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Abstract: Wheezing is often treated as a crucial indicator in the diagnosis of obstructive 

pulmonary diseases. A rapid wheezing detection system may help physicians to monitor 

patients over the long-term. In this study, a portable wheezing detection system based on a 

field-programmable gate array (FPGA) is proposed. This system accelerates wheezing 

detection, and can be used as either a single-process system, or as an integrated part of 

another biomedical signal detection system. The system segments sound signals into  

2-second units. A short-time Fourier transform was used to determine the relationship 

between the time and frequency components of wheezing sound data. A spectrogram was 

processed using 2D bilateral filtering, edge detection, multithreshold image segmentation, 

morphological image processing, and image labeling, to extract wheezing features 

according to computerized respiratory sound analysis (CORSA) standards. These features 

were then used to train the support vector machine (SVM) and build the classification 

models. The trained model was used to analyze sound data to detect wheezing. The system 

runs on a Xilinx Virtex-6 FPGA ML605 platform. The experimental results revealed that 

the system offered excellent wheezing recognition performance (0.912). The detection 

process can be used with a clock frequency of 51.97 MHz, and is able to perform rapid 

wheezing classification. 
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1. Introduction  

Asthma and chronic obstructive pulmonary disease (COPD) are common around the World. 

Because of air pollution and other environmental factors, the prevalence of asthma and COPD 

continues to grow. In 2009, approximately 25 million people in US had asthma, and there were 

approximately 300 million asthma sufferers worldwide in 2007 [1,2]. Analyzing the spectral density 

and power of respiratory sounds such as wheezing can yield valuable information. Lung parenchyma 

and pathological modifications have often been treated as a crucial indicator of asthma and COPD [3]. 

Current methods of diagnosing asthma include auscultation [4], spirometers, and determining peak 

expiratory flow to ascertain pulmonary conditions [5]. Conventional stethoscope auscultation is safe 

and convenient, but also extremely subjective, and cannot be generalized; thus, using auscultation to 

recognize wheezing is dependent on how experienced the practicing physician is. Although 

spirometers are used to measure lungs, spirometers induce patient discomfort and are inappropriate for 

long-term monitoring. 

In contrast to traditional manual wheezing detection methods, the use of recording devices to collect 

and analyze lung sounds has been extensively studied in recent years. The identification of abnormal 

lung sound characteristics using signal processing methods could help physicians to identify 

physiological mechanisms generated by lung sounds and their associated pathological links [6]. 

Because these signal processing methods are objective, their use may also help to establish a 

classification system to accurately quantify normal and abnormal breath sounds. 

It has been medically proven that asthma is a chronic disease from which recovery is not possible. 

Asthma sufferers have a high risk of suffocation when their asthma is acute, and 250,000 annual deaths 

are attributed to the disease [2]. Although asthma can be controlled effectively by long-term 

medication and monitoring, most asthma sufferers are unaware of the condition of their own asthma, 

and often stop treatment by themselves, causing repeated inflammation and fibrosis in their respiratory 

tracts, and worsening their lung function. Therefore, the establishment of a portable system for rapid 

wheezing detection, able to send out a warning during acute asthma attacks, is necessary. Moreover, 

such a portable system could also be used in home care. 

Wheezes are abnormal respiratory sounds that occur for certain duration of time. According to 

computerized respiratory sound analysis (CORSA) standards [7], wheezing is characterized by its 

dominant frequency (more than 100 Hz) and duration (more than 100 ms). Most researchers have 

analyzed wheezes based on spectrograms [8–11]; this is straightforward, and implementation is simple. 

However, spectrograms are vulnerable to noise disturbances, and can lack wheezing detection 

sensitivity. Certain approaches have thus been used to extract wheezing features [12–14]; for example, 

classification models have been combined with algorithms [15–18], but this requires a large number of 

coefficients determined through training. This requires immense computational resources, which are 

not available on portable devices. Another method identified wheezing episodes using image 
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processing [19–21] to analyze the edges of spectrograms. However, this method is severely dependent 

on the resolution of the spectrogram in question. High-resolution spectrograms can be used to improve 

the sensitivity of this detection system, but also require substantial computational resources. 

Improving recognition accuracy thus often requires an immense number of computational 

resources, and is difficult to implement on portable devices. Therefore, most conventional automatic 

wheezing detection systems have been built using desktop computers. To implement an automatic 

wheezing detection system on a portable device, digital signal processors (DSPs) are commonly used [22]. 

Although DSP has a high clock rate, DSP is inappropriate for wheezing detection because its 

computation process is based on sequential steps. Another method used a customized integrated circuit 

(IC) as a DSP coprocessor to detect rapid wheezing; this facilitated hardware acceleration and 

achieved real-time processing, but involved an immense number of computations. However, a 

customized IC for rapid wheezing detection is expensive, lacks flexibility, and is unable to be modified 

or integrated with other systems. 

Thus, the field-programmable gate array (FPGA) is ideally suited for building a portable rapid 

wheezing detection system. Such a portable system can be accelerated by applying an image 

processing algorithm using parallel computing hardware. The characteristics of wheezes in 

spectrogram can be treated as quasihorizontal lines with strong amplitude. Thus, there are many image 

processing techniques combined to preserve these characteristics and filter out unwanted noises.  

In order to achieve quick response to wheezing events, the frame blocking technique, which divides a 

spectrogram into sections of two seconds, can reduce responding time and demands of computing 

resources. Simultaneously, an optimal parameter set for support vector machine (SVM) model 

proposed in this research shows good accuracy and sensitivity of wheezing recognition. The proposed 

system was built as an independent wheezing detection silicon intellectual property (WDSIP), able to 

be integrated with other functional silicon intellectual properties (SIPs), e.g., universal asynchronous 

receiver/transmitter (UART), direct memory access (DMA), on system-on-programmable-chips 

(SoPCs) using the peripheral local bus (PLB) and MicroBlaze processor provided by Xilinx. This 

allowed for greater portability and reduced system volume. In contrast to a customized IC, an FPGA 

can be modified repeatedly, and can be flexibly integrated with other SIPs.  

2. Methodology 

2.1. Wheezing Detection Algorithm Process Flow 

The processing flow of our wheezing recognition system is shown in Figure 1, and has three parts: 

 Preprocessing: A short-time Fourier transform (STFT) is used to acquire an image containing 

the time-frequency relationship of the wheezing sound (spectrogram). 

 Forming an Image Mask from the Spectrogram: Noise is filtered using a bilateral filter and 

image processing methods (edge detection, multi-threshold image segmentation, image 

morphological processing) are used to pinpoint wheezing. A sifting process using two rules 

based on CORSA standards is also applied to ensure that objects in the image mask are wheezes. 

 Feature Extraction and Classification: Features which represent the wheezing components on 

the masked spectrogram are extracted and classified using an SVM. 
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Image processing of the spectrogram is the most crucial part of this process. Traditional methods 

directly analyze the edge of the spectrogram to detect wheezes [19,20], or check peak continuity using 

rules after the application of image processing techniques (e.g., mean filter) [21]. The proposed system 

uses a combination of these two methods: 

Bilateral filtering is used to both smooth the image by removing outliers, and preserve strong image 

edge components by giving both spatial and photometric domains weighted coefficients. 

Edge detection and multithreshold segmentation are combined to preserve image edges and retain 

high and isolated peaks during analysis. 

Figure 1. Wheeze detection algorithm processing flow. 

 

2.2. SoPC Hardware Architecture 

The proposed wheezing detection system was built as an independent WDSIP. The system was built 

in accordance with SoPC design flow, allowing a number of subsystems to be integrated into a single 

FPGA, and enabling data transmission between subsystems to be conducted completely on-chip. This 

reduced I/O speed requirements and additional IC usage of the target platform. This design also allows the 

system to be used independently or as a part of a broader physiological parameter measurement system. 

The Embedded Development Kit (EDK) [23] is a software suite provided by Xilinx for designing 

complete embedded programmable systems. As shown in Figure 2, the EDK allowed a soft processor, 

MicroBlaze, to be embedded in the proposed WDSIP, allowing the WDSIP to be integrated with other 

hardware IPs through the PLB. As long as the operational timing of the WDSIP satisfies the 

requirements of the PLB communication protocol, MicroBlaze can be used to control the setting of the 

corresponding register on the memory map. 

Figure 2. Integrated WDSIP with MicroBlaze processor. 
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2.3. Processor Local Bus (PLB) 

The proposed WDSIP requires a PC or a recording device to transfer data through the UART 

interface (i.e., the ZigBee module). Therefore, the WDSIP was implemented using a PLB interface [24], 

and MicroBlaze was used to transfer the sound data. The PLB is based on the IBM CoreConnect bus 

architecture standard for interconnecting MicroBlaze, cores, and custom logic circuitry [25]. The PLB 

arbiter handles bus arbitration and the transmission of data and control signals between masters and 

slaves. The output signals of the PLB masters are connected to the PLB arbiter, and the output signals 

of the PLB slaves are connected to a shared bus back to the PLB through the OR gates. The PLB 

arbiter thus handles arbitration by multiplexing signals from the masters, which own the PLB bus, onto 

a shared bus to which all slave inputs are connected.  

As shown in Figure 3, the timing of PLB master and slave communication can be divided into 

address and data exchange phases. At the start of a transmission, the master is programmed to set 

PLB_PAValid to “high” to start the address phase. Simultaneously, the master uses PLB_ABus to 

select a slave to receive the control signal. The communication mode depends on the PLB_Size signal 

when the slave is receiving or sending data; whether the operation is read or write depends on the 

PLB_RNW control. After the slave sets the Sl_AddrAck signal to “high,” the data transfer is initiated. 

After receiving or sending data, the slave sets the Sl_rdComp signal to “high” to confirm the 

completion of the read or write operation. Table 1 lists the control signals of the PLB interface.  

Figure 3. PLB read timing diagram. 

 

Table 1. PLB interface signals [25]. 

Signal Type Description 

PLB_Clk I Clock Signal. 

PLB_Rst I Reset when value = “1”. 

PLB_ABus I Address, select correspond slave. 

PLB_PAValid I Address valid, start of the address phase. 
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Table 1. Cont. 

Signal Type Description 

PLB_RNW I Read when value = “0” and write when “1”. 

PLB_BE O Specify the number of bytes when PLB_size = “0000”(Single data beat). 

PLB_size O PLB transfer size, indicates the transfer mode (data width, type, and length). 

Sl_addrAck O Slave address acknowledge. 

Sl_rdBus O Slave read data bus. 

Sl_rdDAck O Slave read data acknowledge. 

Sl_rdComp O Slave read transfer complete indicator. 

2.4. Proposed Wheezing Sound Detection System 

A detailed diagram of the architecture of the system platform is shown in Figure 4. The WDSIP was 

designed to be able to communicate with other cores through the PLB. As shown in Figure 1, the 

number of read/write operations necessary during bilateral filtering and image mask formation was 

determined to be massive. Thus, in the proposed WDSIP, on-chip memory is used to store intermediate 

data to avoid overusing PLB bandwidth and slowing the processing speed. The WDSIP was designed 

to use a single PLB slave. MicroBlaze is used only to write the sound data to the WDSIP and read the 

recognized result from the control register on the memory map. The memory management and 

function of each register are shown in Figure 5 and Table 2, respectively. Using these control registers, 

the WDSIP can be controlled using the calling function to read/write the corresponding address on the 

memory map. 

Figure 4. Integrated WDSIP with MicroBlaze (detail). 
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Figure 5. Memory management. 

 

Table 2. WDSIP internal register. 

Register Name Direction Description 

EX_RST I Reset the wheezes detection SIP. 

D_IN I Input raw data of breath sound. 

STATE O Current processing state for MicroBlaze monitoring. 

COUNT O Counting current input data for MicroBlaze processing bit-error check. 

RESULT I/O 
Detection result register, which will be cleared by MicroBlaze when 

result has been read. 

Because MicroBlaze controls the WDSIP using only the reset register, we designed a finite state 

machine (FSM) to control the internal processing flow (Figure 1). MicroBlaze can only scan the 

“STATE” register to check whether the FSM has entered the SVM state, and determine whether the 

current value in the “RESULT” register is valid. After reading a valid value from the “RESULT” 

register, MicroBlaze clears the “RESULT” register to prevent the future reading of wrong values. 

Our control FSM is based on the concept of the Moore machine, and its processing flow is shown in 

Figure 6. The red arrows represent the registers, which are mapped and controlled by using 

MicroBlaze, and other arrows represent the internal control signals of the WDSIP. When the external 

reset signal (EX_RST) is set to “low,” the FSM will enter the Rcv_sound state, and the input FIFO 

receives external data sent from MicroBlaze (in_fifo_en = 1). The FSM jumps to the next state only 

when the WDSIP has received a total of 8820 data packets (in_fifo_count = 8820). The input FIFO 

was designed to be constantly able (in_fifo_en = 1) to receive data, because incoming data may be 

input at any time to the UART input buffer. The operational timing diagram for the WDSIP is shown 

in Figure 7. 
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Figure 6. Wheeze detection control finite state machine (FSM). 

 

Figure 7. WDSIP timing diagram. 

 

3. Design of WDSIP 

Wheezing is characterized by its fundamental frequency and harmonics. Because these 

characteristics are continuous, spectrograms of wheezing present as quasihorizontal lines that reveal 

the strong presence of a determined frequency over a period of time. We designed a WDSIP able to 

rapidly distinguish the distinct edges of these wheeze episodes from background sound components on 

spectrograms. The main IPs of the WDSIP is described as follows. 

Idle

reset = 1

in_fifo_en = 0

Rcv_sound

in_fifo_en = 1  

EXT_RST = 0

In_fifo_count < 8820

Spectrogram

fft_start = 1

in_fifo_en = 1

fft_compl = 0

Bilateral Filter

filter_start = 1

in_fifo_en = 1

In_fifo_count = 8820

fft_compl = 1

filter_iter != 2

Forming Mask

edge_start = 1

multi_thre = 1

in_fifo_en = 1

filter_iter = 2

SVMs

feature_rd = 1

svm_start = 1

in_fifo_en = 1

mask_compl = 1

svm_done = 1

mask_compl = 0

svm_done=0

EXT_RST = 1

EXT_RST = 1

D_IN
RESULT

COUNT
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3.1. STFT Implementation 

After the WDSIP collects a frame of sound data, the FSM enters the STFT stage. To implement an 

STFT with a 50% overlapping Hanning window, the data must be temporary stored in dual-port RAM 

with a depth of 256. The operational mode of the dual-port RAM was set to read-after-write, allowing 

the just-stored data to be present on the output port with one cycle delay. This data is multiplied with 

the weights of the Hanning window to obtain the first data frame. The remaining port waits 128 cycles, 

then reads the next 128 points, to compute the second data frame, and so on. The actual hardware 

implementation for the 50% overlapping Hanning window is shown in Figure 8.  

Figure 8. Implementation of 50% overlapping Hanning window. 

 

3.2. Implementation of the Bilateral Filter 

The bilateral filter implemented in our WDSIP is based on that in [26]. We implemented the image 

filter in hardware by using a 7 × 7 bilateral filter mask. Thus, to obtain a single filtered central pixel, 

48 weights must be computed and multiplied by 48 neighbors in the window of the filter. To avoid a 

substantial number of computations requiring the use of external memory to store data, a line buffer 

and register matrix were used to implement the image filter mask. This allowed images to be processed 

to fill the next pixel at any time. The image mask shifts along the row direction at every pixel clock of 

the image. All neighborhoods required to be computed in the mask are obtained to calculate the 

weights in one pixel clock. A filtered image for the central pixel at every pixel clock can thus be 

obtained. This result could not be obtained using a desktop PC. The timing diagram shown in Figure 9 

illustrates the hardware implemented to fill the window of the filter using a delay line.  
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Figure 9. Filling the Masks by Line Buffer. 

 

The length of the delay line is related to the size of the image. The delay line was not implemented 

using shift registers, because processing large image sizes requires substantial hardware resources. The 

delay line in our system was implemented by using RAM, as shown in Figure 10. We set the depth of 

the RAM to be equal to the size of image in the row direction, and we set the operational mode to  

read-before-write. Thus, once a row of data is stored, and the next row of data has entered the RAM,  

it will first read the data in the RAM, whose column coordinates are the same as the current input data, 

and write the new data in the RAM to perform the delay line operation.  

Figure 10. Implementation of the line buffer. 

 

Bilateral filter can perform edge-preserving smoothing by applying weights which depend on 

Euclidean distance and radiometric difference of pixels. In order to reduce the demands on 

computational resources, the 7 ×  7 filter mask can be divided into eight groups because the 

geometrical location of the mask is radially symmetric. Furthermore, the coefficients of the filter are 

quantized and stored in the look-up tables (LUTs) to avoid using exponential function.  

3.3. Implementation of Multithreshold Image Segmentation 

In multithreshold image segmentation, a threshold is applied to a filtered spectrogram, an image 

object on the thresholded image is labeled, and the image objects are isolated using rules. The 

implementation of the image labeling system in hardware is shown in Figure 11. At first, the content of 

the class register array is cleared and preset to the initial value. Two pixels (P1 and P2) are then read 

and thresholded from the filtered image. The pixels are assigned to a label block, then temporarily 

labeled, and sent to temporary image memory and the delay lines simultaneously, to implement the 

moving window and perform connectivity checking, as shown in Figure 10. Because the label 

assigning block may generate two equivalent pairs at the same time, and the class register can only be 

updated by one equivalent pair at a time, the pairs generated by label assigning block are first 

processed by a combining block, which rearranges the input order of the labeling pairs, and ensures 
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that they are sent one-by-one. The temporary images are then read from the memory and connected by 

the content of the class register array.  

In order to isolate all wheezing components, the multithreshold image segmentation, which may 

require several iterations to apply different thresholds to filter images and check the characteristics of 

the image objects according to their time and frequency information, becomes the most time-consuming 

process in the proposed WDSIP. To maximize its speed and use of hardware resources, the solution is 

adding dual-port RAM and applying pipeline technique to image labeling system to achieve the 

highest possible clock rate and data throughput. However, only one port of the dual-port RAM can 

output pixels from the filtered image memory at the highest clock rate, because the other port is at the 

same time being used to implement the bilateral filter to write the output the filtered image; thus, the 

operational frequency of this port is 1/8 slower than the highest frequency in the system. As shown in 

Figure 12, we modified the system to implement a time division demultiplexer, which concurrently 

sends two pixels to the label assigning block, and returns the output of the labeling system to one-port 

output using the time division multiplexer. This maintains the processing pixel rate at the system’s 

maximum speed, and reduces the timing constraint inside the labeling system to half of the maximum 

speed of the system. 

Figure 11. Hardware architecture of image labeling. 

 

Figure 12. Modified raster scan for labeling system. 
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3.4. Implementation of Wheezing Mask Formation 

Because multithreshold image segmentation only checks the amplitude of the filtered image, many 

image objects it identifies meet CORSA standards, but not all of them are wheezing components. Edge 

detection thus extracts quasihorizontal lines with strong gradients from the image. Combining 

multithreshold image segmentation and edge detection to form an image mask, the spectrogram is 

masked, and the remaining objects, which are characterized by strong power intensities and strong 

edges, are considered wheezing components. The hardware implementation of the Prewitt operator for 

edge detection is shown in Figure 13. 

Figure 13. Edge detection processing elements. 

 

4. Results and Discussion 

4.1. Wheezing Sound Detection Results 

We applied the SVM classifier to predict whether sound data contained wheezes or normal sounds, 

based on the image properties of the spectrogram objects identified by the mask. As shown in Figure 14, 

we chose four parameters to extract the wheezing features: 

PCY: Frequency located at the centroid of the wheezing episode.  

PT: Time duration of the wheezing episode. 

PS: Slope of the wheezing episode. 

PAR: Area ratio of the wheezing episode/bounding box of the wheezing episode.  

These parameters were used to represent the shapes of the objects, and reduce the complexity of  

the classifier.  

Figure 14. Parameter for extracting wheezing features. 
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The SVM classifier must be trained for wheezing recognition before implementation. We used the 

RBF kernel function and grid search method to determine the corresponding   which yielded the most 

satisfactory result.  

Figures 15 show the accuracy of wheezing recognition corresponded to the coefficients of SVM 

model yielded by using various parameter sets. The performance of the system using various parameter 

sets was analyzed to verify that the selected parameters adequately assessed wheezing features and 

derive the most efficient parameter set. We analyzed breath sounds recorded at National Taiwan 

University Hospital [27], and divided these sounds into training samples and testing samples.  

The training samples consisted of sound samples recorded from 11 asthmatic patients and 10 healthy 

people. The testing samples consisted of sound samples recorded from 13 asthmatic patients and 12 

healthy people. All sound files were segmented into 2-second units. 

Figure 15. (a) Grid searching (Features: PT, PCY ); (b) Grid searching (Features: PT, PAR ); 

(c) Grid searching (Features: PT, PS ); (d) Grid searching (Features: PT, PCY, PAR); (e) Grid 

searching (Features: PT, PCY, PS); (f) Grid searching (Features: PT, PAR, PS); (g) Grid 

searching (Features: PT, PCY, PAR, PS). 

  

(a) (b) 

  

(c) (d) 
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Figure 15. Cont. 

  

(e) (f) 

 

(g) 

The training sample results revealed that the proposed system achieved an accuracy of up to 96.63% 

using the parameter sets (PT, PS) and (PT, PAR, PS). After we trained the SVM, we used the trained 

models to classify the testing samples. The performance (PER) of the recognition system was 

estimated by calculating the sensitivity (SE) and specificity (SP), defined in the following equations:  

            
                  

                                     
 (1) 

            
                  

                                      
 (2) 

                                      (3) 

The testing samples were analyzed using various parameter sets. The recognition system exhibited 

superior performance using the parameter sets (PT, PS) and (PT, PAR, PS), as shown in Table 3.  

We implemented the SVM model using the parameters (PT, PS), because these parameters used  

fewer hardware resources. The results of the implementation of this SVM in hardware are shown in  

Figures 16 and 17. The system recognizes wheezing episodes when the SVM output exceeds 26. 

Identical testing samples were sent to the platform through the UART port to confirm the wheezing 

detection performance of the WDSIP after the implementation of all functional blocks in hardware. 

Tera Term was used to connect the platform and set the band rate of serial port to 115,200 bps, to 

estimate the reliability of the UART transmission from a PC to the platform. We wrote a data set (0–2
32

) 
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to a file, and sent this file to the platform, where a program we had written compared the received data 

with an accumulator, the estimated error rate of UART transmission was obtained. The results show 

that no errors were observed when these 4,294,967,296 testing samples were sent to the platform. 

As mentioned, fixed-point operation in hardware allows the wheezing recognition error to be 

predicted. To estimate this error, we assumed that the wheezing recognition results of the software 

were correct, and compared them with the hardware results. The differences between the software and 

hardware results are listed in Table 4. The main factor that causes the discrepancy between these 

results is the depth of the LUT, in which the weight coefficients of the photometric filter are stored. 

The weight coefficients are quantized, the number of coefficients stored in the LUT is set to 8192, and 

the precision of the corresponding quantized coefficients is limited to 0.01. This limited precision can 

be considered the quantization error, which decreases the SNR of the wheezing signal, and impedes the 

performance of the wheezing recognition system. The performance of the recognition system in 

hardware and software is compared in Table 5.  

Table 3. Recognition results for different features. 

Selected Features TP TN FP FN Sensitivity Specificity Performance 

(PT, PCY) 128 209 21 13 0.907801 0.908696 0.908248 

(PT, PAR) 128 209 21 13 0.907801 0.908696 0.908248 

(PT, PS) 128 215 15 13 0.907801 0.934783 0.921193 

(PT, PCY, PAR) 128 209 21 13 0.907801 0.908696 0.908248 

(PT, PCY, PS) 124 221 9 17 0.879433 0.96087 0.91925 

(PT, PAR, PS) 128 215 15 13 0.907801 0.934783 0.921193 

(PT, PCY, PAR, PS) 124 221 9 17 0.879433 0.96087 0.91925 

Figure 16. Output of the wheeze detection system (wheezing case). 
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Figure 17. Output of the wheeze detection system (normal case). 

 

Table 4. Cross validation. 

Cross Validation between Software and Hardware 
Amount of 

Samples 

Software classifies as normal and hardware classifies as wheeze  6 samples 

Software classifies as wheeze and hardware classifies as normal 11 samples 

Total amount of errors 17 samples 

Error rate (Total amount of testing samples = 371) 0.0458 

Table 5. Recognition results from Matlab and hardware. 

 TP TN FP FN Sensitivity Specificity Performance 

Matlab 128 215 15 13 0.907801 0.934783 0.921193 

Hardware 125 216 14 16 0.88652482 0.93913043 0.9124486 

As shown in Table 5, the estimated performance of the wheezing recognition system in hardware is 

impeded because of the quantization error. The wheezing detection procedure is considerably affected 

by the quantization error because it relies on estimating the gradient by calculating the first derivative 

of the center pixel. To reduce the effect of the quantization error, the size of the LUT of the 

photometric coefficients can be increased to increase precision, however, this substantially increases 

the demand on hardware resources. Therefore, we used a new SVM model based on features extracted 

from the hardware directly, thus allowing the SVM to yield correct weights. 

4.2. Implementation Results of the WDSIP 

The WDSIP was implemented using a Xilinx Virtex-6 FPGA ML605 platform. The internal 

placement and routing of the FPGA is illustrated in Figure 18. The total hardware resources used by 

the WDSIP are listed in Table 6 and Figure 19. 
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Table 6. A summary of the resource usage by WDSIP. 

 Spectrogram 
Bilateral 

Filtering 

Image Labeling 

System 

Morphological 

Processing 

Total 

Used 

Slice Register 17511 12881 9228 6449 46069 

Occupied Slices 4095 3783 3436 3073 14387 

Block RAMs 62 69 48 20 199 

DSP Slices 57 66 55 14 192 

Figure 18. FPGA internal placement and routing. 

 

Figure 19. Implemented utilization.  

 

As shown in Table 6, spectrogram conversion was responsible for using the most hardware 

resources in the WDSIP implementation. This is because spectrogram conversion requires collecting 

8,820 points, and the resulting substantial block RAM demands were not taken into consideration 

when the depth of the FIFO was set to 8,820. Thus, the FIFO was switched to dual-port RAM to 

reduce block RAM usage. Moreover, the divider must be used to obtain the power intensities of the 

spectrogram, and this requires a substantial number of DSP slices to compute.  
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We applied a 7 × 7 window when processing the spectrogram by using bilateral filtering, but it is 

necessary to process more pixels than such a window allows at a time. Although we optimized the 

architecture of the bilateral filter by dividing the input pixels into eight subgroups, the internal stage of 

the bilateral filter (i.e., the photometric filter and spatial filter) still required considerable multipliers 

and adders. Thus, bilateral filtering was found to be responsible for the second-highest hardware 

resource demands in the system.  

To form the image mask, the temporary image created by the image labeling system after the first 

raster scanning, as well as the output of the properties scanning system, must be stored in dual-port 

RAM. To streamline operation and reduce processing time, we implemented additional dual-port 

RAM, as shown in Figure 12. The system requires three dual-port RAM modules to store these 

images, requiring a substantial amount of block memory.  

Implemented in hardware, the maximum speed of the WDSIP reached 51.97 MHz; a 2-second 

breath recording can thus be analyzed for wheezing in 0.07956 seconds. This is adequate for  

high-speed wheezing detection. We analyzed the power consumption of the WDSIP, and the results 

are shown in Table 7; the low power consumption of the WDSIP is appropriate for portable device 

applications. The WDSIP was compared with other portable device applications proposed in previous 

studies, as shown in Table 8. 

Table 7. A summary of power consumption of WDSIP. 

 Power (W) 

Logic Power 0.13203 

Signal Power 0.02470 

Total 0.15673 

Table 8. Comparison with previous studies. 

 
Bahoura 

[15] 

Lin et al. 

[27] 

Zhang et al. 

[14] 
Yu et al. [13] This Study 

Method 
GMM + 

MFCC 
MA + BPNN 

Sampling 

entropy 

Correlation 

coefficient 

Bilateral filter + 

SVMs 

Performance 

SE= 0.946 

SP= 0.919 

PER=0.932 

SE= 1.0 

SP= 0.895 

PER= 0.946 

Not 

mentioned 

SE= 0.83 

SP= 0.86 

PER= 0.844 

SE= 0.887 

SP= 0.939 

PER= 0.912 

Platform Laptop Laptop 
Laptop and  

PDA 

Laptop and 

PDA 

Standalone 

FPGA system 

Speed Slow Slow Fast Fast Very Fast 

5. Conclusions 

Wheezing detection systems have mostly been built on desktop PCs. However, these systems are 

slow and immobile. Especially in home care system, a portable device may reduce the patients’ 

discomfort. In this study, we designed a portable WDSIP that enables users to analyze wheezing 

without the use of a PC, which can be feasibly used in remote medical applications. The WDSIP 
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performed at an operational frequency of 51.97 MHz, when implemented using a Xilinx FPGA. The 

system is able to rapidly perform wheezing detection, which is unachievable using traditional methods. 

Designed to be compatible with Xilinx PLB and controlled using Xilinx MicroBlaze, the WDSIP 

offers a high degree of flexibility regarding its potential integration with other biomedical signal 

detection systems, into more complex SoPCs. Also, the power consumption is a major issue for  

PC-based wheezing detection system for long-term monitoring. By contrast, implementing WDSIP 

through advanced complementary metal-oxide-semiconductor (CMOS) process, which reduces the 

logical and signal power, can perform low power consumption further. 

However, the system still has considerable space for improvement: Its hardware must be optimized 

to reduce demands on hardware resources, and enhance its commercial applicability. Moreover, noise 

disturbances, and the computational error rate resulting from fixed-point operation, must be more 

adequately managed. Peripheral devices for the system, such as LCD displays or storage, must also be 

designed to enable doctors to use the system to diagnose lung diseases, and to allow the system to be 

implemented in remote medical assistance applications. 
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