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Abstract

:

Longitudinal data enables detecting the effect of aging/time, and as a repeated measures design is statistically more efficient compared to cross-sectional data if the correlations between repeated measurements are not large. In particular, when genotyping cost is more expensive than phenotyping cost, the collection of longitudinal data can be an efficient strategy for genetic association analysis. However, in spite of these advantages, genome-wide association studies (GWAS) with longitudinal data have rarely been analyzed taking this into account. In this report, we calculate the required sample size to achieve 80% power at the genome-wide significance level for both longitudinal and cross-sectional data, and compare their statistical efficiency. Furthermore, we analyzed the GWAS of eight phenotypes with three observations on each individual in the Korean Association Resource (KARE). A linear mixed model allowing for the correlations between observations for each individual was applied to analyze the longitudinal data, and linear regression was used to analyze the first observation on each individual as cross-sectional data. We found 12 novel genome-wide significant disease susceptibility loci that were then confirmed in the Health Examination cohort, as well as some significant interactions between age/sex and SNPs.
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1. Introduction


Disease prognosis and personalized medicine require the identification of genetic and non-genetic risk factors and, with the rapid improvement of genotyping technology, more than ten thousand genome-wide association studies (GWAS) have been conducted to discover disease susceptibility loci. Since the first such successful study in 2005 [1], more than ten thousand disease susceptibility loci have been successfully identified and these findings have improved our understanding of the genetic background of human diseases. However, in spite of these successes in GWAS, causal genetic variants identified by GWAS explain only a small proportion of the heritability [2,3]. Various reasons, including the common disease/rare variant hypothesis, have been put forward to explain this so-called missing heritability [4]. However, the missing heritability is partially attributable to a large number of false negative findings induced by insufficient sample sizes when controlling for multiple testing [5], and various strategies, such as GWAS using multiple phenotypes or longitudinal data [6,7], have been considered to overcome these problems. The analysis of multiple phenotypes can suffer from their inherent heterogeneity, but the analysis of the multiple measures of the same phenotype provided by longitudinal data may avoid this issue and, if measurement errors are substantial, GWAS with longitudinal data can be expected to mitigate the sample size problem.



Even though there are few GWAS using longitudinal data [8,9,10], compared to cross-sectional data longitudinal data have various useful features. First, although phenotyping is sometimes more expensive than the cost of genotyping, in those situations where the cost of genotyping is more expensive than that of phenotyping, repeated measurements at different time points have the virtual effect of enlarging the sample size. Second, with longitudinal data, the total phenotypic variance can be decomposed into among-subject and within-subject components. Third, phenotypes at different time points can be compared with baseline phenotypes and any confounding effect due to age can be prevented. Fourth, the onset of some diseases is sometimes affected by genetic variants, and gene × age interaction can be estimated with better accuracy. In this report, we conducted GWAS with longitudinal data in the Korean Association Resource (KARE) cohort. Phenotypes in the KARE cohort were measured every two years from 2001 to 2005, and we performed GWAS for eight phenotypes with three repeated measurements: systolic blood pressure (SBP), diastolic blood pressure (DBP), fasting plasma glucose (GLU0), 2-h OGTT glucose (GLU120), height, body mass index (BMI), high-density lipoprotein (HDL) and aspartate aminotransferase (AST). Results from the longitudinal GWAS were compared with those from GWAS using cross-sectional data, and our results showed that GWAS using longitudinal data provided more significant results. We identified 12 novel variants associated with phenotypes: rs11067763 (near MED13L) for DBP; rs12991703 (near MARCO) and rs7197218 (in XYLT1) for GLU0; rs17178527 (in AK097143) for BMI; rs12292858 (in SIK3), rs11066280 (in HECTD4) and rs183786 (near ALDH1A2) for HDL; and rs10849915 (in CCDC63), rs3782889 (in MYL2), rs12229654 (near MYL2-CUX2), rs11066280 (in HECTD4) and rs2072134 (in OAS3) for log-transformed AST. These variant associations were found to replicate in the Health Examinee (HEXA) cohort and thus illustrate the practical value of a longitudinal data analysis.




2. Materials and Methods


2.1. The Korean Association Resource (KARE) Cohort


The KARE cohort consists of a total of 10,038 individuals (5018 and 5020 individuals from Ansung and Ansan, respectively). Participants ranged from 40 to 69 years old, and their phenotypes were consecutively measured with two-year intervals from 2001 to 2005. Among the 10,038 participants, 10,004 individuals were genotyped for 500,568 SNPs with the Affymetrix Genome-Wide Human SNP array 5.0. Individuals and SNPs with call rates less than 95% were excluded from the analysis. SNPs with p-values for Hardy-Weinberg equilibrium (HWE) less than 10−6, or with minor allele frequencies (MAF) less than 0.01, were eliminated. Furthermore, individuals with tumors, gender inconsistencies, or whose heterozygosity rates were more than 30%, or identity in state (IBS) more than 0.8, were excluded from the analysis [11]. In total, 8842 individuals with 352,228 SNPs were available at the baseline time-point. At the second and third time-points, there were some missing phenotypes, and phenotypes for 7568 and 6675 individuals, respectively, were available.




2.2. The Health Examinee (HEXA) Cohort


Independent individuals in the HEXA cohort were from a second population based cohort sample provided by the Health study. This study combines subjects from the Wonju, Pyeong Chang, Gangneung, Geumsan, and Naju regional cohorts in Korea. There are 120,000 participants in the HEXA cohort, 4302 of whom, between 40 and 69 years old, were randomly selected for genotyping with the Affymetrix Genome-Wide Human SNP array 6.0. Individuals in the HEXA cohort were used to replicate the significant findings found in the KARE cohort, and individuals with tumors, large heterozygosity rates, gender inconsistencies, evidence of non-Asian ancestry, or whose IBS was more than 0.8 or call rates were less than 95%, were excluded from analysis [12]. SNPs with p-values for HWE less than 10−6, genotype call rates less than 95%, or MAF less than 0.01, were excluded, and the remaining SNPs for 3703 individuals were used for the analysis. In particular, the HEXA cohort is a cross-sectional study, and if there are some SNPs which have a progressing effect on phenotypes, results from HEXA and KARE cohort could be heterogeneous.




2.3. Sample Size Calculation for a Longitudinal Study


Sample sizes required to achieve 0.8 power at the 10−8 significance level were calculated in both the presence and absence of population substructure. We denote the number of individuals and measurements for each individual by n and t, respectively. We assume that t is same for all individuals. The additively coded value of the genotype for individual i is denoted by Xi. We assume Hardy-Weinberg equilibrium and each individual’s genotype is assumed to follow a trinomial distribution. The effect of the disease allele is assumed to be β. We assume a matrix of environmental effects that does not contain time-varying covariates for individual i, denoted by Zi, and its coefficient is assumed to be the column vector α. The columns of Zi denote each covariate. The phenotype for individual i at time-point j is denoted by Yij, and the corresponding t-dimensional vector by Yi. Letting 1t be the t-dimensional column vector with elements 1, Yi was assumed to be:


     Y  i  =   Z  i   α  + (  X i  β )   1  t  +  g i    1  t  +  c i    1  t  +   ε  i  ,    c i  ~ N ( 0 ,  σ c 2  ) ,   ε  i  ~ M V N ( 0 ,  σ ε 2   I  )   



(1)




where ci indicates the random effect which explains the similarity of repeated measurements for each individual attributable to a non-polygenic effect. We denote σp2 = σg2 + σc2 + σε2 and ρ = σc2/σp2. Thus ρ measures the proportion of the variance of ci relative to the phenotypic variance. In particular, we included in the model to provide a polygenic effect for individual i, and assumed as an approximation     g  = (  g 1  ,  g 2  , … ,  g n  ) ′    follows the multivariate normal distribution with mean vector 0 and variance-covariance matrix     σ g 2  Φ    where Φ corresponds to the genetic relationship matrix. If     σ g 2         σ g 2     is 0, the correlation matrix R of Yi becomes compound symmetric. The null hypothesis H0 is β = 0, and β is assumed to be βa under the alternative hypothesis.



For sample size calculation, we assumed that there is no covariate effect other than the genotypes, and then we could assume that the environmental variable Zi is 1t. Then if we let πl = P(Xi = δl, Zi = 1) = P(Xi = δl) for the coded genotype δl where δ1 = 0, δ2 = 1 and δ3 = 2, and K = π1(π2 + 2π3)2 + π2(π3 − π1)2 + π3(1 + π1 − π3)2, the required sample size for 1 − ϕ power at the significance level α can be derived to be:


    n α  =    (   z  1 −  α 2    +  z  1 − ϕ    )   σ p 2    K  β α 2     (    1 + (  t − 1  ) ρ  t   )    



(2)




(see the Appendix for the detailed derivation). Liu and Liang [13] derived the required sample sizes when Xi is binary and our results are based on their derivations. We extend their result to Xi with arbitrary many levels. For nα, we assume that σc2 + σ ε2 = 1 and:


     2  β 2  p  (  1 − p  )    2  β 2  p  (  1 − p  )  +  σ c 2  +  σ ε 2    = 0.005   



(3)







In the presence of population substructure, σg2 is assumed to be larger than 0. The required sample size cannot be directly calculated, and we calculated na by simulation studies based on a Monte Carlo method. In our simulations, we assumed that σg2 + σc2 + σ ε2 = 1 and the effect of disease the allele, β, was calculated with the following assumptions:


     2  β 2  p  (  1 − p  )    2  β 2  p  (  1 − p  )  +  σ g 2  +  σ c 2  +  σ ε 2    = 0.005   and    h 2  =   2  β 2  p  (  1 − p  )  +  σ g 2    2  β 2  p  (  1 − p  )  +  σ g 2  +  σ c 2  +  σ ε 2    = 0.3   



(4)




where these equations indicate that the proportion of genetic variance explained by the causal genotype is 0.005 and heritability is 0.3. For convenience, Φ was assumed to be a compound symmetric matrix with off-diagonal elements 0.1. The off-diagonal elements are asymptotically equivalent to twice the kinship coefficient between two individuals, and 0.1 means that the individuals are genetically remote relatives.




2.4. Genome-Wide Association Studies (GWAS) Using Longitudinal and Cross-Sectional Data


In the Korean Association Resource (KARE) data, eight phenotypes (SBP, DBP, GLU0, GLU120, height, BMI, HDL, and AST) were observed every two years from 2001 to 2005, so that three observations were available for each phenotype. Genotypes and phenotypes for 8842 individuals were initially available. However, there were some missing phenotypes for follow-up observations, and only 7568 and 6675 individuals were observed for the second and third time-points, respectively. Reasons for dropout were not known, but may include death, immigration, and non-response.



GWAS using longitudinal data were performed by generalized least squares using the nlme package in the R software. The phenotype for individual i is denoted by Yi which is a three dimensional vector. The matrix Zi indicates a covariate vector for environmental effects, including the intercept as the first column, and sex, age and age2 at the first time-point were included as covariates for all eight phenotypes. In particular, weight is known to be related to glucose levels, and thus it was included as an additional covariate for the GWAS of GLU0 and GLU120 [14,15]. The coefficient vector of Zi is denoted by a vector α. The effect of the time interval can be understood as the effect of aging, and it was denoted by the vector w. Here, w is a three-dimensional row vector and its coefficient is η. The population substructure between individuals was adjusted for with the EIGENSTRAT approach [16] and the remaining potential bias unadjusted by EIGENSTRAT was further adjusted for by the genomic control method [17]. In particular, the IBS matrix is often better than the identity-by-descent matrix for capturing the long-distance relationships that result from variations at the population level [18] and we used the IBS matrix for EIGENSTRAT. The first five principal component (PC) scores accounted for 75% of the variation in the IBS matrix, and they were used as covariates to adjust for any population substructure. The PC score vectors for individual i and its coefficient vector are PCi and γ, respectively. The additively coded value of the genotype for individual i is denoted by Xi. The effect of the disease allele is assumed to be β. The variance-covariance matrix for εi is denoted Σ and assumed to be an unstructured symmetric matrix. For longitudinal analysis, our final model is:


     Y  i  =   Z  i   α  + (  X i  β )   1  3  +  P    C  i   γ  +  w  η +   ε  i    



(5)




where     w  = ( 0 , 2 , 4 ) ′   ,      ε  i  = (  ε  i 1   ,  ε  i 2   ,  ε  i 3   ) ′    is distributed as    M V N (  0  ,  Σ  )    for i = 1,2, …, 8842.



Furthermore, we conducted GWAS using cross-sectional data for comparison with the GWAS using longitudinal data. For this we took the phenotypes at the first-time point in the KARE cohort, and the GWAS were conducted with linear regression. For the cross-sectional analysis, we used the same covariates except for time interval, with the linear model:


    Y i  =   Z  i    α  i  +  X i  β   ∑  k = 1  5  P  C  i k    γ k   +  ε i    



(6)




where     ε i     is distributed as    N ( 0 ,  σ 2  )    for i = 1,2, …, 8842. The results from longitudinal and cross-sectional data were compared.



We tested whether there exist any interaction effects between our significant findings and environmental variables by adding interaction terms as covariates. We considered age, sex and time interval as environmental variables, and their statistical interaction with the SNPs were tested. Significant results were further tested for replication in the HEXA cohort (other than time interval, because the HEXA cohort only has cross-sectional data). Finally, we tested all the significant findings from the KARE cohort, as a discovery dataset, in the HEXA cohort, as a replication dataset.





3. Results


3.1. Sample Size for a Longitudinal Cohort Design


We calculated the sample size required to achieve 0.8 power at the genome-wide significance level α = 10−8 in both the absence and presence of population substructure. Figure 1 and Figure 2 respectively show the required sample size nα, in the absence and presence of population substructure, as a function of the number of time points t and the common correlation ρ between phenotype measures on the same person. We found the required sample size nα is proportionally related to t and inversely related to ρ. Sample size is minimized for small ρ and large t, and the effect of t on sample size is maximal when ρ = 0. These results illustrate the practical efficiency of GWAS with longitudinal data. For instance, if ρ = 0.4 and t = 3, then 5158 individuals are sufficient to achieve 0.8 power at the genome-wide significance level and, compared to cross-sectional data, genotyping costs for 3438 individuals can be saved vs. the cost of obtaining 6878 phenotypes.
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Figure 1. Required sample size in the absence of population substructure. The sample size is indicated by n. The required sample size to achieve 0.8 power at the significance level α = 10−8 has been calculated as a function of t, the number of time points, and ρ, the correlation between measurements at two different time-points. 
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3.2. Genome-Wide Association Studies (GWAS) with Longitudinal Data for Eight Phenotypes


Table 1 and Table 2 provide descriptive statistics for sex, age and other available phenotypes from the KARE and HEXA cohorts. These show that the distributions of phenotypes are similar in the HEXA cohort the KARE cohort at each time point. We checked the normality of the eight phenotypes with histograms. In particular, AST was not normally distributed and so was log-transformed. Figure 3 shows that log-transformed AST and the other seven phenotypes on the original scale are about normally distributed, so these were used for the GWAS.
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Figure 2. Required sample size in the presence of population substructure. The sample size is indicated by n. The required sample size to achieve 0.8 power at the significance level α = 10−8 has been calculated as a function of t, the number of time points, and ρ, the correlation between measurements at two different time-points. 
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Table 1. Sample sizes for Korean Association Resource (KARE) cohort.







Table 1. Sample sizes for Korean Association Resource (KARE) cohort.







	
Time Point

	
KARE




	
1

	
2

	
3




	
N(Ansan/Ansung)

	
Age(s.d)

	
N(Ansan/Ansung)

	
Age(s.d)

	
N(Ansan/Ansung)

	
Age(s.d)






	
Male

	
2374/1809

	
51.78(8.79)

	
1967/1642

	
53.71(8.82)

	
1758/1424

	
55.58(8.71)




	
Female

	
2263/2396

	
52.61(9.02)

	
1764/2213

	
54.60(8.99)

	
1543/1950

	
56.48(8.90)




	
Total

	
4637/4205

	
52.22(8.92)

	
3731/3855

	
54.18(8.92)

	
3301/3374

	
56.05(8.82)
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Table 2. Descriptive statistics for eight quantitative phenotypes examined in the Korean Association Resource (KARE) and Health Examinee (HEXA) cohorts.







Table 2. Descriptive statistics for eight quantitative phenotypes examined in the Korean Association Resource (KARE) and Health Examinee (HEXA) cohorts.







	
Time Point

	
KARE Cohort

	
HEXA Cohort




	
1

	
2

	
3






	
Phenotype

	
Mean(s.d)

	
N

	
Mean(s.d)

	
N

	
Mean(s.d)

	
N

	
Mean(s.d)

	
N




	
SBP

	
121.65(18.61)

	
8842

	
118.6(17.3)

	
7504

	
116.6(16.62)

	
6646

	
121.69(14.36)

	
3703




	
DBP

	
80.26(11.46)

	
8842

	
78.49(10.96)

	
7504

	
77.69(10.25)

	
6646

	
77.05(9.84)

	
3703




	
GLU0

	
87.66(21.88)

	
8581

	
92.74(15.14)

	
6688

	
92.31(15.15)

	
5985

	
94.10(24.56)

	
3703




	
GLU120

	
126.76(51.03)

	
8387

	
125.77(41.59)

	
4865

	
134.07(50.56)

	
5985

	
Not available

	




	
height

	
160(8.67)

	
8842

	
159.93(8.74)

	
7461

	
159.95(8.76)

	
6596

	
161.49(8.10)

	
3703




	
BMI

	
24.6(3.12)

	
8838

	
24.59(3.09)

	
7456

	
24.52(3.05)

	
6596

	
23.96(2.88)

	
3703




	
HDL

	
44.65(10.09)

	
8841

	
46.27(9.90)

	
7495

	
44.04(10.25)

	
6640

	
54.60(13.27)

	
3703




	
AST

	
29.81(18.41)

	
8841

	
24.67(14.95)

	
7495

	
25.87(19.02)

	
6640

	
24.51(12.94)

	
3703









The results of the GWAS with longitudinal data in the KARE cohort were compared with the results from GWAS using cross-sectional data. For the cross-sectional data we used the phenotypes at the first time-point, applying linear regression. Population substructure was adjusted for with the EIGENSTRAT method, and five principal component (PC) scores were included as covariates in both the longitudinal and cross-sectional data analyses. We found that five PC scores explain roughly 75% of the kinship matrix, and Table 3 shows the estimated variance inflation factors, λ, obtained by genomic control [17]. The estimated variance inflation factors from the longitudinal data analyses were always slightly larger than those from the cross-sectional data analyses, which suggests that longitudinal data analysis tends to be more sensitive to population substructure. Even though more detailed sensitivity analyses are necessary to confirm whether the model assumption for longitudinal data analyses are satisfied, our findings are probably not affected by population substructure because the quantile-quantile (QQ) and Manhattan plots for the eight phenotypes in Supplementary Figures 1–4 consistently show the validity of our analysis.
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Figure 3. Histograms for SBP, DBP, GLU0, GLU120, HEIGHT, BMI, HDL and log AST in the KARE cohort. 
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Table 3. Inflation factors by genomic control.







Table 3. Inflation factors by genomic control.







	
Phenotype

	
Cross-Sectional Data

	
Longitudinal Data






	
SBP

	
1.040

	
1.051




	
DBP

	
1.028

	
1.053




	
GLU0

	
1.022

	
1.026




	
GLU120

	
1.026

	
1.037




	
height

	
1.069

	
1.071




	
BMI

	
1.046

	
1.052




	
HDL

	
1.034

	
1.039




	
log AST

	
1.023

	
1.030









We calculated the correlations between the different time-points for each phenotype and they are presented in Table 4. The correlations for height and BMI are usually very large and those for log AST are the smallest. Therefore, the improvement in power on using longitudinal data is expected to be the most substantial for log AST, and it seems to be almost negligible for height and BMI. Table 5 and Table 6 show the results from GWAS using longitudinal data and cross-sectional data in the KARE cohort, and the significant results were further tested in the HEXA cohort. The cross-sectional data for the KARE cohort are the first measurements for each individual in the longitudinal data. Cross-sectional and longitudinal data in the KARE cohort were analyzed with linear regression and a linear mixed model, respectively, and SNPs with p-values from either the cross-sectional or longitudinal data analysis less than 10−6 were selected for the replication studies. For the discovery analyses, the genome-wide significance level by Bonferroni correction is 1.4E − 07. For replication, we calculated the one-sided p-value for the direction from the longitudinal analysis using the KARE data, and used 0.05 as the significance level. Whenever the results from the two cohorts were in different directions, the p-values from the HEXA cohort were larger than 0.5. In Table 5 and Table 6, we added results from previous studies. If a SNP has not been significantly reported but SNPs in genes in linkage disequilibrium with it have been significantly reported, those SNPs are denoted by “*”. Table 5 and Table 6 show that GWAS using the longitudinal data in the KARE cohort identified 29 significant SNPs, 20 of which have been reported in previous GWAS, while the cross-sectional data identified only 19 genome-wide significant SNPs. Therefore we can conclude that the longitudinal data lead to substantial power improvement. In our GWAS using the longitudinal data, nine SNPs were newly detected, six of which were significantly replicated in the HEXA cohort.





[image: Table] 





Table 4. Correlations between different time-points for each phenotype.
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Time point Phenotype

	
Correlation between time-points




	
1–2

	
2–3

	
1–3






	
SBP

	
0.608

	
0.604

	
0.552




	
DBP

	
0.550

	
0.596

	
0.517




	
GLU0

	
0.700

	
0.795

	
0.822




	
GLU120

	
0.675

	
0.748

	
0.715




	
height

	
0.984

	
0.985

	
0.984




	
BMI

	
0.942

	
0.941

	
0.916




	
HDL

	
0.690

	
0.684

	
0.667




	
log AST

	
0.444

	
0.432

	
0.468









Table 5 shows that rs2401887 located in CALM1 is more significantly associated with SBP in the longitudinal data analysis. GWAS of DBP identified three significant SNPs; rs3025047 in the VEGFA gene, rs7100467 near SORCS1 and rs11067763 near MED13L. It has been reported that VEGFA is related to type-2 diabetes, coronary artery disease, age-related macular degeneration and body fat [19,20,21]. For GLU0, rs12991703 located near the MARCO gene was genome-wide significant using the cross-sectional data, and rs2191346 and rs6494306, which are respectively in linkage disequilibrium with DGKB and VPS13C, were more significant using the longitudinal data.



rs7197218 in the XYLT1 gene, which is related to corneal astigmatism [22], was genome-wide significant using the cross-sectional data. rs6031492, located in GDAPL1L, is more significantly associated with GLU120 in the cross-sectional data analysis. Table 6 shows that we detected rs17178527 in AK097143 and rs11000212 in ANAPC16 as associated with BMI. rs12292858 in SIK3 was more significant using the cross-sectional data, and rs2238153 in ATXN2, rs11066280 in HECTD4 and rs183786 near ALDH1A2 were more significantly associated with HDL by longitudinal data analysis. ATXN2, HECTD4 and ALDH1A2 have been reported to have significant associations for phenotypes related to HDL [12,23,24,25,26,27,28,29,30,31,32,33,34], and the significant associations for HECTD4 and ALDH1A2 were successfully replicated in the HEXA cohort. We also performed GWAS of log-transformed AST, and Table 6 shows nine significant SNPs, rs9837421 in SH3BP5, rs10849915 in CCDC63, rs3782889 in MYL2, rs12229654 near MYL2-CUX2, rs11066280 in HECTD4, rs11066453 in OAS1, rs2072134 in OAS3, rs12483959 in PNPLA3 and rs2143571 in SAMM50. Previous studies have reported that SH3BP5, CCDC63, MYL2 and OAS3 are related to alcohol dependence phenotypes [35,36,37], and PNPLA3 and SAMM50 are related to nonalcoholic fatty liver disease [38,39], and so our results strengthen their importance in liver disease.



We also performed association analysis to detect gene×environment interaction, and SNPs that interact with aging, sex and time interval were identified by using the longitudinal data in the KARE cohort. Table 7 and Table 8 list SNPs with p-values for gene×environment interaction less than 10−6. Table 7 shows that rs7197218 seems to be a promising candidate SNP for interaction with aging for GLU0, and Figure 4 shows that the age effects are substantially different for this SNP. However, the MAF of rs7197218 is 0.01456, and neither it nor any other SNPs that are in linkage disequilibrium with it, were found in the HEXA cohort. Thus the significant association of this SNP could not be confirmed and it will need to be further investigated in follow-up studies. Table 8 shows that rs2074356 and rs11066280 interact significantly with sex for HDL, and rs2074356, rs11066280 and rs12229654 do so for log-transformed AST. Interestingly, rs2074356 and rs11066280 have significant interaction effects with sex for both HDL and AST. We further confirmed these significant gene×environment interactions in the HEXA cohort. Based on the direction of the coefficients for these interactions, we calculated one-sided p-values, and the combined p-values by Fisher’s and Liptak’s methods [40,41]. It has been shown that the most efficient method is achieved by Liptak’s methods if the effect sizes are expected to be the same [42]. Table 9 shows that these significant interactions were further replicated in the HEXA cohort, and the combined p-values become smaller. Figure 4 shows that the effects of these SNPs are substantially different for males and females and, therefore, we can conclude that the effects of these SNPs are significantly different for males and females.



In summary, we can conclude that GWAS with longitudinal data provide an efficient strategy, and our overall results show that the improvement in power is substantial, its effect being inversely proportional to ρ.
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Table 5. Results for SBP, DBP, GLU0 and GLU120. SNPs with p-values less than 10−6 from cross-sectional or longitudinal data are listed.
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SNP

	
Chr

	
Position

	
Nearby Gene

	
Minor Allele

	
MAF

	
Discovery

	
Replication

	
Previously Published




	
Cross-Sectional

	
Longitudinal

	
Cross-Sectional




	
beta ± s.e

	
P

	
beta ± s.e

	
P

	
beta ± s.e

	
one-side P






	
SBP




	
rs17249754

	
12

	
88584717

	
ATP2B1

	
A

	
0.3732

	
−1.63 ± 0.27

	
9.73E − 10

	
−1.27 ± 0.22

	
1.11E − 08

	
−0.86 ± 0.49

	
5.30E − 03

	
Cho et al. NG 2009 [11]




	
rs11066280

	
12

	
111302166

	
in HECTD4

	
T

	
0.1717

	
−1.45 ± 0.34

	
2.52E − 05

	
−1.59 ± 0.29

	
2.95E − 08

	
−1.65 ± 0.43

	
6.35E − 05

	
Kato et al. NG 2011 [27]




	
rs2401887

	
14

	
89952963

	
CALM1

	
C

	
0.02125

	
−3.19 ± 0.93

	
5.89E − 04

	
−3.84 ± 0.78

	
8.58E − 07

	

	

	




	
DBP




	
rs10030362

	
4

	
102841866

	
in BANK1

	
C

	
0.2081

	
−0.72 ± 0.21

	
4.34E − 04

	
−0.87 ± 0.17

	
3.21E − 07

	
−0.22 ± 0.27

	
2.11E-01

	
* Zhang et al. Hypertension Res 2012 [43]




	
rs3025047

	
6

	
43854388

	
in VEGFA

	
A

	
0.01024

	
−2.65 ± 0.2

	
1.75E − 03

	
−3.64 ± 0.71

	
3.07E − 07

	

	

	




	
rs7100467

	
10

	
108153198

	
SORCS1

	
T

	
0.02356

	
−2.43 ± 0.53

	
1.81E − 04

	
−2.82 ± 0.55

	
3.43E − 07

	

	

	




	
rs17249754

	
12

	
88584717

	
ATP2B1

	
A

	
0.3732

	
−0.94 ± 0.17

	
4.33E − 08

	
−0.8 ± 0.14

	
2.01E − 08

	
−0.56 ± 0.23

	
8.50E − 03

	
Cho et al. NG 2009 [11]




	
rs11066280

	
12

	
111302166

	
in HECTD4

	
T

	
0.1717

	
−0.94 ± 0.22

	
1.97E − 05

	
−0.98 ± 0.18

	
9.25E − 08

	
−0.76 ± 0.38

	
5.35E − 03

	
Kato et al. NG 2011 [27]




	
rs11067763

	
12

	
114682724

	
MED13L

	
G

	
0.3297

	
−0.78 ± 0.18

	
1.04E − 05

	
−0.79 ± 0.15

	
8.75E − 08

	
0 ± 0.35

	
5.04E − 01

	




	
GLU0




	
rs12991703

	
2

	
119536716

	
MARCO

	
A

	
0.05655

	
3.62 ± 0.68

	
1.18E − 07

	
2.51 ± 0.58

	
1.55E − 05

	
−1.14 ± 0.7

	
9.11E − 01

	




	
rs7754840

	
6

	
20769229

	
in CDKAL1

	
C

	
0.4761

	
1.8 ± 0.32

	
1.72E − 08

	
1.78 ± 0.27

	
5.16E − 11

	
0.98 ± 0.74

	
3.99E − 02

	
Kwak et al. Diabetes 2012 [44]




	
rs9460546

	
6

	
20771611

	
in CDKAL1

	
G

	
0.4808

	
1.75 ± 0.32

	
3.38E − 08

	
1.76 ± 0.27

	
3.76E − 11

	

	

	




	
rs2191346

	
7

	
15020403

	
DGKB

	
C

	
0.2891

	
−1.72 ± 0.36

	
1.33E − 06

	
−1.53 ± 0.3

	
3.64E − 07

	
−0.62 ± 0.62

	
1.55E − 01

	




	
rs6494306

	
15

	

	
VPS13C

	
A

	
0.3435

	
−1.43 ± 0.33

	
1.71E − 05

	
−1.46 ± 0.28

	
1.92E − 07

	
−1.21 ± 0.59

	
2.08E − 02

	
* Manning et al. NG 2012 [45]




	
rs7197218

	
16

	
17319136

	
in XYLT1

	
G

	
0.01456

	
7.23 ± 0.68

	
1.23E − 07

	
4.29 ± 1.17

	
2.48E − 04




	
GLU120




	
rs7754840

	
6

	
20769229

	
in CDKAL1

	
C

	
0.4761

	
4.73 ± 0.78

	
1.51E − 09

	
4.73 ± 0.73

	
1.10E − 10

	

	

	
Kwak et al. Diabetes 2012 [44]




	
rs12229654

	
12

	
109898844

	
MYL2-CUX2

	
G

	
0.1426

	
−4.84 ± 1.11

	
1.21E − 05

	
−5.16 ± 1.03

	
5.84E − 07

	

	

	
Go et al. J Hum Genet 2013 [46]




	
rs2074356

	
12

	
111129784

	
in HECTD4

	
T

	
0.1467

	
−5.19 ± 1.09

	
2.02E − 06

	
−5.2 ± 1.02

	
3.44E − 07

	

	

	
Go et al. J Hum Genet 2013 [46]




	
rs6031492

	
20

	
42330963

	
in GDAPL1L

	
G

	
0.4949

	
3.84 ± 0.77

	
6.91E − 07

	
3.03 ± 0.72

	
2.81E − 05

	

	

	




	
rs2868088

	
20

	
42347066

	
GDAPL1L

	
A

	
0.4377

	
−3.99 ± 0.78

	
2.68E − 07

	
−3.54 ± 0.72

	
1.04E − 06
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Table 6. Results for Height, BMI, HDL and log AST. SNPs with p-values less than 10−6 from cross-sectional or longitudinal data are listed.
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SNP

	
Chr

	
Position

	
Nearby gene

	
Minor Allele

	
MAF

	
Discovery

	
Replication

	
Previously Published




	
Cross-sectional

	
Longitudinal

	
Cross-Sectional




	
beta ± s.e

	
P

	
beta ± s.e

	
P

	
beta ± s.e

	
one-side P






	
Height




	
rs17038182

	
1

	
118669928

	
SPAG17

	
G

	
0.4188

	
−0.45 ± 0.08

	
4.08E − 08

	
−0.45 ± 0.08

	
5.58E − 08

	
−0.13 ± 0.13

	
1.53E − 01

	
Cho et al. Nat Genet 2009 [11]




	
rs10513137

	
3

	
142626120

	
in ZBTB38

	
A

	
0.2605

	
0.49 ± 0.09

	
8.14E − 08

	
0.49 ± 0.09

	
5.85E − 08

	
0.43 ± 0.14

	
7.40E − 04

	
Kim et al. J Hum Genet 2009 [47]




	
rs6918981

	
6

	
34346492

	
RPL35P2-NUDT3

	
G

	
0.2092

	
0.55 ± 0.1

	
2.98E − 08

	
0.55 ± 0.1

	
1.72E − 08

	
0.1 ± 0.15

	
2.51E − 01

	
Kim et al. J Hum Genet 2009 [47]




	
BMI




	
rs17178527

	
6

	
141947773

	
in AK097143

	
A

	
0.2486

	
−0.32 ± 0.05

	
2.96E − 09

	
−0.31 ± 0.05

	
6.35E-09

	
0.05 ± 0.08

	
7.47E − 01

	




	
rs11000212

	
10

	
73625658

	
in ANAPC16 in ASCC1

	
G

	
0.2057

	
0.27 ± 0.06

	
1.85E − 06

	
0.28 ± 0.06

	
5.14E − 07

	
0.05 ± 0.08

	
2.90E − 01

	




	
rs9939609

	
16

	
52378028

	
in FTO

	
T

	
0.1262

	
0.34 ± 0.07

	
1.29E − 06

	
0.34 ± 0.07

	
7.36E − 07

	
0.23 ± 0.1

	
1.29E − 02

	
Cho et al. Nat Genet 2009 [11]




	
HDL




	
rs271

	
8

	
19857982

	
in LPL

	
T

	
0.2064

	
1.15 ± 0.19

	
4.84E − 10

	
1.12 ± 0.17

	
2.15E − 11

	
1.81 ± 0.38

	
7.70E − 07

	




	
rs17482753

	
8

	
19876926

	
LPL

	
T

	
0.1243

	
1.95 ± 0.23

	
8.83E − 18

	
1.91 ± 0.21

	
1.42E − 20

	
3.48 ± 0.46

	
2.71E − 14

	
Heid et al. Circ Cardiovasc Genet 2008 [48]




	
rs17410962

	
8

	
19892360

	
LPL

	
A

	
0.1244

	
1.95 ± 0.23

	
8.25E − 18

	
1.91 ± 0.21

	
1.76E − 20

	
3.48 ± 0.46

	
2.35E − 14

	




	
rs12686004

	
9

	
106693247

	
in ABCA1

	
T

	
0.2136

	
−1.26 ± 0.2

	
7.01E − 12

	
−1.37 ± 0.17

	
1.62E − 16

	
−1.19 ± 0.32

	
6.10E − 04

	
Kim et al. Nat Genet 2011 [12]




	
rs11216126

	
11

	
116122450

	
BUD13

	
C

	
0.2027

	
1.43 ± 0.19

	
2.69E − 14

	
1.36 ± 0.17

	
1.54E − 15

	
1.44 ± 0.5

	
7.45E − 05

	
Kim et al. Nat Genet 2011 [12]




	
rs6589566

	
11

	
116157633

	
in ZNF259

	
C

	
0.2176

	
−1.25 ± 0.18

	
1.10E − 11

	
−1.15 ± 0.17

	
4.47E − 12

	
−1.89 ± 0.32

	
8.15E − 08

	
* Waterworth et al. Arteriosclear Thromb Vasc Biol 2010 [49]




	
rs12292858

	
11

	
116319189

	
in SIK3

	
C

	
0.1759

	
1.05 ± 0.2

	
7.73E − 08

	
0.88 ± 0.18

	
7.68E − 07

	
0.9 ± 0.35

	
1.11E − 02

	




	
rs12229654

	
12

	
109898844

	
MYL2-CUX2

	
G

	
0.1426

	
−1.25 ± 0.24

	
6.42E − 09

	
−1.21 ± 0.2

	
7.35E − 10

	
−1.66 ± 0.46

	
1.25E − 04

	
Kim et al. Nat Genet 2011 [12]




	
rs2238153

	
12

	
110423930

	
in ATXN2

	
A

	
0.4579

	
−0.68 ± 0.16

	
8.76E − 06

	
−0.71±0.14

	
3.29E − 07

	

	

	




	
rs11066280

	
12

	
111302166

	
in HECTD4

	
T

	
0.1717

	
−1.4 ± 0.15

	
3.10E − 12

	
−1.35±0.18

	
1.17E − 13

	
−1.92 ± 0.4

	
8.95E − 07

	




	
rs2072134

	
12

	
111893559

	
in OAS3

	
A

	
0.1143

	
−1.39 ± 0.19

	
4.53E − 09

	
−1.31 ± 0.22

	
1.25E − 09

	
−1.36 ± 0.4

	
2.33E − 03

	
Kim et al. Nat Genet 2011 [12]




	
rs183786

	
15

	
56455402

	
ALDH1A2

	
T

	
0.305

	
−0.8 ± 0.16

	
8.53E − 07

	
−0.83 ± 0.15

	
2.33E − 08

	
−0.61 ± 0.33

	
3.13E-02

	




	
rs16940212

	
15

	
56481312

	
LIPC

	
T

	
0.3405

	
1.27 ± 0.16

	
1.05E − 15

	
1.3 ± 0.14

	
1.95E − 19

	
1.11 ± 0.47

	
2.04E − 04

	
Kim et al. Nat Genet 2011 [12]




	
rs6494005

	
15

	
56511816

	
in LIPC

	
G

	
0.2678

	
−0.89 ± 0.2

	
1.34E − 07

	
−0.89 ± 0.15

	
5.82E − 09

	
−0.79 ± 0.39

	
1.05E − 02

	




	
rs12708980

	
16

	
55569880

	
in CETP

	
C

	
0.0984

	
−1.67 ± 0.25

	
3.63E − 11

	
−1.65 ± 0.23

	
5.61E − 13

	
−1.88 ± 0.5

	
7.40E − 05

	
Kim et al. Nat Genet 2011 [12]




	
rs2156552

	
18

	
45435666

	
LIPG

	
A

	
0.164

	
−0.89 ± 0.21

	
1.53E − 05

	
−0.93 ± 0.19

	
5.90E − 07

	
−1.15 ± 0.4

	
2.29E − 03

	
Waterworth et al. Arteriosclear Thromb Vasc Biol 2010 [49]




	
rs4420638

	
19

	
50114786

	
APOC1

	
C

	
0.1121

	
−1.3 ± 0.16

	
4.21E − 08

	
−1.14 ± 0.21

	
1.23E − 07

	
−2.01 ± 0.47

	
1.88E − 05

	
Willer et al. Nat Genet 2013 [50]




	
AST




	
rs9837421

	
3

	
15322297

	
in SH3BP5

	
G

	
0.193

	
−0.02 ± 0.01

	
2.14E − 04

	
−0.03 ± 0.01

	
5.79E − 07

	
0 ± 0

	
5.32E − 01

	




	
rs10849915

	
12

	
109818005

	
in CCDC63

	
G

	
0.1758

	
−0.03 ± 0.01

	
2.00E − 06

	
−0.03 ± 0.01

	
1.81E − 08

	
−0.02 ± 0

	
3.68E − 02

	




	
rs3782889

	
12

	
109835038

	
in MYL2

	
C

	
0.1726

	
−0.03 ± 0.01

	
3.79E − 06

	
−0.03 ± 0.01

	
7.26E − 09

	
−0.02 ± 0

	
2.02E − 02

	




	
rs12229654

	
12

	
109898844

	
MYL2-CUX2

	
G

	
0.1426

	
−0.04 ± 0.01

	
7.34E − 08

	
−0.04 ± 0.01

	
4.74E − 11

	
−0.02 ± 0

	
2.80E − 02

	




	
rs11066280

	
12

	
111302166

	
in HECTD4

	
T

	
0.1717

	
−0.05 ± 0.01

	
8.17E − 13

	
−0.05 ± 0.01

	
1.70E − 18

	
−0.03 ± 0

	
1.94E − 04

	




	
rs11066453

	
12

	
111850004

	
in OAS1

	
G

	
0.1265

	
−0.03 ± 0.01

	
5.26E − 06

	
−0.03±0.01

	
8.72E − 07

	
−0.02 ± 0

	
7.75E − 02

	




	
rs2072134

	
12

	
111893559

	
in OAS3

	
A

	
0.1143

	
−0.04 ± 0.01

	
7.31E − 08

	
−0.04 ± 0.01

	
8.42E − 09

	
−0.02 ± 0

	
6.75E − 02

	




	
rs12483959

	
22

	
42657329

	
in PNPLA3

	
A

	
0.4157

	
0.03 ± 0

	
1.79E − 09

	
0.03 ± 0

	
1.02E − 12

	
0.03 ± 0

	
2.14E − 06

	
* Kamatani et al. Nat Genet 2010 [38]




	
rs2143571

	
22

	
42723019

	
in SAMM50

	
T

	
0.4136

	
0.02 ± 0.01

	
6.45E − 07

	
0.03 ± 0

	
7.73E − 10

	
0.03 ± 0

	
4.22E − 05

	
* Kawaguchi et al. PLoS One 2012 [39]











[image: Table] 





Table 7. Gene × environment interaction effect in the KARE cohort. Interactions of time interval with SNP were tested, and p-values for SNPs with genome-wide significant interaction are listed.
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Effect

	
rs7197218 for GLU0




	
beta

	
Std.Error

	
p-value






	
SNP

	
5.92

	
1.21

	
1.08E − 06




	
time×SNP

	
−1.27

	
0.25

	
2.65E − 07
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Table 8. Gene × environment interaction effect in the KARE cohort. Interactions of sex with SNPs were tested, and p-values for SNPs with genome-wide significant interaction are listed.
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Effect

	
rs2074356 for HDL

	
rs11066280 for HDL

	
rs2074356 for Log(AST)

	
rs11066280 for Log(AST)

	
rs12229654 for Log(AST)




	
beta

	
Std.Error

	
p-value

	
beta

	
Std.Error

	
p-value

	
beta

	
Std.Error

	
p-value

	
beta

	
Std.Error

	
p-value

	
Beta

	
Std.Error

	
p-value






	
SNP

	
−4.80

	
0.62

	
7.28E − 15

	
−4.69

	
0.58

	
4.60E − 16

	
−0.13

	
0.02

	
5.52E − 13

	
−0.17

	
0.02

	
2.81E − 20

	
−0.15

	
0.02

	
1.32E − 19




	
sex×SNP

	
2.26

	
0.39

	
4.46E − 09

	
2.21

	
0.36

	
1.06E − 09

	
0.06

	
0.01

	
5.82E − 08

	
0.08

	
0.01

	
8.25E − 12

	
0.07

	
0.01

	
3.24E − 11
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Figure 4. Interaction effects of SNPs with sex or time interval. (a) Mean of GLU0 at each time-point for each of two rs7197218 genotypes (circles indicate homozygous genotypes with no minor alleles, triangles indicate heterozygous genotypes); (b-f) phenotypic mean of each genotype for males and females (blue and red lines indicate male and female, respectively). 
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4. Discussion


It is well known that longitudinal analysis is useful to detect aging effects, and statistically efficient for detecting significant associations. In this report, we numerically calculated the sample sizes required to achieve statistical power at the genome-wide significance level, and our results showed that the power is proportionally related to the number of observations on each individual and inversely related to the correlation between the pairs of observations on an individual. In a large-scale genetic analysis, genotyping cost may be larger than the phenotyping cost, and then we can conclude that analyzing longitudinal data is an efficient strategy to improve the rate of false negative findings. However if the proportion of missing data is large, statistical power loss can be substantial; and if the missingness is not at random, even a small proportion of missing phenotypes can generate a serious bias [51]. In spite of the statistical efficiency of longitudinal data analysis, any possibility of potential bias from the missingness pattern should be carefully investigated; and it should be noted that a little carelessness can lead to a substantial bias.
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Table 9. Combined p-values for gene × environment interaction. For replication, interactions of sex with SNPs were tested in the HEXA cohort and a combined p-value was calculated using both Fisher’s and Liptak’s methods.
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Sex × SNP

	
HEXA Cohort p-value

	
Combined p-value Using Fisher’s Method

	
Combined p-value Using Liptak’s Method






	
rs2074356 for HDL

	
3.58E − 01

	
3.39E − 08

	
2.52E − 07




	
rs11066280 for HDL

	
2.184E − 01

	
5.37E − 09

	
2.52E − 08




	
rs2074356 for Log(AST)

	
4.86E − 02

	
5.86E − 08

	
4.41E − 08




	
rs11066280 for Log(AST)

	
1.23E − 02

	
3.13E − 12

	
3.10E − 12




	
rs12229654 for Log(AST)

	
7.42E − 03

	
7.22E − 12

	
4.96E − 12









Furthermore, we performed GWAS with both longitudinal and cross-sectional data, and significant results from a longitudinal data analysis in the KARE cohort were further tested in the HEXA cohort. 12 SNPs that have not been reported elsewhere were identified, and the significant p-values from replication studies strengthened the possibility that they are causal. In particular, GWAS with longitudinal data showed that rs3025047 is significantly associated with DBP even though it is not significantly associated in GWAS with cross-sectional data. The MAF of rs3025047 is 0.01, so it is a variant with relatively low frequency. In the HEXA cohort, rs3025047 was not available, nor were any SNPs in linkage disequilibrium with it. Even though further studies are necessary to confirm whether rs3025047 is a true causal variant, our analysis results illustrate that GWAS using longitudinal data can be an efficient strategy for rare variant association analysis.



During the last decade, more than ten thousand GWAS successfully identified disease susceptibility loci, and these findings increase our understanding of diseases. However, the so-called missing heritability [4] reveals that efficient analysis algorithms should be investigated, and GWAS of longitudinal data seem to provide a useful strategy that may bridge the gap.




5. Conclusions


Analyzed as a repeated measure design, the power of longitudinal data is proportionally related to the number of observations on each individual and inversely related to the correlation between the multiple observations on an individual. This facilitates finding causal SNPs and their interactions with environmental variables, as well as with age and sex. In two Korean cohorts it enabled us to find 12 novel genome-wide significant SNPs associated with eight phenotypes, and significant gene × environment interaction. Therefore, we can conclude that longitudinal data seem to provide efficient strategies for GWAS.
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Appendix


We assume that the null hypothesis is β = 0, and β = βa under the alternative hypothesis. According to Liu and Liang [13], the score for our hypothesis can be defined by:


    S β  =  1   σ p  2     ∑  i = 1  n     X  i      1  t   ′    R   − 1   (   Y  i  −   1  t    X  i  β −   1  t      Z  i   ′   α  )     



(7)




and we denote by     ∑ ¯     the expected variance-covariance matrix of the score function Sβ under the alternative hypothesis in the absence of population substructure. Letting be the chi-square noncentrality parameter to achieve 1 – ϕ power at the α significance level, Liu and Liang [13] showed that the required sample size for the score test becomes:


    n a  =  v /  (  β a 2   ∑ ¯  )     



(8)







We let 1w be a w-dimensional column vector with elements 1. We assume that (Xi, Zi) can be (δl, ψl), where l = 1, … , L, and define πl = P(Xi = δl, Zi = ψl). If we assume      u  l  =  δ l    1  t    ,      D  l  = diag (  ψ l  )    is diagonal matrix,      J  l  =   1  l      1  d   ′    ,      v  l  =   J  t    D  l    , and d denotes the number of rows of      D  l    , the elements of the Fisher information matrices for β and α are found to be:


    I  β α  ∗  =  σ P  − 2     ∑ l    π l   u l   R  − 1    V l      and     I   α α  ∗  =  σ P  − 2     ∑ l    π l      v  l   ′    R   − 1     v  l    .   



(9)







In the absence of population substructure,     ∑ ¯     can be shown to be:


    ∑ ¯  =  σ P  − 2     ∑ l    π l  (   u  l T  −   I   β  α   ∗      I    αα   ∗   − 1     v  l T  )   R   − 1   (   u  l  −   v  l     I    αα   ∗   − 1      I   β  α   ∗  T  )    



(10)







Furthermore:


       u  l   ′    R   − 1     v  l  =  δ l      1  t   ′    R   − 1     J  t    D  l  = (     1  t   ′    R   − 1     1  t  )  δ l  (     1  d   ′    D  l  )   



(11)




leads to:


     I   β  α   ∗  =  σ P  − 2     ∑ l    π l      u  l   ′    R   − 1     v  l    =  σ P  − 2   (     1  t   ′    R   − 1     1  t  )   ∑ l    π l   δ l  (     1  d   ′    D  l  )     



(12)







We let      J  d  =   1  d      1  d   ′    , and, because      v  l  =   J  t    D  l  =   1  t      1  d   ′    D  l    , we have:


       v  l   ′    R   − 1     V  l  =   D  l  (     J  t   ′    R   − 1     J  t  )   D  l  = (     1  t   ′    R   − 1     1  t  )   D  l    J  d    D  l    



(13)







Thus, we have:


     I    α   α   ∗  =  σ P  − 2     ∑ l    π l      v  l   ′    R   − 1     v  l    =  σ P  − 2   (     1  t   ′    R   − 1     1  t  )   ∑ l    π l  (   D  l    J  d    D  l  )     



(14)







Consequently, if we let     Ω  =   I   β γ  ∗     I    α   α   ∗   − 1   = (   ∑ l    π l   δ l  (     1  d   ′    D  l  )   )   (   ∑ l    π l  (   D  l    J  d    D  l  )   )   − 1     , some tedious algebraic manipulations lead to:


    ∑ ¯  =  σ P  − 2     ∑ l    π l  (   u  l T  −   I   β  α   ∗     I    αα   ∗    v  l T  )   R   − 1   (   u  l  −   v  l     I    αα   ∗   − 1      I   β  α   ∗  T  )  =  σ P  − 2     ∑ l    π l  (  δ l 2  (     1  t   ′    R   − 1     1  t  ) − 2  δ l    R   − 1    J    D  l   Ω  ′ +  Ω      D  l   ′   J  ′   R   − 1    J    D  l   Ω  ′ )      =  σ P  − 2   (     1  t   ′    R   − 1     1  t  )   ∑ l    π l  (  δ l 2  − 2  δ l      1  d   ′    D  l   Ω  ′ +  Ω    D  l    J  d   Ω  ′ )     



(15)







If we denote      ∑ l    π l  (  δ l 2  − 2  δ l      1  d   ′    D  l   Ω  ′ +  Ω    D  l    J  d   Ω  ′ )      by K, the required sample size becomes:


    n a  =  v /  (  β a 2   ∑ ¯  )   =     (  z  1 −  α / 2    +  z  1 − ϕ   )  2   σ P 2    K  β a 2     (    1 + ( t − 1 ) ρ  t   )    



(16)




because        1  t   ′    R   − 1     1  t  = t / ( 1 + ( t − 1 ) ρ )   . This completes the derivation for nα.
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