the assessment of 

ecotoxicological risks linked to dumping continental dredged sediments [25], on the assessment of the 

ecocompatibility of using wastes [26,27], and on the assessment of ecotoxicological risks linked to 

hospital effluents [28,29]. 

Most ERA methods formulated at international level are implemented with four main phases:  

(1) the formulation of the problem, (2) the characterisation of exposures, (3) the characterisation of 

effects, and lastly, and (4) the characterisation of the risk itself. 
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3. Formulation of the Risk Assessment Methodology Dedicated to CSOs 

3.1. Formulation of the Problem 

The problem formulation phase comprises notably the description of the studied scenario, the 

definition of priority objectives, and the formulation of the conceptual model [16,19,20]. 

3.1.1. Description of the Scenario (Figure 1) 

The aim of describing the scenario is to provide a detailed account of the different elements making 

up the spatio-temporal systems studied. They are related to three major components of the scenario:  

(i) the source of pollution concerned, (ii) the target ecosystems to be protected, and (iii) the level of 

exposure of the target ecosystems.  

Figure 1. Representation of the scenario studied. 

 

In this case the sources of pollution correspond to CSOs discharged by a storm overflow for which 

it is necessary to determine the level of concentration in pollutants at the time of the storm. The target 

organisms to be protected are those of the river receiving the effluent. Three types of organisms can be 

distinguished in the river, according to the type of substrate they occupy: 

 pelagic organisms living in the water column, 

 benthic organisms living in the sediments of the river, 

 hyporheic organisms living in the sediments situated under the river.  

For the organisms of the water column, the trophic levels and potential targets to be considered are 

the primary producers (including single-cell and multi-cellular green algae), primary consumers 

(pelagic micro and macro-invertebrates, especially micro-crustaceans), and secondary consumers, 

including fish (if present in the river). 
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For benthic and hyporheic sediments, the main organisms concerned are decomposers (bacteria, 

fungi, micro and macro-invertebrates that feed on animal and plant debris), primary consumers 

(pelagic micro and macro-invertebrates). 

The characterisation of exposure of the target organisms requires the evaluation of flows of CSOs 

and the river respectively to calculate the percentage of effluent in the river, and thus calculate the 

Predicted Environmental Concentration (PEC). It also requires establishing the range of dilution of the 

effluent to which the organisms will be exposed in the laboratory during the “effect evaluation” phase. 

It should be noted that each of these two flows varies considerably through the season and during rain 

events. In view to conserving the organisms of the river, we seek to assess the ecological risk for the 

most “critical” period, i.e., that corresponding to CSOs discharged during the first few minutes of a 

storm, during a period when the river is in low flow regime. 

3.1.2. Priority Objectives 

In the framework of this study, the priority objectives of the assessment were formulated in the 

following way: 

 “the discharge of CSOs in the river must not disturb the pelagic organisms living in the water 

column given their ecological and societal importance (conservation of biodiversity, 

participation in the self-cleaning of the river, etc.)” [11,30–32], 

 “nor must the discharge of CSOs in the river disturb benthic and hyporheic organisms living in 

the river sediment and its subflow, given their ecological importance” [10,33]. 

Figure 2. Conceptual model of the scenario studied. 
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3.1.3. Formulation of the Conceptual Model  

Figure 2 summarizes the different elements of the conceptual model, such as they result from the 

previous formulations. The organisms of the water column are represented by bacteria (Vibrio fisheri), 

single-celled algae (Pseudo-kirchneriella subcapitata), protozoa (Brachionus calyciflorus) and pelagic 

micro-crustaceans (Daphnia magna and Ceriodaphnia dubia). If fish are present in the river, a 

representative of these (Brachydanio rerio) is added to this battery (an option not represented in Figure 2). 

The benthic and hyporheic organisms are represented by sedimentary bacteria and micro-

crustaceans (Vibrio fisheri and Heterocypris incongruens). Fewer bioassays are performed on the 

sediments than on the organisms of the water column in this initial version of the methodology. The 

two sedimentary organisms tested nonetheless have major advantages in favour of their selection in the 

methodology, that is to say they have shown their sensitivity to CSOs in the framework of previous 

studies, and they consume a little quantity of sample. This is a very important point from the practical 

viewpoint since the particles to be tested are produced by filtration of CSOs in the laboratory. 

In this conceptual model, the parameters selected only concern a few organisms, and the 

representation of the resulting ecosystem is very simplified. It nonetheless corresponds to a good 

compromise between cost and the representativeness of the bioassays. 

3.2. Materials and Methods  

3.2.1. Exposure Characterisation 

General Approach 

Exposure characterisation aims at determining the spatial-temporal contact between pollutants and 

target populations [19]. It includes the analysis of sources of pollutants and the distribution of 

pollutants in the environment. This analysis can be performed by using theoretical models of pollutant 

transfer and/or on the basis of experimental results. This phase concerns in the determination of one or 

more values characterising of exposure. In the case of a “substance-based” approach, the term 

Predicted Environmental Concentration (PEC) is used, whereas in a “matrix” approach, the notion of 

percentage of polluted source matrix in the environment is employed [16]. In both cases, the parameter 

concerned is the concentration that can be expected in the environment following different inputs. 

Dilution of the Effluent in the River 

In the framework of applying the methodology to a specific site in the future, the respective flows 

of the effluent and river during the “critical” period will directly depend on the configuration of the 

site in question. In the framework of the present task of formulating the methodology, these flows have 

been fixed by using existing data for a discharge site in the region of Lyon in France [34]. 

Sampling, Transport and Conservation of Percolate 

The samples were taken manually from the discharge site in the region of Lyon mentioned above. 

The effluent was sampled during the first hour of heavy rain (about 80 L), then homogenised and 
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divided into 2 L flasks for the different analyses and tests. All the measurements and experiments were 

performed as rapidly as possible following sampling. In the meantime the samples were kept in a cold 

room at 4 °C. 

Physicochemical Analyses 

The physicochemical analyses of the effluent were performed according to the protocols featuring 

in Table 1. 

Table 1. Standards of the physicochemical analyses performed. 

Parameters Standards 

pH ISO 10523:2008 

Conductivity EN 27888 

COD NF EN ISO 10 304-1 

Ammonium (NH4
+) NF EN ISO 11732 

Phosphates (PO4
3−) NF EN 1189 

Sulphates (SO4
2−) ISO 22743:2006 

Chlorines (Cl−) NF EN ISO 10 304-1 

Heavy metals (Cd, Cr, Cu, Ni, Pb, Zn) NF EN ISO 11885 

PAH NF EN ISO 17993 

3.2.2. Effect Characterisation 

General Approach 

This phase entails defining to what extent the organisms of the target ecosystem are significantly 

sensitive to the pollutants to which they are exposed [16]. This step is mainly based on biological 

approaches that include batteries of bioassays. A large number of batteries of bioassays have been 

proposed in the literature for different fields of study and matrixes. Mention can be made of those 

relating to: (1) substances [35–37]; (2) effluents [38–41]; (3) sediments [42]; (4) wastes [43–46]; and 

(5) soils, sludges and composts [47,48]. It relies on the acquisition of different values of 

ecotoxicological effects (NOEC, EC20, EC50, etc.) making it possible to calculate, after applying an 

extrapolation factor, and the value of absence of significant effect on the whole of the target 

ecosystem. This value is commonly known as the Predicted No Effect Concentration (PNEC).  

Matrixs Studied and Bioassays Performed 

The effects on the organisms of the water column were characterised with CSOs filtered at 1.2 m. 

The effects on the benthic and hyporheic organisms were characterised with the particle fraction of 

CSOs, the fraction retained when filtering the CSOs at 1.2 m. The protocols and parameters 

measured in each of the bioassays are given in Table 2.  
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Table 2. Standards and parameters of the bioassays performed. 

Organism Standard/Protocol 
Effect criterion  

(time of exposure) 

Daphnia magna (Dm) 
NF EN ISO 6341 

(T 90-301) 

Mobility 

(24 h and 48 h) 

Vibrio fischeri (Vf) 

ISO 11348-3 
Luminescence 

(30 mn) 

Microtox Basic Solid 

Phase Test  

Luminescence 

(20 mn) 

Pseudokirchneriella 

subcapitata (Ps) 
NF T 90-375 

Population growth 

(72 h) 

Brachionus calyciflorus (Bc) Protocol RoToxkit F 
Reproduction 

(48 h) 

Ceriodaphnia dubia (Cdu) NF T 90-376 
Reproduction 

(7 j) 

Daphnia magna (Dm) ISO/FDIS 10706 
Reproduction 

(21 j) 

Heterocypris incongruens (Hi) 
Protocol 

OstracodToxkit F 

Organism growth 

(6 j) 

Note: Grey background boxes refer to solid phase tests. 

3.2.3. Risk Characterisation 

There is a large range of possible methods, of variable complexity, to carry out the stage of risk 

characterisation . The choice will depend on the operational constraints and the available data. Rivière 

notes “the ecological risk can be expressed in various manners: qualitative (absence or not of risk), 

semi-quantitative (weak, average and high risk), in probabilistic terms (the risk is x%)”. The method 

known as “the quotient” is the most widespread method for the semi-quantitative characterization of 

risks. This method consists in calculating the ratio (or quotient) which is expressed as a “Predicted 

Environmental Concentration” (PEC) divided by a “Predicted No Effect Concentration” (PNEC). 

When the quotient value “Q” is greater than 1, the risk is considered as significant, and becomes more 

extreme as the quotient increases. Conversely, the more the quotient falls below 1, the more the risk is 

regarded as low. This method was chosen for this methodology. The PNEC is estimated using the 

results of bioassays performed on the CSOs. To adjust the value of the extrapolation factor as a 

function of the nature and number of available test results, we refer to the recommendations of the 

Technical Guidance Document (TGD) drawn up by the European Chemicals Bureau which is 

responsible for classifying chemical substances [24]. 

4. Results 

The approach described above was applied to CSOs of the discharge site in the Lyon region 

mentioned previously. 
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4.1. Exposure Characterisation  

4.1.1. Proportion of CSOs in the River 

At the critical moment of the scenario, during the overflow of the first discharges of CSOs into the 

river, the flow of the effluent was evaluated at 1.0 L/s and the flow of the river was evaluated at 16 L/s 

for the studied site. These values lead the presence of 5.9% effluent in the river at the critical moment 

of the scenario.  

4.1.2. Chemical Analyses  

The results of physicochemical analyses of the CSOs filtered at 1.2 m are given in Table 3. 

Table 3. Physicochemical analyses of CSOs. 

Parameters Units Concentration * 

pH - 8.8 

Conductivity µS/cm 967 

DCO mg/L 54 

NH4
+ mg/L 17.3 

PO4
3− mg/L 8.9 

SO4
2− mg/L 27 

Cl− mg/L 95 

Cd mg/L <0.0001 

Cr mg/L 0.0018 

Cu mg/L 0.0037 

Ni mg/L 0.0011 

Pb mg/L 0.0004 

Zn mg/L 0.0100 

Total hydrocarbons  mg/l <0.1 

Naphthalene µg/L <0.06 

Acenaphthylene µg/L <0.02 

Acenaphthene µg/L <0.02 

Fluorine µg/L <0.02 

Phenanthrene µg/L 0.03 

Anthracene µg/L <0.02 

Benzo(a)anthracene µg/L <0.02 

Dibenzo(ah)anthracene µg/L <0.02 

Fluoranthene µg/L <0.02 

Benzo(b)fluoranthene µg/L <0.02 

Benzo(k)fluoranthene µg/L <0.02 

Pyrene µg/L <0.02 

Benzo(a)pyrene µg/L <0.02 

Indeno(123-cd)pyrene µg/L <0.02 

Chrysene µg/L <0.02 

Benzo(ghi)perylene µg/L <0.02 

* Single measurement 
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The pH of the effluent was slightly alkaline (8.8) and its conductivity was high, demonstrating the 

presence of a strong ionic charge. Also of note in the effluent was a non-negligible concentration of 

NH4
+ (17.3 mg/L) and non-negligible concentrations of heavy metals (particularly copper and zinc).  

In contrast, the HAP concentrations are undetectable, except for the phenanthrene (0.03 µg/L) 

which nevertheless remains low. Globally, these results show pollutant concentrations which are in the 

range of what is generally observed in the CSOs. 

The results of the physicochemical analyses practiced on the particle fraction of the CSOs are given 

in Table 4. 

Table 4. Physicochemical analyses CSO particles. 

Parameters Units Concentration * 

Heavy metals   

Cd mg/kg 0.7 

Cr mg/kg 24 

Cu mg/kg 420 

Ni mg/kg 34 

Pb mg/kg 92 

Zn mg/kg 1,190 

Loss on ignition (550 °C) g/kg 321 

Total hydrocarbons mg/kg  2,600 

PAH   

Naphthalene µg/kg <50 

Acenaphthylene µg/kg <50 

Acenaphthene µg/kg <50 

Fluorine µg/kg 58.8 

Phénanthrène µg/kg 382.3 

Anthracene µg/kg 117.6 

Benzo(a)anthracene µg/kg <50 

Dibenzo(ah)anthracene µg/kg <50 

Fluoranthene µg/kg 235.3 

Benzo(b)fluoranthene µg/kg <50 

Benzo(k)fluoranthene µg/kg <50 

Pyrene µg/kg 205.9 

Benzo(a)pyrene µg/kg <50 

Indeno(123-cd)pyrene µg/kg <50 

Chrysene µg/kg 88.2 

Benzo(ghi)perylene µg/kg <50 

* Single measurement 

The analyses show an important rate of organic matter in the particles (loss on ignition close to 

32%), a high concentration in hydrocarbons, and a high concentration in PAH (especially for 

phenanthrene, anthracene, fluoranthene and pyrene much higher concentrations of heavy metals than 

in the filtered water) were also observed. 
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4.2. Effect Characterisation  

4.2.1. Bioassays on the Organisms of the Water Column 

The results of the bioassays performed with CSOs on the organisms of the water column are 

presented in Table 5. The Efficient Concentration for 20% of the organisms (EC20) is always higher 

than 80 % of CSOs, which indicates a very low ecotoxicity of theses, for all the tested organisms. 

Table 5. Results of bioassays on the organisms of the water column. 

Organisms Measured parameters Results (% of CSOs) 

Vibrio Fischeri EC 20 (Luminescence) >80 

Daphnia magna EC 20 (Mobility) >80 

Pseudokirchneriella subcapitata (Ps) EC 20 (Growth) >80 

Daphnia magna EC 20 Reproduction >80 

Brachionus calyciflorus EC 20 Reproduction >80 

Ceriodaphnia dubia EC 20 Reproduction 19.6 

Brachydanio rerio Test not performed due to the lack of fish in the studied little river 

4.2.2. Bioassays on CSO Particles  

The results of the bioassays performed on CSO particles are given in Table 6. The result of the first 

test (Vibrio Fischeri ) indicates a strong ecotoxicity of the particles. Indeed, it is necessary to dilute 

fifty times the particles in order to enable the survival of the organisms. 

The second test (Heterocypris incongruens) has been made only with undiluted particles. The 

ecotoxicity observed confirms the ecotoxicity of the solid phase of the CSOs. 

Table 6. Results of bioassays on sedimentary organisms. 

Organisms Measured parameters Results 

Vibrio fischeri (on solid phase) EC 20 (Luminescence) 0.2% of particles  

Heterocypris incongruens Mortality of organisms with 

undiluted particles  

100% mortality  

with undiluted particles 

4.2.3. Risk Characterisation  

The two objectives we chose in the current state of the approach are examined successively: 

 O1: “the discharge of CSOs in the river must never disturb the organisms of the water column” 

Risk can be characterised with the quotient method, i.e., by comparing the PNEC (in % effluent) 

with the PEC, in this case equal to the proportion of effluent in the river downstream of the discharge 

(5.9%). To obtain the PNEC, an extrapolation factor is applied to it using experimental laboratory data 

whose value depends on the data considered [20,49]. In the case of our results, which focus on four 

chronic ecotoxicity assays and two acute ecotoxicity assays. The factor recommended by the Technical 

Guidance Document of the European Chemicals Bureau responsible for classifying chemical 

substances is a maximum of 10 with three chronic bioassays. So, we have chosen an extrapolation 
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factor of 5. By applying this factor, we obtain a PNEC of 3.92% (19.6%/5). This leads to a risk 

quotient of 1.50 (5.9%/3.92%) which indicates a slight risk for the organisms of the water column. 

 O2: “the discharge of CSOs in the river must never disturb the benthic and hyporheic 

organisms” 

Here again risk can also be characterised by using the quotient method. To obtain the PNEC, we 

apply a higher extrapolation factor than the previous one; since the experiments concerned are carried 

out with a battery of fewer bioassays than before [20,49]. Under these conditions; and by taking into 

account the recommendations of the European Chemicals Bureau responsible for classifying chemical 

substances [24]; an extrapolation factor of 50 is proposed. By applying this factor to the results 

obtained for the particle fraction; we obtain a PNEC of 0.004% (0.2%/50). 

Previous works [34] have shown that particles of CSOs can accumulate heavily at certain points of 

the river downstream of the overspill, notably in hyporheic sediments at downwelling zones. If, by 

way of example, we assume that this accumulation leads to the presence of 0.01 to 10% CSO particles 

in the sediment, depending on the sector of the river, this leads to a risk quotient between 2.5 

(0.01%/0.004%) and 2,500 (10%/0.004%). These quotients indicate that CSOs present a very high risk 

for the organisms living in the sediment zones rich in CSO particles. 

In brief, with the methodology formulated, the effluent presents a slight risk for the organisms of 

the water column downstream of the overflow, and a very high one for the sedimentary organisms, 

especially at downwelling zones in the hyporheic zone. 

5. Discussion 

5.1. The Results Obtained  

The ecological risk estimated for the organisms of benthic and hyporheic sediments is far greater 

than that calculated for the organisms of the water column. On the one hand, this can be explained by 

the high concentration in particles estimated at certain points of these sedimentary compartments and, 

on the other hand, by the very high concentration of pollutants in these particles whose value far 

exceeds PNEC values for several parameters (Table 7) [50].  

These conclusions, which emphasise the risk for sedimentary organisms, particularly in the 

downwelling zones of the river, are consistent with the observations made by other authors for 

analogous rivers [34,51–53]. 

Different management recommendations can be made on the basis of these assessments. Regarding 

the organisms of the water column, the calculated risk first depends on the exposure which itself 

depends on the concentration of pollutants and the ratio of the CSO and river flow rates. Since it is 

difficult to control the flow rate of the river, especially at low flow, three improvements for managing 

the effluent could be considered: (i) the reduction of pollutant emissions at source, (ii), the provisional 

retention of CSOs in a retention basin and then progressive discharge into the river following the 

“critical” period, and (iii) setting up a CSO treatment system. In our opinion, the most sustainable 

solution would be the optimised combination of these three solutions, with a gradual progression to 

solution 1.  
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Table 7. Comparison of concentrations of pollutants with PNECs. 

Pollutants Concentration in particles 
Sediment PNEC 

(INERIS, 2012) 

Concentration in the 

filtered CSOs  

Aquatic PNEC 

(INERIS, 2012) 

Cu mg/kg 420 0.8 µg/L 3.7 1.6 

Cr mg/kg 24 - µg/L 1.8 4.1 

Pb mg/kg 92 6.8 µg/L 0.4 5 

Zn mg/kg 1,190 26 µg/L 10 8.6 

Phenanthrene µg/kg 382.3 2.3 µg/L 0.03 1.34 

Anthracene µg/kg 117.6 31.2 µg/L <0.02 0.063 

Fluoranthène µg/kg 235.3 2.3 µg/L <0.02 0.1 

Pyrene µg/kg 205.9 23 µg/L <0.02 0.012 

Regarding the particle fraction of the CSOs, and the component most responsible for risks to the 

river, the main, and also inexpensive, improvement for management considered is to install a settling 

pond downstream of the network intended to collect the CSO particles before their discharge into the 

river.  

5.2. The Methodology Formulated 

It is clear that the representation of the aquatic ecosystem as defined in the formulation of the 

conceptual model is greatly simplified, particularly for the assessment of effects on sedimentary 

organisms. To evaluate these effects, some authors have proposed batteries of bioassays that go into 

much greater depth and which are adapted to each situation [54], or working with procedures more 

representative of ecosystems such as microcosms and mesocosms [43,55]. These approaches are 

nonetheless far more costly and are not always “economically acceptable” when implemented in the 

field. Lastly, the real issue is to know whether the battery of bioassays selected permits adequate 

protection of the ecosystems concerned.  

On the contrary, the methodology proposed provides a real improvement in comparison to usual 

practices in the area of risk assessment [16] as account is taken of the impact on sedimentary 

organisms, especially those of the hyporheic zone.  

Besides, given the importance of fixed epibenthic organisms (periphyton) in the general ecological 

functioning of the river, further work is necessary to study the pertinence of including them in the 

assessment of impacts.  

Since CSOs are effluents loaded with heavy metals, the tool formulated should be adapted to take 

better account of bioaccumulation in the river. This could be done by using the periphyton as a 

bioaccumulation measurement tool, something that is often done for the in situ monitoring of  

rivers [56–59]. 

CSOs can also contain pollutants liable to lead to genotoxic effects. Although it is still unclear as to 

the additional risk this type of effect can generate, its potential consequences are such that they cannot 

be neglected, thus they should be considered in risk assessment procedures for ecosystems [60–63]. 

The advantage of studying the integrity of DNA as a biomarker of genotoxicity in the framework of 

risk assessments, especially in the long-term, resides in the persistence of genotoxic response both for 

the organism and its offspring [60,64–66]. 
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The quotient method chosen to calculate and express risks is quick and provides an efficient tool for 

communicating the results. However, it is a relatively succinct means of characterising risks and is 

based on a certain number of simplifications: (i) effects and exposure are both simplified into a value, 

which may hide conceptual biases, for example, the fluctuation of exposure concentration; (ii) indirect 

effects, for example eutrophication, are not easily taken into account. Other risk characterisation 

methods can be used in certain contexts [19,67,68]: (i) qualitative methods that characterise risk into two 

or three categories, for example, high/low/medium, most often on the basis of expert judgement [20]. 

They can be used for comparative approaches (with, for example, two types of contamination),  

(ii) methods incorporating the global pollutant/response to estimate the level of risk linked to a given 

exposure level. These methods are particularly useful for testing several possibilities of risk reduction, 

or when different exposure concentrations (as a function of time and geographical area) and or effect 

concentrations (chronic/acute) exist [69,70]. 

6. Conclusions 

This study showed that it is possible to assess risks for the different compartments of a river 

generated by the discharge of CSOs, using relatively accessible and standardised ecotoxicological 

investigation resources. Other ecological risk assessment approaches exist around the world. The 

purpose of our approach, other than taking into account the characteristics of the host environment, 

and specifying the impact of the effluent on its different compartments, is to define the compartments 

impacted and improve the realism of the assessment, in view to optimising management decisions. In 

this respect it is similar to the “Waste ecocompatibility” assessment approach established in France by 

the Environment and Energy Management Agency to assess the impact on ecosystems of storage 

scenarios and the reutilisation of mineral wastes for construction [27]. 

For all that, the methodology presented can, and must, be improved still further in several directions 

so it can be used operationally by organisations responsible for managing rivers. It is advisable to 

check whether the battery of bioassays selected for the sedimentary organisms should be completed, 

and whether organisms representing fixed epibenthic organisms should be included. When considering 

these points, it should not be forgotten that a limited number of biological responses leads to 

increasing the uncertainty on the assessment of effects, and thus increasing the value of the final risk 

quotient through the necessary augmentation of applicable extrapolation factors. 

Lastly, works aimed at improving the final phase of risk characterisation, which is currently based 

solely on the quotient method, and at ensuring the clarity of the results on the associated uncertainty 

are required to permit optimal use of the tool formulated [16,67,68]. 
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