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Abstract: Public health authorities are required to prepare for future threats and need 

predictions of the likely impact of climate change on public health risks. They may get 

overwhelmed by the volume of heterogeneous information in scientific articles and risk 

relying purely on the public opinion articles which focus mainly on global warming trends, 

and leave out many other relevant factors. In the current paper, we discuss various 

scientific approaches investigating climate change and its possible impact on public health 

and discuss their different roles and functions in unraveling the complexity of the subject. 

It is not our objective to review the available literature or to make predictions for certain 

diseases or countries, but rather to evaluate the applicability of scientific research articles 

on climate change to evidence-based public health decisions. In the context of mosquito 

borne diseases, we identify common pitfalls to watch out for when assessing scientific 

research on the impact of climate change on human health. We aim to provide guidance 

through the plethora of scientific papers and views on the impact of climate change on 
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human health to those new to the subject, as well as to remind public health experts of its 

multifactorial and multidisciplinary character.  

Keywords: climate change; public health; scientific evidence; pitfalls; mosquito  

borne diseases 

 

1. Introduction 

The females of most mosquitoes need to feed on the blood of living vertebrates including  

humans, to successfully reproduce, and in the process may transmit pathogens (viruses, bacteria or 

parasites) and so serve as vectors of these diseases. Mosquito-borne diseases are especially important 

vector-borne diseases with malaria, dengue and yellow fever alone affecting millions of people  

every year (Table 1). 

Table 1. Public health related characteristics of important mosquito borne diseases.  

Disease 
Annual  

Global Cases 1 
Pathogen 

Vector 

Genus 

Infectious 

Period  
Prophylaxis Vaccine 

Curative 

Medicine

Malaria 451 million 2 Plasmodium Anopheles Up to year 7 √ - √ 

Dengue 96 million 3 Flavivirus Aedes 3–5 days - - - 

Yellow fever 200,000 4 Flavivirus Aedes 3–5 days - √ - 

Japanese 

Encephalitis  
67,900 5 Flavivirus Culex dead end host - √ - 

West Nile fever 20, 000 6 Flavivirus Culex dead end host - - 9 - 

Chikungunya Epidemic Alphavirus Aedes 6–7 days - - - 

Rift Valley fever Epidemic Phlebovirus Culex/Aedes short 8 - - - 

Note: 1 Case estimates, exact numbers not available; 2 [1,2]; 3 [3] Clinical cases only, ¾ of dengue infections are apparent;  
4 Who Factsheet N° 100 May 2013; 5 [4]; 6 [5]; 7 Depending on Plasmodium species but when untreated up to a year, exception of 

Plasmodium vivax with prolonged incubation period up to 5 years; 8 [6] Humans theoretical reservoir (low epidemiological significance); 

9 Veterinary vaccines available for horses. 

Worldwide, the most important mosquito vector species are members of three genera, Aedes, Culex 

and Anopheles, each having its own set of climatic and environmental drivers and constraints. Not only 

can a species occur within its natural geographical range (past or present) and dispersal potential 

(indigenous species), but it can also occur outside this range through various introduction routes 

(exotic species). An exotic (or invasive) species may subsequently establish and spread causing 

economic or environmental impact or harm to human health [7]. The yellow fever mosquito, Aedes 

aegypti, for example is indigenous to Africa, but is an exotic species in The Netherlands where it has 

been introduced, but cannot establish due to prevailing climatic conditions [8], and an invasive mosquito 

in Madeira where it has been established since 2002, and was a vector for a dengue epidemic in 2012 [9].  

An established vector population alone does not pose an immediate risk without another critical 

element: the presence of the pathogen itself. Depending on the pathogen, an infection can cause 

disease in human, livestock and wildlife. Some mosquito borne pathogens are maintained in a  
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human-vector-human cycle, whilst the lifecycles of others also involve (wild) reservoir host animals. 

Here, humans frequently act as dead end hosts from which pathogens are not transmitted to other 

susceptible hosts [10] (Figure 1).  

Figure 1. Schematic representation of the transmission cycles of (a) dengue virus,  

(b) Rift valley fever virus, (c) West Nile fever virus.  

(a) 

 

(b) 

 

(c) 

Whether actual transmission of mosquito borne pathogens can occur in a specific time and place 

depends on the vector capacity, a parameter combining the level of intrinsic (genetic and physiological) 

ability of the mosquito species present to transmit the pathogen (vector competence) with the other 

factors affecting transmission such as mosquito population and host reservoir density, host preferences, 

and biting rates [11]. As long ago as 1966, Pavloskiy proposed the concept of focality or nidality of 

diseases, in which pathogens are associated with specific landscape. The dimensions of possible 

transmission thus largely depend on the vector bionomics and pathogen natural history [12],  

including its vulnerable primary hosts, either humans or other vertebrates.  

Climate changes may affect both these dimensions, and therefore the spatio-temporal distribution of 

possible transmission. Using scientific methods, knowledge of these complex systems needs to be 

accumulated and organized in the form of testable explanations and predictions to support public 

health policymakers in making decisions on the way forward. However, the nature of scientific 

information, which is often extensive, complex, uncertain and ambiguous, also complicates the 
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development of evidence-based health policies [13,14] by decision makers who may not be fully 

trained in the disciplines needed to evaluate the evidence. 

In the following sections, we discuss the advantages, disadvantages, pitfalls and lessons,  

of the different scientific approaches for the development of public health strategies to prepare for 

climate change. We examine four topics, namely: global warming versus global change, models versus 

the real world, retrospective versus prospective studies, and generalized versus contextual approaches.  

We identify a number of lessons to be learned and by doing so hope to support public health 

policymakers in making decisions their future strategies. 

2. Pitfalls and Lessons  

2.1. Global Warming versus Global Change 

Mosquito vectors, like all cold-blooded animals, are obviously sensitive to (changes in) temperature 

and, provided the temperature does not exceed a lethal threshold, rising temperatures usually mean 

more rapid development of the mosquito and replication rate of the pathogen in the mosquito or 

extrinsic incubation period. Consequently, the majority of climate change research has focused on the 

assessments of the effect of increasing temperatures on pathogen transmission through the modulation 

of life history traits of the vector [15]. However, this global warming is telling only part of the story of 

climate change. Climate change also entails changes in rainfall and wind patterns and consequently 

relative humidity, rising sea levels and increasing UV radiation [16–18]. Consequently, climate change 

impacts land use and land cover, crop suitability and agricultural patterns and human behavior.  

The spatial and temporal heterogeneity of climate change may generate novel climates and 

environments in many geographic regions [19]. Due to their dependence for reproduction on water 

bodies, mosquitoes (and the diseases they transmit) are particularly sensitive to changes in quantity and 

quality of these aquatic breeding sites due to for example increased precipitation or drought [20]. 

Populations of hosts, competitors and natural enemies of vectors are also affected [18,21]. While the 

outer limits of a species distribution are largely determined by climatic or environmental factors,  

biotic interactions have also been shown to play an important role in shaping populations within those 

extents [22]. Dispersal, via human facilitated invasion, is an additional factor; even if conditions are 

ideal species may not occur, simply because they have not reached the place [23]. 

A number of adaptations to the effects of climate change can be anticipated. The introduction of 

green (vegetation) and blue (water) infrastructure in cities to alleviate urban heat islands [24],  

and construction of water retention and storage facilities to mitigate the impact of changing 

precipitation intensities and frequencies [25] are examples of adaptation on a community level possibly 

likely affecting urban mosquito populations. On a more individual level, people might either spend 

more time outdoors in the country side or in air conditioned locations, thereby affecting their possible 

exposure to mosquito bites and potentially to pathogens [26].  

Undoubtedly, both the incidence and geographical distribution of vector borne diseases are expected 

to change as a general result of direct and indirect climate change [22]. However, global changes in land 

use, trade and travel patterns, leisure time, urbanisation, and standard of living play an important role 

in the distribution of vectors, reservoirs and pathogens, and consequently in the emergence of vector 
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borne diseases [12,27–32]. The vulnerability to outbreaks differs between human populations [33,34]. 

Whether a mosquito borne disease will actually emerge in a suitable particular place at a particular 

time, will also largely depend on the array of interventions that can be applied to interrupt disease 

transmission or reduce disease burden, by personal protection, vaccines or curative medicine (Table 1), 

or vector management. While vaccines or curative medicine, when available, may prevent or restrict the 

disease burden in people, zoonotic (within animal hosts) pathogen transmission is often not stopped.  

Lesson 1: Over-emphasizing the importance of climate in disease emergence is misleading [33]. 

Climate change may affect disease burden directly and indirectly in many ways, but needs to be 

considered alongside a number of other factors, which is a complex process.  

2.2. Models versus Real World  

Predicting the impact of climate change on public health in general and mosquito borne diseases in 

particular is challenging. In part this is due to the uncertainty in predicting the multifactorial local 

effects of global changes in climate [35]. But even when assuming a certain scenario as a fact,  

huge uncertainties about its effect on health remain. To comprehend the complex relationships 

between climate change and mosquito borne diseases they have been broken down into components. 

Data on the vector bionomics and pathogen kinetics are predominantly acquired using basic  

biological observational and experimental research. The latter studies are invaluable for examining the 

validity of hypotheses under controlled conditions. The validity of laboratory data in the outside  

world is questionable as responses to varying conditions or key parameters can be missed. Recent 

studies, however, are increasingly considering the impacts of the changing environment on mosquito 

bionomics [36,37]. 

To understand complex systems, to study the effects of different components, and to make 

predictions about their behaviour, mathematical modelling techniques are used. These models can be 

broadly divided into two categories: mechanistic and statistical. Reiner et al. defined mechanistic 

models as those in which the equations, formulae or computer simulations are based on assumptions 

about the processes or proximate causal mechanisms under consideration [38]. In the course of 

developing a mechanistic model, the various steps in disease transmission are described. For lack of 

other data, laboratory results on, for example, critical thresholds and development rates form the input 

data for process based predictions on distributions of vectors and diseases. A widely used measure of 

the probability of establishment of a vector borne disease is the basic reproduction number,  

also referred to as R0 [31]. The value of R0 depends, among other factors, on parameters such as the 

rate of development of the pathogen, the number of times the vector bites the hosts, the survival rate of 

the vectors and the population abundance and seasonality of both vectors and hosts. Analogous to 

laboratory studies, mechanistic models examine the validity of hypotheses under controlled 

mathematical conditions. These models are developed with specific aims outlined in a certain  

context and with an underlying set of rules and assumptions. Knowledge of the context and limitations 

of the models is essential when interpreting the results. Unfortunately, conclusions are often drawn 

outside the validity range of the assumptions—by the researcher themselves in some cases—but more 

often by the reader. 
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Statistical models are commonly used to identify constraints and drivers, including climate, that are 

currently associated with a vector and/or disease distribution or spread but without identifying the 

underlying process [39]. Roger et al. [22], states “Many (species) distribution modelling approaches 

involve a sort of data mining to match pattern of points in a database to sets of environmental and other 

predictors. It is truism that any pattern can be matched as long as sufficient variables, thresholds and 

break points are allowed in the models”. The fact that underlying processes are not identified hampers 

the design of intervention measures based on the model results. They are, however, the only technique 

available if, as is often the case, sufficient details of transmission dynamics are not available, and they 

do provide estimates of their accuracy. Successful outbreak predictions have been made using this 

approach [40], [41]. Note that such models need to be evaluated very carefully as it is often not clear 

how the model outputs actually relate to real disease risk: as pointed out earlier the presence of a 

vector does not guarantee a disease will occur, nor does the presence of a disease always mean it will  

persist or spread.  

Future threats of vector borne diseases can also be assessed combining both modelling  

approaches [42,43]. Among others, Hartemink [42] demonstrated that the risk of emergence of vector 

borne zoonoses displays high spatial and temporal variation due to interplay of multiple factors,  

using this integrated method. Uncertainty and sensitivity analyses are used to investigate the accuracy 

and robustness of a study when the study includes some form of model-based and/or stochastic 

approach. Another approach is to assume certain rather simple constraints on a species performance, 

without specifying in advance where are the most important variables [22].  

Most of current models belong to the reductive analysis approach, aiming to describe patterns and 

understand how various processes interplay. The output of the model largely depends on the scope 

(minimise the error or maximise the information), assumptions and the choice of the input data [22,44]. 

The fact that different models produce different outputs is obviously challenging for developing 

evidence-based policies. 

Lesson 2: Understanding the conditions and assumptions that underlie both laboratory and modelled 

data are essential when interpreting the outcome; extrapolation to the real world often lies outside the 

validity range of the research. 

2.3. Retrospective versus Prospective Studies 

An important classifier of investigations into the relation between climate change and vector borne 

diseases is whether a study looks back (retrospective) or forward (prospective) in time. In the former, 

explanatory variables from the past are analysed to explain the current situation, events or processes, 

whilst in the latter, these explanatory factors drivers and constraints, (which themselves may be 

projected) are used to predict the disease in the future.  

Retrospective studies have the advantage that factors are examined in relation to an outcome that is 

established at the start of the study, when the process is stabilised or in equilibrium, and always 

statistically bounded [45]. Retrospective researchers, however, have to be alert to potential sources of 

bias, changes in relationships according to the predictor levels (non-linearity), and the presence of 

confounding or proxy variables. Bias is a systematic error that leads to an incorrect estimate of effect 

or association. The non-linearity of the covariates means that the relationship between the outcome and 
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the variable could change according to the level of the variable, so that if we predict the outcome at 

values out of the variable range used for the retrospective study the analysis is statistically invalid or at 

least affected by ignorance (that is a component of uncertainty). A confounding or proxy variable is 

one that, for example, varies in the same way as the real cause of a change in a disease, but is not 

actually the cause. Indeed, climate may be a confounding variable for any increase of mosquito borne 

disease incidence or outbreak that has occurred during recent decades (see Box). Establishing actual 

causality is often overlooked in the popular debate contributing to the general perception that climate 

change affects vector borne disease emergence. Beware that rare events with major impact, such as a 

disease outbreak, are frequently rationalized by hindsight, as if it could have been expected [45].  

Prospective studies make use of the important drivers and constraints, climatic or not, identified in 

retrospective studies and then utilize them to estimate risk of occurrence in the future. In such risk 

assessment, the likelihood that a specified negative event will occur is determined [46]. It indicates the 

presence of preconditions for an outbreak, but it does not tell you whether it actually will occur,  

and may not specify its timing, size, location and spatial spread. The latter is still not well understood 

or appreciated by public health experts, which results in criticism if outbreaks happen in areas of low 

likelihood or nothing happens in areas with high likelihood. Moreover, if a prediction of elevated risk 

triggers effective timely and preventive intervention, the outbreak does not happen and the public 

wonders why the resources were expended to control something that did not occur. On the other hand, 

science may have provided answers to questions not asked by public health experts. While academics 

produce maps with spatial distribution of accurate risk outputs of mathematical modelling, the public 

health experts may want a simple description of the risk: present or absent, or, if there is a risk,  

they need to know the best and worst case scenarios rather than a prediction of the most likely risk 

levels. There is a difference, of course, between predicting an increase in an old or endemic problem 

and the emergence of a new problem. The latter is inherently more uncertain. 

Lesson 3: There is a fundamental difference between knowing the past and predicting the future.  

Lesson 4: High impact rare events occur beyond the realms of normal expectations.  

Lesson 5: Researchers may not appreciate what information the Public Health professionals actually 

need to make appropriate decisions, and better communication between the two groups is badly needed. 

2.4. Generalized versus Contextual Approach 

From the preceding discussions it is clear that making generalized statements beyond “climate 

change is a driver for mosquito borne diseases” is misguided. Even that simple statement only holds 

true when it embraces both agonistic and antagonistic drivers that favour or hinder vector borne 

diseases, respectively. The spatial as well as temporal variation in the occurrence of a certain mosquito 

borne disease is linked to geographic differences in its constraints. Whilst in the tropics, conditions 

might change beyond the tolerance levels of any given mosquito species, this is not expected to occur 

in temperate Europe and it is assumed that rising temperature will consistently speed up mosquito 

vector development and the pathogens in it [18]. Changes in relative humidity in temperate zones may 

have minimal effects on the adult population of species that predominately inhabit wetlands, as humid 

shelters should remain relatively abundant. However, adult mosquitoes, inhabiting urban areas by 

breeding in artificial containers, are likely to be affected negatively by a decreasing relative humidity 
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as a result of the development of urban heat islands [16]. Besides changes in precipitation, rising sea 

levels will affect the availability and suitability of mosquito breeding sites. Saline and brackish water 

bodies in coastal areas will increase [47], probably at the expense of fresh water bodies and their 

aquatic inhabitants. Such changes will, however, create more breeding sites for salinophilic species 

breeding such as the Dutch malaria mosquito An. atroparvus. Rising sea levels could also potentially 

reverse the historical reduction in the habitat of this species that occurred in the 1900s [48]. While only 

examples of the effect of climate change on the vector were given, the same principles hold for hosts, 

pathogens and with that for mosquito borne diseases.  

Already included in the word, climate change refers to variables changing relative to the norm and 

not to absolute values. An outbreak is also, by definition, an anomaly in expected cases per year.  

Because of alleviation of the prevailing constraints, outbreaks are noticed in places where they normally 

do not occur. Finding the causes of mosquito borne disease emergence dominates the research into 

climate change and vector borne diseases, effectively ignoring the fact that on many occasions, diseases 

did not emerge on other occasions when conditions were apparently similar, a pitfall of retrospective 

studies as mentioned earlier. Where and when it happens depends on whether the limiting factor(s) was 

removed by climate, environmental, socio-economic or other change. Cataloging all possible evidence 

of a past or predicted impact on any mosquito borne disease, sometime, somewhere without putting it 

in perspective does not bring public health authorities closer to knowing what to do to be prepared for 

the in the future. Many such reviews nevertheless exist [20,28,49–54]. There is a need for an approach 

that brings us beyond the recognition and appreciation of the complexity of climate change and public 

health, and provides contextual guidance.  

Lesson 6: A contextual approach is needed to understand climate and human health and to develop 

public health strategies.  

3. The Way Forward 

Public health authorities are required to prepare for future threats and need predictions of the likely 

impact of changing climate on public health risks. Usually they focus their preparations on their own 

geographical region. The threat level of a mosquito borne disease for a particular country can be 

categorized into one of five contexts, based on the presence or absence of three important facets 

important for public health: human cases, pathogens and vectors (Table 2) [55]. Mosquito borne diseases 

pose no risk when neither the pathogen nor vector is present (context 5). Here, future establishment of 

the vector after introduction is the main concern and information on potential impact of climate change 

on the disease can be ignored by the national health authority. However, if a disease is endemic in a 

country (context 1), climate change may affect the size of the established vector population or rate of 

transmission from vectors to hosts, and consequentially the incidence of human cases. In countries 

where an established vector population of a vector borne disease is present (context 1–3), the current 

climatic and environmental conditions are obviously suitable for the vector, but whether the population 

size will increase or decrease in response to climate change depends on the species-specific 

requirements. If no established vector population is present (yet) (context 4–5), the current climatic and 

environmental conditions may either be unsuitable or be suitable, but the vector has yet to reach the 
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region. It is important to keep in mind that the context of a particular mosquito borne disease can differ 

between countries; West Nile fever belongs to context 3 in the Netherlands, but to context 1 in Italy. 

Table 2. Current situations of mosquito borne diseases for Western Europe, here delimited 

by Belgium, Netherlands and UK [55,56]. 

Context Locally Acquired 

Human Case 
Pathogen Vector Mosquito Borne Diseases in  

Western Europe 

1a √ (every year) √ √ No examples 
1b √ (not every year) √ √ No examples 
2 - √ √ Heartworm [57], Usutu [58], Ockelbo [59] 
3 - - √ West Nile virus [60], Malaria [61],  

Rift Valley Fever [62] 
4 - √ - Chikungunya; Dengue [63] 
5 - - - Japanese encephalitis * 

Note: * Potentially European mosquitoes are competent to transmit JEV [64], but this has not been validated. 

Factors determining the success of a novel or exotic species in a new location differ between the 

sequential phases, namely the introduction, establishment, and geographic spread. For mosquitoes, 

arrival in a new area can occur through active migration or passive transport mediated by wind,  

or by trade and travel movements. In the last thirty years, global trade and travel has increased 

exponentially, resulting in an increase of the risks of the arrival of novel mosquito species [43],  

for example, by the trade of used tires or in airplanes [44]. Establishment and subsequent geographic 

spread of a species depends on whether the introduced species encounters suitable climatic and 

ecological conditions at the new location. The chances for this to happen, in general, are considered 

rather small [45], except for a few notorious invasive mosquito species such as Ae. aegypti  

and Ae. albopictus [65]. 

While the establishment and spread of a mosquito species after its introduction to a new area are 

transient processes, the effect of the arrival of a novel pathogen in an area with an established vector 

population can be very rapid and substantial, as seen with West Nile virus introduction in USA [46]. 

However, since introductions are often only noticed when causing a significant disease burden,  

no real insight exists on how often pathogens arrive but do not become established or do not cause an 

outbreak of disease. As with vectors, the chances of successful establishment and spread of pathogens 

are also considered to be rather small, considering its dependence on enabling hosts, vectors and 

environmental and climatic conditions. The chances on disease burden can largely differ between 

human populations with different socio-economic statuses [66]. 

For a single country, basic information on vector and host populations present and potentially 

circulating pathogens are required to assess the contexts of mosquito borne diseases. Subsequently, 

based on their context, the best surveillance strategy can be developed for each mosquito borne 

disease, depending on the potential prospectives for action and the costs/benefit analysis. In a time of 

grim governmental budget cuts, focusing on interventions that achieve the largest health gain per euro 

spent ever more necessary. For some mosquito borne diseases, taking action (e.g., preventing the 

establishment of invasive mosquitoes) even when as yet there is no disease, might be more effective 

than waiting until the disease appears [55]. Once a decision to intervene to decrease the disease  
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burden (or group/category of diseases) or to mitigate a threat has been made, surveillance should be 

implemented in order to measure the effectiveness of the intervention [8].  

The described contextual surveillance for vector borne disease can be easily extended with 

veterinary and wildlife health along with public health to be applicable in a One Health approach, 

Surveillance programs providing knowledge on the current distributions of the disease, the pathogen 

and the vector, are vital in the development of appropriate One Health policies. 

4. Conclusions 

Disease emergence in its own right is inherently complex and uncertain, let alone the impact of 

climate change on this. While the recognition of the complexity of climate change and disease 

emergence is important, public health authorities need to focus on developing and maintaining 

contextual surveillance programs. 

Climate change, entailing increasing temperature, changes in patterns of precipitation and other 

meteorological factors, and rises in the number of extreme events, is expected to affect the emergence, 

incidence and geographical distribution of vector borne diseases. Predictions on the direction and size of 

these effects are needed to inform an optimal public health response. Complex transmission pathways, 

typical for vector borne diseases, as well as regional climate change projections are often insufficiently 

understood and largely uncertain, hence any combination can produce misleading results [67].  

In addition, many factors other than climate have been identified as having a significant effect on 

whether vector borne diseases emerge or not [12,27–31,54]: these include the increase in urbanization, 

trade and travel, socio-economic and environmental changes as well as distinct differences in 

vulnerabilities between human populations [34,68–72]. Various lists of a(nta)gonistic drivers for 

emergence of infectious diseases, including climate change exist. While the majority of recent 

publications acknowledge the overwhelming complexities, unknowns and uncertainties of the relation 

between climate change and vector borne disease, the generalized idea that the transmission of vector 

borne diseases is favoured by climate change remains the most widely held working hypothesis and 

dominates the public debate. By identifying major pitfalls of this working hypothesis and highlighting 

specific lessons to be learned, we hope to support public health advisors in the development of local 

evidence-based public health strategies.  

Box: Mosquito-borne diseases in Europe 

The decades following the eradication of malaria in the 1960s and 70s, mosquito borne diseases 

were not considered important problems for public health in Europe. In this period, only incidental 

cases and infrequent outbreaks of West Nile fever had been observed except in Italy [73], and the 

disease burden of the other mosquito borne diseases has also been also low [74]. Endemic malaria 

cases only occurred in six countries from the WHO European region, (Azerbaijan, Georgia, 

Kyrgyzstan, Tajikistan, Turkey, and Uzbekistan). 

However, in recent decades the situation with mosquito borne diseases seems to have changed. 

Between 1996 and 1998, serious outbreaks of West Nile virus in Romania, Russia, Italy and Israel 

have occurred. Since then, WNV circulation has been reported from multiple countries inside the 

European Union (EU) including France, Greece, Italy, Portugal, Romania, Serbia and Spain, and from 

close neighbours: Turkey, Russia, Morocco and Israel [73]. Further, in 2007 more than 200 people fell 
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ill from the first European outbreak of chikungunya in Italy [75]. Subsequently, in 2010 the first 

autochthonous cases of chikungunya and/or dengue were detected in Southern France and Croatia and 

transmitted by the Asian tiger mosquito, Ae. albopictus. In 2012, Madeira experienced a significant 

dengue outbreak vectored by Ae. aegypti [9]. Between 2009 and 2012, Greece has also experienced 

several clusters of locally acquired malaria, predominantly caused by the recent steady introduction of 

non-symptomatic gametocyte immigrant workers infecting the local malaria mosquito population [76]. 

In 2009, the first known human cases of Usutu virus infections were described in Italy [77]. In 2008  

in his consideration of mosquito borne viruses occurring in Europe since the 20th century,  

Hubalek [31,56] listed eight viruses that are proven pathogenic to humans, belonging to three families 

Togaviridae (sindbis, chikungunya), Flaviviridae (West Nile, dengue) and Bunyaviridae (Batai, 

Tahyna, Snowshoe hare, Inkoo). The recent reports of Usutu (Flaviviridae) infections in humans [77] 

brings that number to nine (Table 2). 

Correlation of these recent events with the increasing recognition of the process of climate change 

may have fuelled speculations about causality and implications for the future [31]. Convincing evidence, 

however, exists that non-climatic processes were the main determinants of these outbreaks. Major 

changes in the global distribution of chikungunya, for example, have been shown in part to be due to a 

genetic adaptation of the virus. While its principle vector used to be the yellow fever mosquito, a 

recent mutation, has meant that it is effectively transmitted by the Asian tiger mosquito, a more 

temperate species [78]. This virus quickly reached Italy through a travelling viraemic patient. There it 

found a highly effective resident vector population and infected many people [75]. The latter also 

holds for the recent autochthonous cases of dengue and chikungunya in France and Croatia. The 

current occurrence of multiple autochthonous vivax- malaria in Greece is probably caused by a steady 

introduction of non-symptomatic gametocyte immigrant workers infecting the local malaria mosquito 

population [76]. 

Such events imply that these vector borne disease outbreaks occurred because of the arrival of a 

pathogen in a location suitable for transmission. The chance for such introductions has increased due 

to the recent enormous growth in trade and travel movements [79], which has increased the 

vulnerability of Western Europe [80] to introductions from abroad. Since climate change does not 

seem to play a major role in the introduction of these pathogens, the question arises as to whether it has 

(retrospective) or will (prospective) facilitate the establishment or spread of diseases. In Western Europe, 

temperature constraints for life history traits of mosquitoes and the pathogens they carry may be 

relaxed and transmission season may be extended, which may have and may in future increase the 

suitability of a region to support some mosquito borne disease [80]. In the light of the many changes 

occurring, new players may also surface in mosquito borne disease epidemiology, as illustrated by the 

human-induced expanded distribution of An. plumbeus in Belgium [61]. 
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