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Abstract: Longitudinal data enables detecting the effect of aging/time, and as a repeated 

measures design is statistically more efficient compared to cross-sectional data if the 

correlations between repeated measurements are not large. In particular, when genotyping 

cost is more expensive than phenotyping cost, the collection of longitudinal data can be an 

efficient strategy for genetic association analysis. However, in spite of these advantages, 

genome-wide association studies (GWAS) with longitudinal data have rarely been 

analyzed taking this into account. In this report, we calculate the required sample size to 

achieve 80% power at the genome-wide significance level for both longitudinal and  

cross-sectional data, and compare their statistical efficiency. Furthermore, we analyzed the 

GWAS of eight phenotypes with three observations on each individual in the Korean 

Association Resource (KARE). A linear mixed model allowing for the correlations 

between observations for each individual was applied to analyze the longitudinal data, and 
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linear regression was used to analyze the first observation on each individual as  

cross-sectional data. We found 12 novel genome-wide significant disease susceptibility 

loci that were then confirmed in the Health Examination cohort, as well as some significant 

interactions between age/sex and SNPs. 

Keywords: longitudinal data; cross-sectional data; Korean Association Resource (KARE) 

cohort; Health Examinee (HEXA) cohort 

 

1. Introduction 

Disease prognosis and personalized medicine require the identification of genetic and non-genetic risk 

factors and, with the rapid improvement of genotyping technology, more than ten thousand  

genome-wide association studies (GWAS) have been conducted to discover disease susceptibility loci. Since 

the first such successful study in 2005 [1], more than ten thousand disease susceptibility loci have been 

successfully identified and these findings have improved our understanding of the genetic background of 

human diseases. However, in spite of these successes in GWAS, causal genetic variants identified by 

GWAS explain only a small proportion of the heritability [2,3]. Various reasons, including the common 

disease/rare variant hypothesis, have been put forward to explain this so-called missing heritability [4]. 

However, the missing heritability is partially attributable to a large number of false negative findings 

induced by insufficient sample sizes when controlling for multiple testing [5], and various strategies, such as 

GWAS using multiple phenotypes or longitudinal data [6,7], have been considered to overcome these 

problems. The analysis of multiple phenotypes can suffer from their inherent heterogeneity, but the analysis 

of the multiple measures of the same phenotype provided by longitudinal data may avoid this issue and, if 

measurement errors are substantial, GWAS with longitudinal data can be expected to mitigate the sample 

size problem. 

Even though there are few GWAS using longitudinal data [8–10], compared to cross-sectional data 

longitudinal data have various useful features. First, although phenotyping is sometimes more expensive 

than the cost of genotyping, in those situations where the cost of genotyping is more expensive than that of 

phenotyping, repeated measurements at different time points have the virtual effect of enlarging the sample 

size. Second, with longitudinal data, the total phenotypic variance can be decomposed into among-subject 

and within-subject components. Third, phenotypes at different time points can be compared with baseline 

phenotypes and any confounding effect due to age can be prevented. Fourth, the onset of some diseases is 

sometimes affected by genetic variants, and gene × age interaction can be estimated with better accuracy. In 

this report, we conducted GWAS with longitudinal data in the Korean Association Resource (KARE) 

cohort. Phenotypes in the KARE cohort were measured every two years from 2001 to 2005, and we 

performed GWAS for eight phenotypes with three repeated measurements: systolic blood pressure (SBP), 

diastolic blood pressure (DBP), fasting plasma glucose (GLU0), 2-h OGTT glucose (GLU120), height, body 

mass index (BMI), high-density lipoprotein (HDL) and aspartate aminotransferase (AST). Results from the 

longitudinal GWAS were compared with those from GWAS using cross-sectional data, and our results 

showed that GWAS using longitudinal data provided more significant results. We identified 12 novel 

variants associated with phenotypes: rs11067763 (near MED13L) for DBP; rs12991703 (near MARCO) 
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and rs7197218 (in XYLT1) for GLU0; rs17178527 (in AK097143) for BMI; rs12292858 (in SIK3), 

rs11066280 (in HECTD4) and rs183786 (near ALDH1A2) for HDL; and rs10849915 (in CCDC63), 

rs3782889 (in MYL2), rs12229654 (near MYL2-CUX2), rs11066280 (in HECTD4) and rs2072134  

(in OAS3) for log-transformed AST. These variant associations were found to replicate in the Health 

Examinee (HEXA) cohort and thus illustrate the practical value of a longitudinal data analysis. 

2. Materials and Methods 

2.1. The Korean Association Resource (KARE) Cohort 

The KARE cohort consists of a total of 10,038 individuals (5018 and 5020 individuals from Ansung and 

Ansan, respectively). Participants ranged from 40 to 69 years old, and their phenotypes were consecutively 

measured with two-year intervals from 2001 to 2005. Among the 10,038 participants, 10,004 individuals 

were genotyped for 500,568 SNPs with the Affymetrix Genome-Wide Human SNP array 5.0. Individuals 

and SNPs with call rates less than 95% were excluded from the analysis. SNPs with p-values for  

Hardy-Weinberg equilibrium (HWE) less than 10−6, or with minor allele frequencies (MAF) less than 0.01, 

were eliminated. Furthermore, individuals with tumors, gender inconsistencies, or whose heterozygosity 

rates were more than 30%, or identity in state (IBS) more than 0.8, were excluded from the analysis [11]. In 

total, 8842 individuals with 352,228 SNPs were available at the baseline time-point. At the second and third 

time-points, there were some missing phenotypes, and phenotypes for 7568 and 6675 individuals, 

respectively, were available. 

2.2. The Health Examinee (HEXA) Cohort 

Independent individuals in the HEXA cohort were from a second population based cohort sample 

provided by the Health study. This study combines subjects from the Wonju, Pyeong Chang, 

Gangneung, Geumsan, and Naju regional cohorts in Korea. There are 120,000 participants in the 

HEXA cohort, 4302 of whom, between 40 and 69 years old, were randomly selected for genotyping 

with the Affymetrix Genome-Wide Human SNP array 6.0. Individuals in the HEXA cohort were used 

to replicate the significant findings found in the KARE cohort, and individuals with tumors, large 

heterozygosity rates, gender inconsistencies, evidence of non-Asian ancestry, or whose IBS was more 

than 0.8 or call rates were less than 95%, were excluded from analysis [12]. SNPs with p-values for 

HWE less than 10−6, genotype call rates less than 95%, or MAF less than 0.01, were excluded, and the 

remaining SNPs for 3703 individuals were used for the analysis. In particular, the HEXA cohort is  

a cross-sectional study, and if there are some SNPs which have a progressing effect on phenotypes, 

results from HEXA and KARE cohort could be heterogeneous. 

2.3. Sample Size Calculation for a Longitudinal Study 

Sample sizes required to achieve 0.8 power at the 10−8 significance level were calculated in both the 

presence and absence of population substructure. We denote the number of individuals and measurements 

for each individual by n and t, respectively. We assume that t is same for all individuals. The additively 

coded value of the genotype for individual i is denoted by Xi. We assume Hardy-Weinberg equilibrium and 

each individual’s genotype is assumed to follow a trinomial distribution. The effect of the disease allele is 
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assumed to be β. We assume a matrix of environmental effects that does not contain time-varying covariates 

for individual i, denoted by Zi, and its coefficient is assumed to be the column vector α. The columns of Zi 

denote each covariate. The phenotype for individual i at time-point j is denoted by Yij, and the corresponding 

t-dimensional vector by Yi. Letting 1t be the t-dimensional column vector with elements 1, Yi was assumed 

to be: 

2 2( ) ,  ~ (0, ), ~ (0, )i i i t i t i t i i c iX g c c N MVN       Y Z α 1 1 1 ε ε I
 (1) 

where ci indicates the random effect which explains the similarity of repeated measurements for each 

individual attributable to a non-polygenic effect. We denote σp
2 = σg

2 + σc
2 + σε

2 and ρ = σc
2/σp

2. Thus ρ 

measures the proportion of the variance of ci relative to the phenotypic variance. In particular, we included 

ig in the model to provide a polygenic effect for individual i, and assumed as an approximation 

1 2( , , , )ng g g g  follows the multivariate normal distribution with mean vector 0 and  

variance-covariance matrix
2σg , where Φ corresponds to the genetic relationship matrix. If 

2σg  is 0, the 

correlation matrix R of Yi becomes compound symmetric. The null hypothesis H0 is β = 0, and β is assumed 

to be βa under the alternative hypothesis. 

For sample size calculation, we assumed that there is no covariate effect other than the genotypes, and 

then we could assume that the environmental variable Zi is 1t. Then if we let πl = P(Xi = δl, Zi = 1) =  

P(Xi = δl) for the coded genotype δl where δ1 = 0, δ2 = 1 and δ3 = 2, and K = π1(π2 + 2π3)
2 + π2(π3 − π1)

2 +  

π3(1 + π1 − π3)
2, the required sample size for 1 − ϕ power at the significance level α can be derived  

to be: 

 
2

α 1
1

2

α 2

α

1 1 ρ

β

pz z
t

n
K t

 


 
 

     
 

 
(2) 

(see the Appendix for the detailed derivation). Liu and Liang [13] derived the required sample sizes when 

Xi is binary and our results are based on their derivations. We extend their result to Xi with arbitrary many 

levels. For nα, we assume that σc
2 + σ ε

2 = 1 and: 
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In the presence of population substructure, σg
2 is assumed to be larger than 0. The required sample size 

cannot be directly calculated, and we calculated na by simulation studies based on a Monte Carlo method. In 

our simulations, we assumed that σg
2 + σc

2 + σ ε
2 = 1 and the effect of disease the allele, β, was calculated 

with the following assumptions: 
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where these equations indicate that the proportion of genetic variance explained by the causal genotype is 

0.005 and heritability is 0.3. For convenience,  was assumed to be a compound symmetric  

matrix with off-diagonal elements 0.1. The off-diagonal elements are asymptotically equivalent to twice 

the kinship coefficient between two individuals, and 0.1 means that the individuals are genetically 

remote relatives. 

2

g
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2.4. Genome-Wide Association Studies (GWAS) Using Longitudinal and Cross-Sectional Data 

In the Korean Association Resource (KARE) data, eight phenotypes (SBP, DBP, GLU0, GLU120, 

height, BMI, HDL, and AST) were observed every two years from 2001 to 2005, so that three 

observations were available for each phenotype. Genotypes and phenotypes for 8842 individuals were 

initially available. However, there were some missing phenotypes for follow-up observations, and only 

7568 and 6675 individuals were observed for the second and third time-points, respectively. Reasons 

for dropout were not known, but may include death, immigration, and non-response. 

GWAS using longitudinal data were performed by generalized least squares using the nlme package 

in the R software. The phenotype for individual i is denoted by Yi which is a three dimensional vector. 

The matrix Zi indicates a covariate vector for environmental effects, including the intercept as the first 

column, and sex, age and age2 at the first time-point were included as covariates for all eight 

phenotypes. In particular, weight is known to be related to glucose levels, and thus it was included as 

an additional covariate for the GWAS of GLU0 and GLU120 [14,15]. The coefficient vector of Zi is 

denoted by a vector α. The effect of the time interval can be understood as the effect of aging, and it 

was denoted by the vector w. Here, w is a three-dimensional row vector and its coefficient is η. The 

population substructure between individuals was adjusted for with the EIGENSTRAT approach [16] 

and the remaining potential bias unadjusted by EIGENSTRAT was further adjusted for by the genomic 

control method [17]. In particular, the IBS matrix is often better than the identity-by-descent matrix for 

capturing the long-distance relationships that result from variations at the population level [18] and we 

used the IBS matrix for EIGENSTRAT. The first five principal component (PC) scores accounted for 

75% of the variation in the IBS matrix, and they were used as covariates to adjust for any population 

substructure. The PC score vectors for individual i and its coefficient vector are PCi and γ, respectively. 

The additively coded value of the genotype for individual i is denoted by Xi. The effect of the disease 

allele is assumed to be β. The variance-covariance matrix for εi is denoted Σ and assumed to be an 

unstructured symmetric matrix. For longitudinal analysis, our final model is: 

3( )i i i i iX      Y Z α 1 PC γ w ε  (5) 

where  (0,2,4)w , 1 2 3(ε ,ε ,ε )i i i i
ε  is distributed as ( , )MVN 0 Σ  for i = 1,2, …, 8842. 

Furthermore, we conducted GWAS using cross-sectional data for comparison with the GWAS using 

longitudinal data. For this we took the phenotypes at the first-time point in the KARE cohort, and the 

GWAS were conducted with linear regression. For the cross-sectional analysis, we used the same covariates 

except for time interval, with the linear model: 
5

1i i i i ik k ik
Y X PC  


   Z α

 
(6) 

where ε i  is distributed as 
2(0,σ )N  for i = 1,2, …, 8842. The results from longitudinal and cross-sectional 

data were compared. 

We tested whether there exist any interaction effects between our significant findings and environmental 

variables by adding interaction terms as covariates. We considered age, sex and time interval as 

environmental variables, and their statistical interaction with the SNPs were tested. Significant results were 

further tested for replication in the HEXA cohort (other than time interval, because the HEXA cohort only 

has cross-sectional data). Finally, we tested all the significant findings from the KARE cohort, as a 

discovery dataset, in the HEXA cohort, as a replication dataset. 
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3. Results 

3.1. Sample Size for a Longitudinal Cohort Design 

We calculated the sample size required to achieve 0.8 power at the genome-wide significance level  

α = 10−8 in both the absence and presence of population substructure. Figures 1 and 2 respectively show the 

required sample size nα, in the absence and presence of population substructure, as a function of the number 

of time points t and the common correlation ρ between phenotype measures on the same person. We found 

the required sample size nα is proportionally related to t and inversely related to ρ. Sample size is minimized 

for small ρ and large t, and the effect of t on sample size is maximal when ρ = 0. These results illustrate the 

practical efficiency of GWAS with longitudinal data. For instance, if ρ = 0.4 and t = 3, then 5158 individuals 

are sufficient to achieve 0.8 power at the genome-wide significance level and, compared to cross-sectional 

data, genotyping costs for 3438 individuals can be saved vs. the cost of obtaining 6878 phenotypes. 

Figure 1. Required sample size in the absence of population substructure. The sample size 

is indicated by n. The required sample size to achieve 0.8 power at the significance level  

α = 10−8 has been calculated as a function of t, the number of time points, and ρ, the 

correlation between measurements at two different time-points. 

 

3.2. Genome-Wide Association Studies (GWAS) with Longitudinal Data for Eight Phenotypes 

Tables 1 and 2 provide descriptive statistics for sex, age and other available phenotypes from the KARE 

and HEXA cohorts. These show that the distributions of phenotypes are similar in the HEXA cohort the 

KARE cohort at each time point. We checked the normality of the eight phenotypes with histograms. In 

particular, AST was not normally distributed and so was log-transformed. Figure 3 shows that  

log-transformed AST and the other seven phenotypes on the original scale are about normally distributed, so 

these were used for the GWAS. 
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Figure 2. Required sample size in the presence of population substructure. The sample size 

is indicated by n. The required sample size to achieve 0.8 power at the significance level  

α = 10−8 has been calculated as a function of t, the number of time points, and ρ, the 

correlation between measurements at two different time-points. 

 

Table 1. Sample sizes for Korean Association Resource (KARE) cohort. 

Time Point 

KARE 

1 2 3 

N(Ansan/Ansung) Age(s.d) N(Ansan/Ansung) Age(s.d) N(Ansan/Ansung) Age(s.d) 

Male 2374/1809 51.78(8.79) 1967/1642 53.71(8.82) 1758/1424 55.58(8.71) 

Female 2263/2396 52.61(9.02) 1764/2213 54.60(8.99) 1543/1950 56.48(8.90) 

Total 4637/4205 52.22(8.92) 3731/3855 54.18(8.92) 3301/3374 56.05(8.82) 

Table 2. Descriptive statistics for eight quantitative phenotypes examined in the  

Korean Association Resource (KARE) and Health Examinee (HEXA) cohorts. 

Time Point 
KARE Cohort 

HEXA Cohort 
1 2 3 

Phenotype Mean(s.d) N Mean(s.d) N Mean(s.d) N Mean(s.d) N 

SBP 121.65(18.61) 8842 118.6(17.3) 7504 116.6(16.62) 6646 121.69(14.36) 3703 

DBP 80.26(11.46) 8842 78.49(10.96) 7504 77.69(10.25) 6646 77.05(9.84) 3703 

GLU0 87.66(21.88) 8581 92.74(15.14) 6688 92.31(15.15) 5985 94.10(24.56) 3703 

GLU120 126.76(51.03) 8387 125.77(41.59) 4865 134.07(50.56) 5985 Not available 
 

height 160(8.67) 8842 159.93(8.74) 7461 159.95(8.76) 6596 161.49(8.10) 3703 

BMI 24.6(3.12) 8838 24.59(3.09) 7456 24.52(3.05) 6596 23.96(2.88) 3703 

HDL 44.65(10.09) 8841 46.27(9.90) 7495 44.04(10.25) 6640 54.60(13.27) 3703 

AST 29.81(18.41) 8841 24.67(14.95) 7495 25.87(19.02) 6640 24.51(12.94) 3703 

The results of the GWAS with longitudinal data in the KARE cohort were compared with the results 

from GWAS using cross-sectional data. For the cross-sectional data we used the phenotypes at the first  

time-point, applying linear regression. Population substructure was adjusted for with the EIGENSTRAT 

method, and five principal component (PC) scores were included as covariates in both the longitudinal and 

cross-sectional data analyses. We found that five PC scores explain roughly 75% of the kinship matrix, and 
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Table 3 shows the estimated variance inflation factors, λ, obtained by genomic control [17]. The estimated 

variance inflation factors from the longitudinal data analyses were always slightly larger than those from the 

cross-sectional data analyses, which suggests that longitudinal data analysis tends to be more sensitive to 

population substructure. Even though more detailed sensitivity analyses are necessary to confirm whether 

the model assumption for longitudinal data analyses are satisfied, our findings are probably not affected by 

population substructure because the quantile-quantile (QQ) and Manhattan plots for the eight phenotypes in 

Supplementary Figures 1–4 consistently show the validity of our analysis. 

Figure 3. Histograms for SBP, DBP, GLU0, GLU120, HEIGHT, BMI, HDL and log AST 

in the KARE cohort. 

 

Table 3. Inflation factors by genomic control. 

Phenotype Cross-Sectional Data Longitudinal Data 

SBP 1.040 1.051 

DBP 1.028 1.053 

GLU0 1.022 1.026 

GLU120 1.026 1.037 

height 1.069 1.071 

BMI 1.046 1.052 

HDL 1.034 1.039 

log AST 1.023 1.030 
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We calculated the correlations between the different time-points for each phenotype and they are 

presented in Table 4. The correlations for height and BMI are usually very large and those for log AST are 

the smallest. Therefore, the improvement in power on using longitudinal data is expected to be the most 

substantial for log AST, and it seems to be almost negligible for height and BMI. Tables 5 and 6 show the 

results from GWAS using longitudinal data and cross-sectional data in the KARE cohort, and the significant 

results were further tested in the HEXA cohort. The cross-sectional data for the KARE cohort are the first 

measurements for each individual in the longitudinal data. Cross-sectional and longitudinal data in the 

KARE cohort were analyzed with linear regression and a linear mixed model, respectively, and SNPs with 

p-values from either the cross-sectional or longitudinal data analysis less than 10−6 were selected for the 

replication studies. For the discovery analyses, the genome-wide significance level by Bonferroni correction 

is 1.4E − 07. For replication, we calculated the one-sided p-value for the direction from the longitudinal 

analysis using the KARE data, and used 0.05 as the significance level. Whenever the results from the two 

cohorts were in different directions, the p-values from the HEXA cohort were larger than 0.5. In Tables 5 

and 6, we added results from previous studies. If a SNP has not been significantly reported but SNPs in 

genes in linkage disequilibrium with it have been significantly reported, those SNPs are denoted by “*”. 

Tables 5 and 6 show that GWAS using the longitudinal data in the KARE cohort identified 29 significant 

SNPs, 20 of which have been reported in previous GWAS, while the cross-sectional data identified only  

19 genome-wide significant SNPs. Therefore we can conclude that the longitudinal data lead to substantial 

power improvement. In our GWAS using the longitudinal data, nine SNPs were newly detected, six of 

which were significantly replicated in the HEXA cohort. 

Table 4. Correlations between different time-points for each phenotype. 

Time point Phenotype 
Correlation between time-points 

1–2 2–3 1–3 

SBP 0.608 0.604 0.552 

DBP 0.550 0.596 0.517 

GLU0 0.700 0.795 0.822 

GLU120 0.675 0.748 0.715 

height 0.984 0.985 0.984 

BMI 0.942 0.941 0.916 

HDL 0.690 0.684 0.667 

log AST 0.444 0.432 0.468 

Table 5 shows that rs2401887 located in CALM1 is more significantly associated with SBP in the 

longitudinal data analysis. GWAS of DBP identified three significant SNPs; rs3025047 in the VEGFA gene, 

rs7100467 near SORCS1 and rs11067763 near MED13L. It has been reported that VEGFA is related to 

type-2 diabetes, coronary artery disease, age-related macular degeneration and body fat [19–21]. For GLU0, 

rs12991703 located near the MARCO gene was genome-wide significant using the cross-sectional data, and 

rs2191346 and rs6494306, which are respectively in linkage disequilibrium with DGKB and VPS13C, were 

more significant using the longitudinal data. 

rs7197218 in the XYLT1 gene, which is related to corneal astigmatism [22], was genome-wide 

significant using the cross-sectional data. rs6031492, located in GDAPL1L, is more significantly associated 

with GLU120 in the cross-sectional data analysis. Table 6 shows that we detected rs17178527 in AK097143 
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and rs11000212 in ANAPC16 as associated with BMI. rs12292858 in SIK3 was more significant using the 

cross-sectional data, and rs2238153 in ATXN2, rs11066280 in HECTD4 and rs183786 near ALDH1A2 

were more significantly associated with HDL by longitudinal data analysis. ATXN2, HECTD4 and 

ALDH1A2 have been reported to have significant associations for phenotypes related to HDL [12,23–34], 

and the significant associations for HECTD4 and ALDH1A2 were successfully replicated in the HEXA 

cohort. We also performed GWAS of log-transformed AST, and Table 6 shows nine significant SNPs, 

rs9837421 in SH3BP5, rs10849915 in CCDC63, rs3782889 in MYL2, rs12229654 near MYL2-CUX2, 

rs11066280 in HECTD4, rs11066453 in OAS1, rs2072134 in OAS3, rs12483959 in PNPLA3 and 

rs2143571 in SAMM50. Previous studies have reported that SH3BP5, CCDC63, MYL2 and OAS3 are 

related to alcohol dependence phenotypes [35–37], and PNPLA3 and SAMM50 are related to nonalcoholic 

fatty liver disease [38,39], and so our results strengthen their importance in liver disease. 

We also performed association analysis to detect gene×environment interaction, and SNPs that interact 

with aging, sex and time interval were identified by using the longitudinal data in the KARE cohort.  

Tables 7 and 8 list SNPs with p-values for gene×environment interaction less than 10−6. Table 7 shows that 

rs7197218 seems to be a promising candidate SNP for interaction with aging for GLU0, and Figure 4 shows 

that the age effects are substantially different for this SNP. However, the MAF of rs7197218 is 0.01456, and 

neither it nor any other SNPs that are in linkage disequilibrium with it, were found in the HEXA cohort. 

Thus the significant association of this SNP could not be confirmed and it will need to be further 

investigated in follow-up studies. Table 8 shows that rs2074356 and rs11066280 interact significantly with 

sex for HDL, and rs2074356, rs11066280 and rs12229654 do so for log-transformed AST. Interestingly, 

rs2074356 and rs11066280 have significant interaction effects with sex for both HDL and AST. We further 

confirmed these significant gene×environment interactions in the HEXA cohort. Based on the direction of 

the coefficients for these interactions, we calculated one-sided p-values, and the combined p-values by 

Fisher’s and Liptak’s methods [40,41]. It has been shown that the most efficient method is achieved by 

Liptak’s methods if the effect sizes are expected to be the same [42]. Table 9 shows that these significant 

interactions were further replicated in the HEXA cohort, and the combined p-values become smaller.  

Figure 4 shows that the effects of these SNPs are substantially different for males and females and, 

therefore, we can conclude that the effects of these SNPs are significantly different for males and females. 

In summary, we can conclude that GWAS with longitudinal data provide an efficient strategy, and our 

overall results show that the improvement in power is substantial, its effect being inversely proportional to ρ. 
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Table 5. Results for SBP, DBP, GLU0 and GLU120. SNPs with p-values less than 10−6 from cross-sectional or longitudinal data are listed. 

SNP Chr Position Nearby Gene Minor Allele MAF 

Discovery Replication 

Previously Published Cross-Sectional Longitudinal Cross-Sectional 

beta ± s.e P beta ± s.e P beta ± s.e one-side P 

SBP 

rs17249754 12 88584717 ATP2B1 A 0.3732 −1.63 ± 0.27 9.73E − 10 −1.27 ± 0.22 1.11E − 08 −0.86 ± 0.49 5.30E − 03 Cho et al NG 2009 [11] 

rs11066280 12 111302166 in HECTD4 T 0.1717 −1.45 ± 0.34 2.52E − 05 −1.59 ± 0.29 2.95E − 08 −1.65 ± 0.43 6.35E − 05 Kato et al NG 2011 [27] 

rs2401887 14 89952963 CALM1 C 0.02125 −3.19 ± 0.93 5.89E − 04 −3.84 ± 0.78 8.58E − 07 
   

DBP 

rs10030362 4 102841866 in BANK1 C 0.2081 −0.72 ± 0.21 4.34E − 04 −0.87 ± 0.17 3.21E − 07 −0.22 ± 0.27 2.11E-01 * Zhang et al Hypertension Res 2012 [43] 

rs3025047 6 43854388 in VEGFA A 0.01024 −2.65 ± 0.2 1.75E − 03 −3.64 ± 0.71 3.07E − 07 
   

rs7100467 10 108153198 SORCS1 T 0.02356 −2.43 ± 0.53 1.81E − 04 −2.82 ± 0.55 3.43E − 07 
   

rs17249754 12 88584717 ATP2B1 A 0.3732 −0.94 ± 0.17 4.33E − 08 −0.8 ± 0.14 2.01E − 08 −0.56 ± 0.23 8.50E − 03 Cho et al NG 2009 [11] 

rs11066280 12 111302166 in HECTD4 T 0.1717 −0.94 ± 0.22 1.97E − 05 −0.98 ± 0.18 9.25E − 08 −0.76 ± 0.38 5.35E − 03 Kato et al NG 2011 [27] 

rs11067763 12 114682724 MED13L G 0.3297 −0.78 ± 0.18 1.04E − 05 −0.79 ± 0.15 8.75E − 08 0 ± 0.35 5.04E − 01 
 

GLU0 

rs12991703 2 119536716 MARCO A 0.05655 3.62 ± 0.68 1.18E − 07 2.51 ± 0.58 1.55E − 05 −1.14 ± 0.7 9.11E − 01 
 

rs7754840 6 20769229 in CDKAL1 C 0.4761 1.8 ± 0.32 1.72E − 08 1.78 ± 0.27 5.16E − 11 0.98 ± 0.74 3.99E − 02 Kwak et al Diabetes 2012 [44] 

rs9460546 6 20771611 in CDKAL1 G 0.4808 1.75 ± 0.32 3.38E − 08 1.76 ± 0.27 3.76E − 11 
   

rs2191346 7 15020403 DGKB C 0.2891 −1.72 ± 0.36 1.33E − 06 −1.53 ± 0.3 3.64E − 07 −0.62 ± 0.62 1.55E − 01 
 

rs6494306 15 
 

VPS13C A 0.3435 −1.43 ± 0.33 1.71E − 05 −1.46 ± 0.28 1.92E − 07 −1.21 ± 0.59 2.08E − 02 * Manning et al NG 2012 [45] 

rs7197218 16 17319136 in XYLT1 G 0.01456 7.23 ± 0.68 1.23E − 07 4.29 ± 1.17 2.48E − 04 
   

GLU120 

rs7754840 6 20769229 in CDKAL1 C 0.4761 4.73 ± 0.78 1.51E − 09 4.73 ± 0.73 1.10E − 10 
  

Kwak et al Diabetes 2012 [44] 

rs12229654 12 109898844 MYL2-CUX2 G 0.1426 −4.84 ± 1.11 1.21E − 05 −5.16 ± 1.03 5.84E − 07 
  

Go et al J Hum Genet 2013 [46] 

rs2074356 12 111129784 in HECTD4 T 0.1467 −5.19 ± 1.09 2.02E − 06 −5.2 ± 1.02 3.44E − 07 
  

Go et al J Hum Genet 2013 [46] 

rs6031492 20 42330963 in GDAPL1L G 0.4949 3.84 ± 0.77 6.91E − 07 3.03 ± 0.72 2.81E − 05 
   

rs2868088 20 42347066 GDAPL1L A 0.4377 −3.99 ± 0.78 2.68E − 07 −3.54 ± 0.72 1.04E − 06 
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Table 6. Results for Height, BMI, HDL and log AST. SNPs with p-values less than 10−6 from cross-sectional or longitudinal data are listed. 

SNP Chr Position Nearby gene Minor Allele MAF 

Discovery Replication 

Previously Published Cross-sectional Longitudinal Cross-Sectional 

beta ± s.e P beta ± s.e P beta ± s.e one-side P 

Height 

rs17038182 1 118669928 SPAG17 G 0.4188 −0.45 ± 0.08 4.08E − 08 −0.45 ± 0.08 5.58E − 08 −0.13 ± 0.13 1.53E − 01 Cho et al Nat Genet 2009 [11] 

rs10513137 3 142626120 in ZBTB38 A 0.2605 0.49 ± 0.09 8.14E − 08 0.49 ± 0.09 5.85E − 08 0.43 ± 0.14 7.40E − 04 Kim et al J Hum Genet 2009 [47] 

rs6918981 6 34346492 RPL35P2-NUDT3 G 0.2092 0.55 ± 0.1 2.98E − 08 0.55 ± 0.1 1.72E − 08 0.1 ± 0.15 2.51E − 01 Kim et al J Hum Genet 2009 [47] 

BMI 

rs17178527 6 141947773 in AK097143 A 0.2486 −0.32 ± 0.05 2.96E − 09 −0.31 ± 0.05 6.35E-09 0.05 ± 0.08 7.47E − 01 
 

rs11000212 10 73625658 
in ANAPC16 in 

ASCC1 
G 0.2057 0.27 ± 0.06 1.85E − 06 0.28 ± 0.06 5.14E − 07 0.05 ± 0.08 2.90E − 01 

 

rs9939609 16 52378028 in FTO T 0.1262 0.34 ± 0.07 1.29E − 06 0.34 ± 0.07 7.36E − 07 0.23 ± 0.1 1.29E − 02 Cho et al Nat Genet 2009 [11] 

HDL 

rs271 8 19857982 in LPL T 0.2064 1.15 ± 0.19 4.84E − 10 1.12 ± 0.17 2.15E − 11 1.81 ± 0.38 7.70E − 07 
 

rs17482753 8 19876926 LPL T 0.1243 1.95 ± 0.23 8.83E − 18 1.91 ± 0.21 1.42E − 20 3.48 ± 0.46 2.71E − 14 Heid et al Circ Cardiovasc Genet 2008 [48] 

rs17410962 8 19892360 LPL A 0.1244 1.95 ± 0.23 8.25E − 18 1.91 ± 0.21 1.76E − 20 3.48 ± 0.46 2.35E − 14 
 

rs12686004 9 106693247 in ABCA1 T 0.2136 −1.26 ± 0.2 7.01E − 12 −1.37 ± 0.17 1.62E − 16 −1.19 ± 0.32 6.10E − 04 Kim et al Nat Genet 2011 [12] 

rs11216126 11 116122450 BUD13 C 0.2027 1.43 ± 0.19 2.69E − 14 1.36 ± 0.17 1.54E − 15 1.44 ± 0.5 7.45E − 05 Kim et al Nat Genet 2011 [12] 

rs6589566 11 116157633 in ZNF259 C 0.2176 −1.25 ± 0.18 1.10E − 11 −1.15 ± 0.17 4.47E − 12 −1.89 ± 0.32 8.15E − 08 
* Waterworth et al Arteriosclear  

Thromb Vasc Biol 2010 [49] 

rs12292858 11 116319189 in SIK3 C 0.1759 1.05 ± 0.2 7.73E − 08 0.88 ± 0.18 7.68E − 07 0.9 ± 0.35 1.11E − 02 
 

rs12229654 12 109898844 MYL2-CUX2 G 0.1426 −1.25 ± 0.24 6.42E − 09 −1.21 ± 0.2 7.35E − 10 −1.66 ± 0.46 1.25E − 04 Kim et al Nat Genet 2011 [12] 

rs2238153 12 110423930 in ATXN2 A 0.4579 −0.68 ± 0.16 8.76E − 06 −0.71±0.14 3.29E − 07 
   

rs11066280 12 111302166 in HECTD4 T 0.1717 −1.4 ± 0.15 3.10E − 12 −1.35±0.18 1.17E − 13 −1.92 ± 0.4 8.95E − 07 
 

rs2072134 12 111893559 in OAS3 A 0.1143 −1.39 ± 0.19 4.53E − 09 −1.31 ± 0.22 1.25E − 09 −1.36 ± 0.4 2.33E − 03 Kim et al Nat Genet 2011 [12] 

rs183786 15 56455402 ALDH1A2 T 0.305 −0.8 ± 0.16 8.53E − 07 −0.83 ± 0.15 2.33E − 08 −0.61 ± 0.33 3.13E-02 
 

rs16940212 15 56481312 LIPC T 0.3405 1.27 ± 0.16 1.05E − 15 1.3 ± 0.14 1.95E − 19 1.11 ± 0.47 2.04E − 04 Kim et al Nat Genet 2011 [12] 

rs6494005 15 56511816 in LIPC G 0.2678 −0.89 ± 0.2 1.34E − 07 −0.89 ± 0.15 5.82E − 09 −0.79 ± 0.39 1.05E − 02 
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Table 6. Cont. 

SNP Chr Position Nearby gene Minor Allele MAF 

Discovery Replication 

Previously Published Cross-sectional Longitudinal Cross-Sectional 

beta ± s.e P beta ± s.e P beta ± s.e one-side P 

rs12708980 16 55569880 in CETP C 0.0984 −1.67 ± 0.25 3.63E − 11 −1.65 ± 0.23 5.61E − 13 −1.88 ± 0.5 7.40E − 05 Kim et al Nat Genet 2011 [12] 

rs2156552 18 45435666 LIPG A 0.164 −0.89 ± 0.21 1.53E − 05 −0.93 ± 0.19 5.90E − 07 −1.15 ± 0.4 2.29E − 03 
Waterworth et al Arteriosclear  

Thromb Vasc Biol 2010 [49] 

rs4420638 19 50114786 APOC1 C 0.1121 −1.3 ± 0.16 4.21E − 08 −1.14 ± 0.21 1.23E − 07 −2.01 ± 0.47 1.88E − 05 Willer et al Nat Genet 2013 [50] 

AST 

rs9837421 3 15322297 in SH3BP5 G 0.193 −0.02 ± 0.01 2.14E − 04 −0.03 ± 0.01 5.79E − 07 0 ± 0 5.32E − 01 
 

rs10849915 12 109818005 in CCDC63 G 0.1758 −0.03 ± 0.01 2.00E − 06 −0.03 ± 0.01 1.81E − 08 −0.02 ± 0 3.68E − 02 
 

rs3782889 12 109835038 in MYL2 C 0.1726 −0.03 ± 0.01 3.79E − 06 −0.03 ± 0.01 7.26E − 09 −0.02 ± 0 2.02E − 02 
 

rs12229654 12 109898844 MYL2-CUX2 G 0.1426 −0.04 ± 0.01 7.34E − 08 −0.04 ± 0.01 4.74E − 11 −0.02 ± 0 2.80E − 02 
 

rs11066280 12 111302166 in HECTD4 T 0.1717 −0.05 ± 0.01 8.17E − 13 −0.05 ± 0.01 1.70E − 18 −0.03 ± 0 1.94E − 04 
 

rs11066453 12 111850004 in OAS1 G 0.1265 −0.03 ± 0.01 5.26E − 06 −0.03±0.01 8.72E − 07 −0.02 ± 0 7.75E − 02 
 

rs2072134 12 111893559 in OAS3 A 0.1143 −0.04 ± 0.01 7.31E − 08 −0.04 ± 0.01 8.42E − 09 −0.02 ± 0 6.75E − 02 
 

rs12483959 22 42657329 in PNPLA3 A 0.4157 0.03 ± 0 1.79E − 09 0.03 ± 0 1.02E − 12 0.03 ± 0 2.14E − 06 * Kamatani et al Nat Genet 2010 [38] 

rs2143571 22 42723019 in SAMM50 T 0.4136 0.02 ± 0.01 6.45E − 07 0.03 ± 0 7.73E − 10 0.03 ± 0 4.22E − 05 * Kawaguchi et al PLoS One 2012 [39] 
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Table 7. Gene × environment interaction effect in the KARE cohort. Interactions of time 

interval with SNP were tested, and p-values for SNPs with genome-wide significant 

interaction are listed. 

Effect 
rs7197218 for GLU0 

beta Std.Error p-value 

SNP 5.92 1.21 1.08E − 06 

time×SNP −1.27 0.25 2.65E − 07 

Table 8. Gene × environment interaction effect in the KARE cohort. Interactions of sex 

with SNPs were tested, and p-values for SNPs with genome-wide significant interaction 

are listed.  

Effect 
rs2074356 for HDL rs11066280 for HDL rs2074356 for Log(AST) rs11066280 for Log(AST) rs12229654 for Log(AST) 

beta Std.Error p-value beta Std.Error p-value beta Std.Error p-value beta Std.Error p-value Beta Std.Error p-value 

SNP −4.80 0.62 7.28E − 15 −4.69 0.58 4.60E − 16 −0.13 0.02 5.52E − 13 −0.17 0.02 2.81E − 20 −0.15 0.02 1.32E − 19 

sex×SNP 2.26 0.39 4.46E − 09 2.21 0.36 1.06E − 09 0.06 0.01 5.82E − 08 0.08 0.01 8.25E − 12 0.07 0.01 3.24E − 11 

Figure 4. Interaction effects of SNPs with sex or time interval. (a) Mean of GLU0 at each 

time-point for each of two rs7197218 genotypes (circles indicate homozygous genotypes with 

no minor alleles, triangles indicate heterozygous genotypes); (b-f) phenotypic mean of each 

genotype for males and females (blue and red lines indicate male and female, respectively). 

 

(a) (b) (c) 

 

(d) (e) (f) 

4. Discussion 

It is well known that longitudinal analysis is useful to detect aging effects, and statistically efficient for 

detecting significant associations. In this report, we numerically calculated the sample sizes required to 

achieve statistical power at the genome-wide significance level, and our results showed that the power is 

proportionally related to the number of observations on each individual and inversely related to the 
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correlation between the pairs of observations on an individual. In a large-scale genetic analysis, genotyping 

cost may be larger than the phenotyping cost, and then we can conclude that analyzing longitudinal data is 

an efficient strategy to improve the rate of false negative findings. However if the proportion of missing data 

is large, statistical power loss can be substantial; and if the missingness is not at random, even a small 

proportion of missing phenotypes can generate a serious bias [51]. In spite of the statistical efficiency of 

longitudinal data analysis, any possibility of potential bias from the missingness pattern should be carefully 

investigated; and it should be noted that a little carelessness can lead to a substantial bias. 

Table 9. Combined p-values for gene × environment interaction. For replication, interactions 

of sex with SNPs were tested in the HEXA cohort and a combined p-value was calculated 

using both Fisher’s and Liptak’s methods. 

Sex × SNP HEXA Cohort p-value 
Combined p-value Using  

Fisher’s Method 

Combined p-value  

Using Liptak’s Method 

rs2074356 for HDL 3.58E − 01 3.39E − 08 2.52E − 07 

rs11066280 for HDL 2.184E − 01 5.37E − 09 2.52E − 08 

rs2074356 for Log(AST) 4.86E − 02 5.86E − 08 4.41E − 08 

rs11066280 for Log(AST) 1.23E − 02 3.13E − 12 3.10E − 12 

rs12229654 for Log(AST) 7.42E − 03 7.22E − 12 4.96E − 12 

Furthermore, we performed GWAS with both longitudinal and cross-sectional data, and significant 

results from a longitudinal data analysis in the KARE cohort were further tested in the HEXA cohort.  

12 SNPs that have not been reported elsewhere were identified, and the significant p-values from replication 

studies strengthened the possibility that they are causal. In particular, GWAS with longitudinal data showed 

that rs3025047 is significantly associated with DBP even though it is not significantly associated in 

GWAS with cross-sectional data. The MAF of rs3025047 is 0.01, so it is a variant with relatively low 

frequency. In the HEXA cohort, rs3025047 was not available, nor were any SNPs in linkage 

disequilibrium with it. Even though further studies are necessary to confirm whether rs3025047 is a true 

causal variant, our analysis results illustrate that GWAS using longitudinal data can be an efficient 

strategy for rare variant association analysis. 

During the last decade, more than ten thousand GWAS successfully identified disease susceptibility loci, 

and these findings increase our understanding of diseases. However, the so-called missing heritability [4] 

reveals that efficient analysis algorithms should be investigated, and GWAS of longitudinal data seem to 

provide a useful strategy that may bridge the gap. 

5. Conclusions 

Analyzed as a repeated measure design, the power of longitudinal data is proportionally related to 

the number of observations on each individual and inversely related to the correlation between the 

multiple observations on an individual. This facilitates finding causal SNPs and their interactions with 

environmental variables, as well as with age and sex. In two Korean cohorts it enabled us to find  

12 novel genome-wide significant SNPs associated with eight phenotypes, and significant  

gene × environment interaction. Therefore, we can conclude that longitudinal data seem to provide 

efficient strategies for GWAS. 
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Appendix 

We assume that the null hypothesis is β = 0, and β = βa under the alternative hypothesis. According to Liu 

and Liang [13], the score for our hypothesis can be defined by: 

2
1

1
( )

n

i t i t i t i

ip

S 
 

    -1
X 1 R Y 1 X 1 Z α

 
(7) 

and we denote by   the expected variance-covariance matrix of the score function Sβ under the 

alternative hypothesis in the absence of population substructure. Letting  be the chi-square noncentrality 

parameter to achieve 1 – ϕ power at the α significance level, Liu and Liang [13] showed that the required 

sample size for the score test becomes: 
2( )a an v  

 (8) 

We let 1w be a w-dimensional column vector with elements 1. We assume that (Xi, Zi) can be (δl, ψl), 

where l = 1, … , L, and define πl = P(Xi = δl, Zi = ψl). If we assume l l tu 1 , diag( )l lD  is diagonal 

matrix, 
'

l l dJ 11 , l t lv J D , and d denotes the number of rows of lD , the elements of the Fisher 

information matrices for β and α are found to be: 
2 1I u R VP l l l

l

       and 2 1

P l l l

l

     I v R v . 
(9) 

In the absence of population substructure,   can be shown to be: 
2 1 1 1( ) ( )T T T

P l l l l l

l

             α αα αα α
u I I v R u v I I

 
(10) 

  

v



Int. J. Environ. Res. Public Health 2014, 11 12299 

 

 

Furthermore: 

1 1 1( ) ( )l l l t t l t t l d l       u R v 1 R J D 1 R 1 1 D  
(11) 

leads to: 

2 1 2 1( ) ( )P l l l P t t l l d l

l l

             αI u R v 1 R 1 1 D  (12) 

We let d d d
J 1 1  and, because l t l t d l

 v J D 1 1 D , we have: 

1 1 1( ) ( )l l l t t l t t l d l

     v R v D J R J D 1 R 1 D J D  
(13) 

Thus, we have: 

2 1 2 1( ) ( )P l l l P t t l l d l

l l

          ααI v R v 1 R 1 D J D  (14) 

Consequently, if we let 1 1( ( ))( ( ))l l d l l l d ll l         αα
Ω I I 1 D D J D , some tedious algebraic 

manipulations lead to: 

2 1 1( ) ( )T T T

P l l l l l

l

            α αα αα α
u I I v R u v I I  

2 2 1 1 1( ( ) 2 )P l l t t l t l l l

l

             1 R 1 1 R JDΩ ΩD J R JDΩ  

2 1 2( ) ( 2 )P t t l l l d l l d l

l

         1 R 1 1 DΩ ΩD J DΩ  

(15) 

If we denote 2( 2 )l l l d l l d ll
       1 DΩ ΩD J DΩ  by K , the required sample size becomes: 

2 2

1 2 12

2

( ) 1 ( 1)
( )

P

a a

a

z z t
n v

K t

   




    
    

 
 (16) 

because 1 (1 ( 1) )t t t t    1 R 1 . This completes the derivation for nα. 
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