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Abstract: This paper applies the generalised linear model for modelling geographical 
variation to esophageal cancer incidence data in the Caspian region of Iran. The data have a 
complex and hierarchical structure that makes them suitable for hierarchical analysis using 
Bayesian techniques, but with care required to deal with problems arising from counts of 
events observed in small geographical areas when overdispersion and residual spatial 
autocorrelation are present. These considerations lead to nine regression models derived 
from using three probability distributions for count data: Poisson, generalised Poisson  
and negative binomial, and three different autocorrelation structures. We employ the 
framework of Bayesian variable selection and a Gibbs sampling based technique to identify 
significant cancer risk factors. The framework deals with situations where the number of 
possible models based on different combinations of candidate explanatory variables is 
large enough such that calculation of posterior probabilities for all models is difficult or 
infeasible. The evidence from applying the modelling methodology suggests that 
modelling strategies based on the use of generalised Poisson and negative binomial with 
spatial autocorrelation work well and provide a robust basis for inference. 
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1. Introduction 

For count data, the mean and variance are often related and can be estimated using a single 
parameter, as in the Poisson model, which is the most frequently used model for analysing disease 
mapping data. Under this model, the mean and variance of the dependent variable are assumed to be 
equal, conditional on any variables used to explain differences in the mean across primary sampling 
units (PSU). In practice, however, this assumption is often false, since the variance can  
either be larger or smaller than the mean, i.e., both overdispersion and underdispersion can exist in 
count data. 

Statistical methods for analysing spatial patterns of disease incidence or mortality have matured 
over the past decade or so [1–5]. Selection of the appropriate statistical approach for the analysis of 
correlated count data is important not only for variance estimation, but also for estimation of the  
mean [6]. The negative binomial and generalized Poisson (G-Poisson) distributions are frequently used 
to model count data with overdispersion by inclusion of a second parameter governing the variance 
specification. These distributions are of interest for modelling count data because they include the 
Poisson distribution as a special case, and over the range where the second parameter is positive, they 
are over-dispersed relative to Poisson with a variance to mean ratio exceeding 1. Relationships among 
these distributions are well known [7,8]. 

When a count dependent variable’s assumed variance is a function of its mean, one source of 
overdispersion is due to an inappropriate probability model, for example selecting the Poisson model 
when the generalised Poisson or negative binomial distribution would better capture the variation [9]. 

Intra-PSU heterogeneity may induce overdispersion as follows: individuals comprising any 
population subgroup may differ in terms of characteristics that are known to influence the response and 
if these characteristics are not included in the set of covariates in a model specification then population 
heterogeneity across PSUs can lead to extra-Poisson variation in cancer counts [10,11]. 

Presence of overdispersion is a particular problem for the analysis of geographically correlated data. 
In addition to the misspecification of the mean function and/ or misspecification of the probability 
model, spatial autocorrelation is a third cause of overdispersion in geographically correlated count  
data [4]. For example neighbouring PSUs may tend to have populations that socially, economically 
and demographically are more alike than non-neighbours or cancer occurrence may have a tendency  
to cluster. 

The purpose of this paper is to consider the problem of modelling cancer counts when 
overdispersion is likely. We consider spatial regression to estimate the association between relative 
risk of disease and potential risk factors and map model predicted ratios in which counts in PSUs that 
are geographically close are assumed to have stronger correlation with each other than counts in PSUs 
that are geographically dispersed. The development of this work was motivated by our previous study 
of esophageal cancer (EC) incidence in the Caspian region of Iran during 2001–2005 [12,13]. 
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This paper is structured as follows: in Section 2 we describe the Caspian cancer incidence data set 
from the Mazandaran and Golestan provinces of Iran and define the data structure and outcome 
probability models under consideration. This is followed by a description of Bayesian hierarchical 
models to be employed and an automatic Bayesian covariate selection procedure to evaluate and 
compare the proposed models. Section 3 presents the results of fitting and comparing the competing 
models to EC standardised incidence ratios (SIRs) in the Caspian region of Iran using a range of 
goodness of fit indices. Conclusions and further discussion are presented in Section 4. 

2. Methods 

2.1. Esophageal Cancer Incidence Data in the Caspian Region of Iran 

Residents of Mazandaran and Golestan provinces of Iran constituted the study population. The aims 
of analysis were to determine the extent of spatial variability in risk for esophageal cancer in this area, 
and to assess the degree to which this variability is associated with socioeconomic status (SES) and 
dietary pattern indices. During the study period, there were 1,693 EC cases in a population of around 
4.5 million people. Population and EC counts were available for the 152 agglomerations in the 
Mazandaran and Golestan provinces. Geographic coordinates for each agglomeration were also 
obtained that approximately reflected the geographical centroid of each agglomeration. The distances 
between agglomeration centres was measured in kilometres and ranged from 9 to 507 km. 

Figure 1a shows the geographic boundaries of wards, cities and rural agglomerations within wards, 
in the two provinces. Adjustment of incidence rates for differences in the age structure of 
agglomerations was accomplished by calculating SIRs with a 2003 population reference. Figure 1b 
shows strong spatial aggregations among SIR, with a tendency for higher EC rates in the eastern and 
central agglomerations and lower rates in the west. 

Explanatory variables relating to SES were available for each of the 152 agglomerations and to diet 
for each of the 26 wards [14]. Factor analysis was used to summarise SES and diet variables into a few 
uncorrelated factors: for SES: “income”, “urbanisation” and “literacy”, with lower values indicating 
greater deprivation; and for diet: “unrestricted food choice diet” characterized by high intake of foods 
generally thought to be preventive against EC and “restricted food choice diet” with positive loadings 
on risky foods. Estimates of the percentage of the population in each ward with diet factor scores in the 
highest tertile (3rd) were used in regression models. For socio-economic components, factor scores 
related to each agglomeration were used in the regression model as a continuous covariate. Further 
details on how the factors were created and defined for diet and SES can be found elsewhere [14]. 

Log linear models are often used to describe the dependence of the mean function on k covariates, 
X1, …, Xk. A general form for this type of model for J geographically-defined units (areas) is given by: 

                  
             j = 1, ..., J (1) 

where Yj is the count for area j and Ej denotes an “expected” count in area j that is assumed known,  
Xj = (1, Xj1, …, Xjk) is a 1 × (k + 1) vector of area-level risk factors, β = (β0, β1, …, βk) is a 1× (k + 1) 
vector of regression parameters and θj represents a residual with no spatial structure (so that θi and θj 
are independent for i ≠ j). 
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Figure 1. (a) Geographic boundaries of wards (bold polygons), cities (grey polygons) and 
rural agglomerations within wards, in Mazandaran and Golestan provinces; (b) Observed 
spatial pattern; and (c) model adjusted SIR. 

 
2.2. Model & Data Structure 

The raw data are in the form of disease counts, Yj, and population counts, Nj in region j.  
The expected count when adjusting for the age structure of an agglomeration, Ej, was obtained by  
age-standardisation. Then, using the theoretical relationship (     

  

  
). 
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Equation (1) is equivalent to a model for agglomeration level SIRs. Poisson, generalised Poisson 
and negative binomial distributions are considered for modelling counts at the agglomeration level and 
for each of these distributional assumptions, non-spatial, neighbourhood-based and distance-based 
spatial correlation structures are compared. These analysis approaches are now described in detail. 

2.3. Distributions for Disease Counts 

The Poisson model is given by: 

                        (2) 

The Poisson distribution has mean and variance E(Yj) = V(Yj) = λj. 
The negative binomial, NB, distribution can be constructed by adding a hierarchical element to the 

Poisson distribution through a random effect εj, specifically: 

 (3) 

for yj = 0, 1, 2, 3, …, where ϑ > 0. The resulting probability distribution function marginal to εj is: 

  

for yj = 0, 1, 2, 3, …, with E(Yj) = λj and V(Yj) = λj + (λj)2/ϑ. 
The negative binomial model has the property that the variance is always greater than the mean and 

ϑ is the parameter of extra-Poisson variation with large values of ϑ corresponding to variability more 
like the Poisson distribution. As ϑ →∞ the distribution of Yj converges to a Poisson random variable. 

The generalized Poisson, G-Poisson, model with parameters λ and ω is defined as [9]: 

 (4) 

for yj = 0, 1, 2, 3, … and has E(Yj) = λj and V(Yj) = λj(1 − ω)−2. For ω = 0, the generalized Poisson 
reduces to the Poisson distribution with mean λj. 

Bayesian inference is based on constructing a model m (which encapsulates distributional 
assumptions and covariate relationships with outcome), its likelihood , and the 
corresponding prior distribution , where γm is a parameter vector under model m and Y is the 
outcome variable vector. We use the following hierarchical structure on model parameters: 

 (5) 

where f(m) is the prior probability for entry of covariates in the specification of the linear predictor part 
of the bigger model m within a class of one of the three probability assumptions above. 

The maximum total number of candidate models given k covariates (considered additively, i.e., no 
interactions) is 2k. The usual choice for the prior on model m is the uniform distribution over the 
covariate parameter space M = {β1, …, βk}. We used this uniform distribution because the prior can be 
thought of as noninformative in the sense of favouring all candidate models equally within the same 
probability model class. 
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2.4. Hierarchical Models for Relative Risks  

Model (1) is a non-spatial model in the sense that it neither recognizes the distance-based 
relationships among the J agglomerations, nor in area j allows for any neighbourhood-based effects 
between adjacent areas that would mean counts in one area might be related to counts in adjacent 
areas. Suppose the variability in the {Yj}j = 1, …,j follows a spatial model that incorporates assumptions 
about the spatial relationships between areas. We then extend (1) as: 

 j = 1, ..., j (6) 

where the new parameter ϕj, represents a residual with spatial structure with ϕi and ϕj, i ≠ j, modelled to 
have positive spatial dependence. Two approaches are used for modelling the J-dimensional random 
variable ϕ: distance-based and neighbourhood-based spatial correlation structures. 

In the distance-based approach the multivariate normal distribution MVN(µ, τΣ) is specified for ϕ, 
where µ is a 1  J mean vector, τ > 0 controls the overall variability of the ϕi and Σ is a J × J positive 
definite matrix. If dij denotes the distance between centroids of agglomerations i and j, then we specify: 

 (7) 

where f(dij; v, k) = exp[(−vdij)k]. In this specification ν > 0 controls the rate of decrease of correlation 
with distance, with large values representing rapid decay, and is a scalar parameter representing the 
overall precision parameter. The parameter κ ϵ (0,2] controls the amount by which spatial variations in 
the data are smoothed. Large values of  lead to greater smoothing, with κ = 2 corresponding to the 

Gaussian correlation function [15]. The distance-based parameters are jointly referred to as . 

Besag et al. [16] propose modelling the spatial components via a conditional autoregression (CAR) 
as ~N(0, , describing the spatial variation in the heterogeneity component so that geographically 

close areas tend to present similar risks. One way of expressing this spatial structure is via Markov 
random fields models where the distribution of each ϕi given all the other elements {ϕ1, …, ϕi – 1, ϕi + 1, 
…, ϕJ} depends only on its neighbourhood [17]. A commonly used form for the conditional 
distribution of each ϕi is the Gaussian: 

 

(8) 

where the prior mean of each ϕi is defined as a weighted average of the other ϕj, j ≠ i, and the weights 
πij define the relationship between area i and its neighbours. The precision parameter σϕ controls the 
amount of variability for the random effect. 

Although other possibilities exist, the simplest and most commonly used neighbourhood structure is 
defined by the existence of a common border of any length between the areas. In this case, the weights 
πij in Equation (8) are constants and specified as πij = 1 if i and j are adjacent and πij = 0 otherwise.  
In that case, the conditional prior mean of ϕi is given by the arithmetic average of the spatial effects 
from its neighbours and the conditional prior variance is proportional to the number of neighbours. 
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2.5. Specification of Priors 

In order to be consistent across models with specification of prior belief, the prior distributions 
imposed on common parameters were the same and non-informative priors were used.  
A Gamma(0.001, 0.001) prior distribution was used for ϑ in the negative binomial distribution, and a 
Beta(0.5, 0.5) prior for ω in the generalized Poisson distribution. The unstructured components were 
given independent prior distribution  describing the non-spatial heterogeneity. The 

hyperparameters σθ, σϕ and δ are defined below. 

2.6. Specification of Hyperpriors 

In the highest level of the hierarchy prior distributions were specified for the prior precisions for 
hyperparameters σθ, σϕ and δ. The estimation of relative risks can be highly dependent on the choice of 
prior parameters [3] and within a class of Gamma priors, the Gamma(0.5, 0.0005) distribution has been 
suggested as a sensible choice [2] and was adopted here for the parameters σθ and σϕ. For the  

δ parameters a Gamma(0.001, 0.001) prior was used for  and uniform distributions Unif(0.05, 1.95) 
and Unif(0.05, 20) were used for κ and ν respectively. 

2.7. Gibbs Variable Selection, GVS 

Candidate models can be represented as , where ψ is a set of binary indicator 
variables ψg (g = 1, …, k), where ψg = 1 or 0 represents respectively the presence or absence of 
covariate g in the model, and α denotes other structural properties of the model. For the generalised 
linear models in this study, α describes the distribution, link function, variance function and 
(un)structured terms, and the linear predictor may be written as: 

 (9) 

We assume that  is fixed and we concentrate on the estimation of the posterior distribution of β 
within the class of probability models defined by α The prior for (β,ψ) is specified as 

. Furthermore, β can be partitioned into two vectors βψ and corresponding 
to those components of  that are included ψg = 1 or not included ψg = 0 in the model. Then, the prior 

 may be partitioned into a “model” prior and a “pseudo” prior  [18]. 
The full posterior distributions for the model parameters are given by:  

 

(10) 

 

(11) 

and we assume that the actual model parameters βψ and the inactive parameters  are a priori 
independent given ψ. This assumption implies that  and 

. 
The Gibbs sampling procedure is summarized by the following three steps [19]: 
(1).  Sample the parameters included in the model from the posterior: 
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(2).  Sample the parameters excluded from the model from the pseudoprior: 

  

(3).  Sample each variable indicator j from a Bernoulli distribution with success probability ; 

where Og is given by: 

 

(12) 

where denotes all terms of ψ except ψg. 
The algorithm is further simplified by assuming prior conditional independence of all βg for each 

model ψ. Then, each prior for  consists of a mixture of true prior  for the 
parameter and a pseudoprior . As a result: 

 

(13) 

We considered a normal prior and pseudoprior for the  resulting in: 

 

 

and: 

  

where  are the mean and variance respectively in the corresponding pseudoprior distributions 
and Ʃg is the prior variance when covariate g is included in the model. 

The Normal prior assumption and Equation (13) result in a prior that is a mixture of two  
Normal distributions: 

 (14) 

Using priors Equation (14) and Equation (9) gives the following full conditional posterior: 

 (15) 

indicating that the pseudoprior,  does not affect the posterior distribution of 
model coefficients. 

When no restrictions on the model space are imposed a common prior for the indicator variables βg 
is f(ψg) = Bernoulli (0.5) [20]. The Gibbs sampler was begun with all ψg = 1, which corresponds to 
starting with the full model. 

Consider Ʃ as the constructed prior covariance matrix for the whole parameter vector β when the 
multivariate extension of prior distribution (14) is used for each βg. Zellner’s g prior framework was 
used to define prior variance structure for Ʃ [21]. The choices  = 0 and  with p = 10 were 

made as they have also been shown to be adequate [18]. The pseudoprior parameters  and Sg are 
only relevant to the behaviour of the MCMC chain and do not affect the posterior distribution [20]. 

Because α is assumed fixed in our study and we have k covariates a set of 2K competing models are 
considered and the posterior probability of model is defined as: 
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 (16) 

Bayesian model averaging (BMA) obtains the posterior inclusion probability of a candidate 
regressor, , by summing the posterior model probabilities across those 
regressors that are included in the model. 

Within the disease mapping context, usually the aim is prediction. In such cases, prediction should 
be based on the BMA technique, which also accounts for model uncertainty [22]. Whatever the final 
intention is (prediction using BMA or selection of a single model) we need to evaluate posterior  
model probabilities.  

2.7.1. Fully Bayesian Estimation 

The Markov chain Monte Carlo method (MCMC) was employed to obtain a sample from the joint 
posterior distribution of model parameters, automatically generating samples from the marginal 
posteriors and hyperparameters. It has been suggested that the Gibbs sampler is run for 100,000 
iterations for GVS after discarding the first 10,000 iterations for the burn-in period [23]. In our 
analyses, a total of 500,000 runs with every tenth posterior draw after a burn-in of 50,000 runs was 
used. The inference of every parameter was thus based on 45,000 posterior samples. Convergence  
to the posterior distribution was assessed using time series scatterplots, correlograms and the  
Gelman-Rubin convergence statistic as implemented in WinBUGS and CODA/BOA [24,25]. 

2.7.2. Comparison of Model Performance 

Mean absolute deviance (MAD), mean-squared predictive error (MSPE), pseudo-R2 [26], deviance 
statistic [27], Moran scatter plot [28] and absolute deviance residuals versus fitted values [29] were 
used for estimating the goodness of fit (GOF) and prediction performance of the competing models. 
Posterior mean of λj were used as the plug-in estimate of  to calculate all the goodness of fit measures 
discussed in this paper. 

Pseudo R2 is calculated for model comparison and takes values between zero and one. It is based on 

, however since R2 increases as more parameters are added to a model 

regardless of their contribution pseudo  is defined as Pseudo  where d.f. for 

degrees of freedom equal J minus the effective number of free parameters [26]. 
To assess the prediction performance of the models their mean-squared predictive error and 

deviance statistic are reported. Mean-squared predictive error is defined as  and mean 

absolute deviance as . 

The deviance statistic, D= 2{ } provides evidence of overdispersion as 

follows: If the deviance index ( ) is much greater than 1 this suggests overdispersion. Rules of 

thumb on the size of the critical threshold vary from 1.2 or 1.3 to as large as 2.0 [30]. 
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The absolute deviance residuals (  ) were plotted against the corresponding 

fitted values. For a satisfactory specification of the variance function this plot should show a running 
mean that is approximately straight and flat. 

A Moran scatterplot depicts standardised Pearson residuals  on the horizontal-axis versus the 

spatial lag of the standardised Pearson residual on the vertical axis. The spatial lag averages the effects 
of the neighbouring spatial agglomerations. By construction, the slope of the line in the scatterplot is 
equivalent to the Moran’s I coefficient [31]. If the slope is positive it means that there is positive 
spatial autocorrelation and a negative slope indicates a “checkerboard” spatial pattern. 

3. Results 

The methodology described in Section 2 was applied to the esophageal cancer data from 
Mazandaran and Golestan. 

3.1. Automatic Bayesian Model Averaging 

The GVS methodology involved covariate selection conditional on the probability distribution and 
spatial autocorrelation type. With five SES and dietary factors there were 32 covariate models, and 
hence variable selection was made over the 32 models for a specified probability model type. Posterior 
summaries of the parameters of interest for the candidate models containing all five covariates  
are presented in Table 1. The posterior summaries of regression coefficients for models with spatial 
structure are broadly similar to the nonspatial models. However, 95% credible intervals for regression 
coefficients in the models that included spatial structure are wider than corresponding intervals in 
nonspatial models, reflecting the inter-agglomeration correlation being taken into account by the 
spatial model approaches. 

The estimated marginal posterior probabilities were calculated commencing with GVS for all the 
covariates. Then the covariates were ranked according to the marginal posterior probabilities and 
factors with marginal posterior inclusion probabilities lower than 0.2 were eliminated, using a rule of 
thumb [32]. With this approach the following covariates were omitted: unrestricted food choice for 
non-spatial and neighbourhood-based regressions, and literacy and unrestricted food choice for 
distance-based regressions. In a second stage, GVS was used again only on the selected covariates 
from stage one and the subsets created by combinations of these covariates were ranked according to 
the model posterior probabilities. 

BMA of these reduced models was used for prediction purposes. Posterior model probabilities of 
the top two covariate subsets are presented in Table 2. As Table 2 shows, only income, urbanisation 
and restricted food choice appeared in the top two covariate subsets. The income and urbanisation 
factors appeared in all models in at least one of the top two subsets, although the ranking and subsets’ 
posterior probabilities were slightly different. Urbanisation did not appear in the top two subsets for 
negative binomial regression with either of the two spatial autocorrelation structures. Table 3 illustrates 
marginal posterior inclusion probabilities for the top covariate subset of candidate model structure. 
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Table 1. Posterior summaries for Poisson, G-Poisson and Negative Binomial (NB) 
regression models each with the spatial correlation structures: “IN” independence, “N” 
neighbourhood-based, “D” distance-based. 

Model Posterior median of regression coefficient , (95% credible interval) 
Random 

components 

Distribution 
Spatial 

structure 
income urbanisation literacy 

unrestricted 

food choice 

restricted food 

choice 
  

 

Poisson IN 
−0.22,  

(−0.60, −0.03) 

−0.36,  

(−0.42, −0.15) 

−0.16,  

(−0.26, −0.08) 

0.12,  

(0.08, 0.16) 

−0.32,  

(−0.41, −0.09) 
0.78 - - 

Poisson IN + N 
−0.19,  

(−0.68, 0.02) 

−0.36,  

(−0.51, −0.16) 

−0.15,  

(−0.22, −0.05) 

0.07,  

(−0.04, 0.16) 

−0.24,  

(−0.38, −0.06) 
0.35 0.73 - 

Poisson IN + D 
−0.18,  

(−0.69, 0.07) 

−0.35,  

(−0.51, 0.03) 

−0.15,  

(−0.22, 0.02) 

0.07,  

(−0.03, 0.16) 

−0.23,  

(−0.38, 0.04) 
0.13 - 

 

G-Poisson IN 
−0.24,  

(−0.61, −0.09) 

−0.38,  

(−0.51, −0.09) 

−0.18,  

(−0.22, −0.05) 

0.11,  

(0.09, 0.16) 

−0.28,  

(−0.44, −0.11) 
0.56 - - 

G-Poisson IN + N 
−0.19,  

(−0.69, −0.04) 

−0.35,  

(−0.51, −0.03) 

−0.12,  

(−0.21, −0.03) 

0.07,  

(−0.02, 0.16) 

0.23,  

(−0.38, −0.04) 
0.12 0.66 

 

G-Poisson IN + D 
−0.19,  

(−0.68, 0.01) 

−0.36,  

(−0.51, −0.07) 

−0.15,  

(−0.22, 0.06) 

0.07,  

(−0.02, 0.16) 

−0.24,  

(−0.39, −0.07) 
0.17 - 

 

NB IN 
−0.23,  

(−0.59, −0.10) 

−0.39,  

(−0.58, 0.09) 

−0.17,  

(−0.27, −0.7) 

0.17,  

(0.03, 0.16) 

−0.31,  

(−0.48, −-0.12) 
0.36 - - 

NB IN + N 
−0.17, 

(−0.68−0.06) 

−0.35,  

(−0.51, 0.11) 

−0.11,  

(−0.21, 0.01) 

0.07,  

(−0.04, 0.16) 

−0.23,  

(−0.38, 0.02) 
0.12 0.74 

 

NB IN + D 
−0.20,  

(−0.68, 0.10) 

−0.35,  

(−0.51, 0.08) 

−0.15,  

(−0.22, 0.08) 

0.07,  

(−0.01, 0.16) 

−0.24,  

(−0.38, 0.09) 
0.11 - 

 

Table 2. The top two candidate covariate models (covariate subsets) based on their 
posterior probabilities: “IN” stands for independence, “N” stands for neighbourhood-based 
and “D” stands for distance-based structure. 

Model 

distribution 

Spatial 

structure 
Subset Covariates * f(m|y) **

 

Poisson IN 1 income, restricted food choice 0.37 

Poisson IN 2 income, restricted food choice, 
urbanisation 0.12 

Poisson IN + N 1 income, restricted food choice, 
urbanisation 0.31 

Poisson IN + N 2 income, restricted food choice 0.15 
Poisson IN + D 1 urbanisation 0.25 
Poisson IN + D 2 income 0.20 
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Table 2. Cont. 

Model 

distribution 

Spatial 

structure 
Subset Covariates * f(m|y) **

 

G-Poisson IN + D 2 income, urbanisation 0.18 
G-Poisson IN 1 income, restricted food choice 0.28 

G-Poisson IN 2 income, restricted food choice, 
urbanisation 0.17 

G-Poisson IN + N 1 income, urbanisation, restricted food 
choice 0.28 

G-Poisson IN + N 2 urbanisation, restricted food choice 0.13 
G-Poisson IN + D 1 restricted food choice 0.19 
G-Poisson IN + D 2 income, urbanisation 0.18 

NB IN 1 income, restricted food choice 0.21 
NB IN 2 restricted food choice, urbanisation 0.11 
NB IN + N 1 income 0.26 
NB IN + N 2 income, restricted food choice 0.13 
NB IN + D 1 income 0.18 
NB IN + D 2 restricted food choice 0.12 

* Covariates are listed in order of decreasing estimated marginal posterior probabilities; ** Posterior 
probability of the model. 

Table 3. Marginal posterior inclusion probability for the top candidate models (covariate 
subsets): “IN” stands for independence, “N” stands for neighbourhood-based and  
“D” stands for distance-based structure. 

Model Spatial 

structure 
Subset Covariates f(  *

 

distribution 

Poisson IN 1 
income 0.67 

restricted food choice 0.42 

Poisson IN + N 1 
income 0.61 

restricted food choice 0.48 
urbanisation 0.37 

Poisson IN + D 1 urbanisation 0.40 

G-Poisson IN 1 
income 0.57 

restricted food choice 0.33 

G-Poisson IN + N 1 
income 0.59 

urbanisation 0.43 
restricted food choice 0.25 

G-Poisson IN + D 1 restricted food choice 0.22 

NB IN 1 
income 0.64 

restricted food choice 0.42 
NB IN + N 1 income 0.47 
NB IN + D 1 income 0.55 

* marginal posterior inclusion probability. 
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3.2. Prediction Performance 

Table 4 reports the results for the goodness of fit measures used for model comparison based on 
reduced models that correspond with the covariate subset 1 models in Table 2, retaining only the 
variables with marginal posterior inclusion probabilities greater than 0.2. 

The pseudo R2 suggested that approximately one third of the total variation in esophageal cancer 
counts was explained by each of the subset 1 models with slight improvement for joint independence 
and spatial models. Figure 2 shows the scatterplot of the observed counts against the model predicted 
counts; consistent with the pseudo R2 values the scatterplots show better model fit for spatial models. 

Table 4. Goodness of fit measures: “IN” stands for independence, “N” stands for 
neighbourhood-based and “D” stands for distance-based structure. 

Model MAD 
a 

MSPE 
b 

Pseudo-R
2 

Deviance index 
c 

Distribution Spatial structure     

Poisson IN 4.4 30.3 0.24 3.1 
Poisson IN + N 3.7 16.6 0.32 2.8 
Poisson IN + D 2.6 13.8 0.28 2.9 

G-Poisson IN 3.2 14.9 0.30 2.6 
G-Poisson IN + N 2.1 10.1 0.35 1.6 
G-Poisson IN + D 2.3 11.6 0.33 1.7 

NB IN 3.4 15.8 0.30 2.4 
NB IN + N 2.2 10.3 0.33 1.7 
NB IN + D 2.3 13.0 0.35 1.4 

a Mean absolute deviance; b Mean-squared predictive error; c  

Figure 2. Scatterplots of observed counts (vertical axis) against model predicted counts 
(horizontal axis) from different models. 
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For MSPE and MAD the prediction performances of all spatial models are relatively similar but these 
spatial models perform better than corresponding non-spatial models. These criteria also suggest that 
negative binomial and G-Poisson models with neighbourhood-based autocorrelation were preferable to 
the other models. Figure 1c shows the model adjusted cancer rates from neighbourhood-based negative 
binomial regression. 

3.3. Assessing Overdispersion 

The deviance statistic is reported in Table 4 to provide evidence of overdispersion. Poisson models 
clearly show overdispersion, as do independence structures in the generalised Poisson and negative 
binomial models. The deviance measure divided by the d.f.-1 is less than 2 for the generalised Poisson 
and negative binomial models with spatial correlation structures. Figure 3 presents the absolute 
deviance residuals plotted against the corresponding fitted values. Figure 3 shows an upward trend, 
indicating that the assumed variance function is not increasing sufficiently fast with the mean. The 
running mean for trend is overly sensitive to the points at the extremes, so we suggest concentrating on 
the central part of the graphs. The plots demonstrate that all models do reasonably well while it is hard 
to distinguish between the competing models on the basis of this index. 

Figure 3. Absolute deviance residuals versus fitted values from competing models. 
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3.4. The Moran Scatterplots 

Moran scatterplots in Figure 4 suggest that there is positive spatial autocorrelation in the Pearson 
residuals in non-spatial models. However the scatterplots for regressions with neighbourhood-based 
and distance-based structures in Figure 4 suggest that residual spatial autocorrelation is no longer  
a problem. 

Figure 4. Moran scatter plot of the residuals from competing models: standardised Pearson 
residuals against spatially-lagged standardised Pearson residuals. 

 
4. Discussion 

Bayesian techniques are recognised as powerful tools in disease mapping but little is known about 
how these methods compare when applied to real data. Reviews and comparison of Bayesian 
hierarchical and/or non-hierarchical methods suggested for the analysis of aggregate count data in the 
context of disease mapping and spatial regression can be found in [2,4,33–35]. 

Our study aims were to assess the risk factors of EC cancer using an automatic Bayesian covariate 
selection procedure, and to compare prediction performance of the competing models using three 
distributions for modelling count data to deal with overdispersion and three spatial correlation 
structures to take account of intra- and inter-agglomeration variation. In conclusion, the use of joint 
models that include both spatial and nonspatial random effects gave a better picture in terms of model 
goodness of fit and prediction performance. Generalised Poisson and NB models also performed better 
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than Poisson regression. Overall, generalised Poisson or NB models with conditional autoregressive 
(CAR) correlation structure seemed to provide the most satisfactory basis for inference. 

Two spatial structures were considered in our models: the neighbourhood-based autocorrelation 
structure that borrows strength from neighbouring agglomerations and the distance-based 
autocorrelation structure that borrows strength from agglomerations over an effective range. The use  
of the spatial term resulted in more conservative estimates by explicitly modelling the positive  
inter-agglomeration correlation of the SIRs, compared with the models that ignored this  
inter-agglomeration correlation. A nonspatial random effect was included along with spatial random 
effects to take into account agglomeration heterogeneity. The nonspatial term is especially important in 
CAR structure, because if the majority of the variability is nonspatial, inference for the CAR model 
might incorrectly suggest that spatial dependence was present. Results from a simulation study have 
indicated that if the data are truly independent, a model with CAR random effects and no nonspatial 
random effects leads to very poor efficiency in the estimation of regression coefficients [36]. 

In model selection the uniform prior distribution on model space is typically used by setting 
. When using the variable selection indicators , this prior is equivalent 

to specifying independent Bernoulli prior distribution with inclusion probability equal to . Although 

 prior may be considered noninformative in the sense that it gives the same weight to all possible 

models it has been shown that this prior can be considered as informative since it puts more weight on 
models of size close to k/2 supporting a priori overparameterised and complicated models. This is 
especially problematic when k is large [37,38]. When meaningful prior information about ψ is 
unavailable, as is usually the case, perhaps the most reasonable strategy would be a fully Bayes 
approach that puts weak hyperior distributions on ψ. The potential drawback of this procedure is the 
computational limitation of visiting only a very small portion of the posterior when k is large yielding 
unreliable estimates of ψ. We defined the inclusion indicators as  for three 
reasons: First, our set of covariates was small (k = 5) and it was very unlikely that this choice of prior 
affects BMA. Second, to minimise any possible tendency towards overparameterised models we 
implemented a two stage modelling strategy and eliminated covariates with small inclusion probability 
at the first stage. Third, MCMC computations for fully Bayesian models potentially impose high 
computational costs. By choosing conventional empirical Bayesian method we aimed to retain useful 
features of Bayesian variable selection in a pragmatic way. 

In this paper we have compared Poisson, generalised Poisson and NB distributions for modelling 
count data when overdispersion is a problem. Results indicate that the Poisson distribution is not 
adequate to model cancer SIRs in our data setting. The negative binomial and the generalized Poisson 
distributions are more appropriate than the Poisson distribution. The negative binomial distribution and 
the generalized Poisson distributions are quite similar for the range of parameters in our study. It must 
be emphasized that for count data with small counts, various discrete distributions can fit the data 
sufficiently well [39]. 

When competing models exist, the information criterion such as Akaike information criterion 
(AIC), Bayes information criterion (BIC) and deviance information criterion (DIC) may be useful to 
select a single “best” model for final inference. However, these standard regression techniques and 
selection methods do not address the uncertainty associated with model specification. In contrast BMA 
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considers a set of models with all available covariates. Then, it deals with the uncertainty in model 
form in the estimated parameters, which enables one to average across all models considering the 
posterior probabilities. Moreover, using the Gibbs sampler to search the model space for all possible 
models is efficient, due to limited number of covariates. We considered BMA in order to control the 
model uncertainty with respect to covariates. The advantages of using the BMA approach to account 
for model uncertainty have been assessed for several different classes of models [40–42]. Results from 
those studies showed that BMA improves predictive performance, by factors ranging from modest to 
substantial. Regarding the model uncertainty, we have considered only one component: which 
independent variables to include in the model. There are other components also such as uncertainty 
about functional forms of the independent variables, which can also be addressed by application of 
Bayesian methods but there is no evidence from prior work that this has led to improved predictive 
performance [43–45], and as such it was not attempted here. 

5. Conclusions 

The objectives of this study were to evaluate and compare the generalised Poisson and negative 
binomial models with the Poisson model commonly used for analysing count data. The results indicate 
that: (i) models with joint independence and spatial random effects were superior to the models with an 
independence random effect alone; (ii) models with alternative distributions that accommodate 
overdispersion performed better than Poisson regression. Using a spatial random effect term has the 
advantage of allocating the overdispersion to spatial and non-spatial components, recognizing the 
inherently spatial nature of the data. It was found in the case study that generalised Poisson or negative 
binomial models with conditional autoregressive correlation structure seemed to provide the most 
satisfactory basis for inference. The methodology presented is not specific to our example and can be 
applied in a variety of settings to produce more informative results than simple Poisson regression 
modelling. 
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