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I would like to take issue with Rithidech et al., authors of the paper entitled “Lack of genomic 

instability in mice at low doses” [1] who claim to have shown that their results on the measurement of 

late occurring chromosome aberrations after irradiation of SCID mice with X-rays show that lower 

doses (0.05 Gy) do not induce genomic instability. Their earlier work at higher doses (0.1 and 1.0 Gy) 

on the same strain of mouse indicated that de novo chromosome aberrations were detected at 6 months 

post-irradiation. This was taken, almost certainly correctly, to be an indication of the presence of 

genomic instability: late appearing chromosome damage, as the authors note, seems to be a reliable 

indicator of the process. The lack of de novo chromosome aberrations at 6 months post-irradiation, 

however, cannot be taken as evidence of the absence of genomic instability. In drawing their 

conclusion of a “lack of genomic instability ….” the authors have committed two category errors. 

The chromosome aberrations the authors observed are: (a) a material manifestation and (b) a 

modification of the genotype, whereas, the genomic instability they inferred is (a) a process and (b) a 

modification of the phenotype. The first error is that by concluding that a lack of late occurring 

chromosomal aberrations indicates a lack of genomic instability they have conflated a material object 

(chromosomal aberrations) with a process (genomic instability): the former may well be an indicator of 

the latter but its absence cannot be assumed to be evidence of the absence of the latter. To take an 

analogous example let us consider another process, apple ripening, for which in many varieties a red 

skin is an indicator of the process occurring, but the definitive evidence is increasing concentration of 

sugars in the fruit. However, many varieties of apple, if shielded from light, ripen (increases in sugar 

content) without acquiring a red skin. Thus, a red skin is an indicator of ripening but the absence of red 

skin is not evidence of the absence of ripening. 
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The trap that authors have fallen into in the second category error is to assume that the modification 

to the genotype is the cause of the modification to the phenotype. This is, in a sense, understandable 

because it is part of the prevailing biological dogma, but genomic instability is a problem precisely 

because it does not comply with that dogma [2–4]. Indeed, the phenomenon itself is evidence that the 

upward (genotype to phenotype) causation is not applicable. In the experimental work that uncovered 

the phenomenon [5] clones derived from single alpha-irradiated cells contained both cells with a 

normal karyotype and cells with chromosomal aberrations. This can only be interpreted (unless it can 

be assumed that the damage was reversible) as indicating that the first divisions of the irradiated cell 

did not exhibit the aberrations and that they occurred de novo in the later divisions. In other words the 

instability phenotype caused the aberrations by downward causation. Consider another earlier example 

of the phenomenon [6]: f0 male mice injected with 
239

Pu and mated with untreated females produced 

an excess of intrauterine foetal death (IUFD), taken to be due to a dominant lethal (DL) mutation. 

However, surviving f1 males, without further 
239

Pu exposure, and mated with untreated females also 

produced an excess of IUFD. Clearly, a DL mutation cannot, by definition, skip a generation so this 

evidence is best interpreted as genomic instability being induced in the f0 or f1 generations and 

appearing as IUD in the f1 and f2 generations. This is a strong indication that genomic instability is not 

a genetic, but an epigenetic effect [3,4,7]. So, in the paper under discussion [1] the genomically 

unstable phenotype (which originates either in the irradiated cell or its immediate progeny) and not the 

radiation directly, caused the chromosomal modifications to its own genotype the authors observed. 

Downward causation is of course contrary to the prevailing dogma but the case for upward causation is 

deeply flawed in other ways [8,9] and the very phenomenon of genomic instability forces us to 

reassess the ground rules of not just radiobiology, but biology [3,10,11] as well. 

To observe, rather than infer, the absence of genomic instability it would be necessary to show that 

the phenotype has not been changed by the radiation exposure, that is, show that the active proteome is 

unmodified. I suspect that this is not possible with today’s technology so in practical terms lack of 

modification of the transcriptome is the best available option. However, it cannot be assumed that the 

proteome mirrors the transcriptome [12] and so even that it is not a definitive test. However, 

modification of the transcriptome is good evidence of the presence of the genomic instability [13]. 

The authors may argue that at some points in their paper [1] they qualified their conclusion of a lack 

of genomic instability with the words “as determined by the absence of increases in the frequencies of 

late-occurring CAs in BM cells collected at 6 mo after exposure of ……”. However, they fail to 

explain the basis for this qualification so the reader is not in a position to judge whether their flawed 

inference is valid or not. 

The public health dimension of this paper concerns the question of whether there is a dose threshold 

for the induction of cancer or not. In fact, the epidemiological evidence from radiation exposed 

populations leaves little doubt that for cancer the dose response relationship is linear down to about 

0.01 Gy and it seems reasonable to assume that LNT applies in practice as well as theoretically for 

radiation protection purposes. 

With these considerations in mind it is my contention that the paper by Rithidech et al. [1] is 

seriously flawed and should be withdrawn. 
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