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Abstract: In this study, a deconvolution procedure was used to create a variogram of oral 

cancer (OC) rates. Based on the variogram, area-to-point (ATP) Poisson kriging and p-field 

simulation were used to downscale and simulate, respectively, the OC rate data for Taiwan 

from the district scale to a 1 km × 1 km grid scale. Local cluster analysis (LCA) of  

OC mortality rates was then performed to identify OC mortality rate hot spots based on the 

downscaled and the p-field-simulated OC mortality maps. The relationship between  

OC mortality and land use was studied by overlapping the maps of the downscaled  

OC mortality, the LCA results, and the land uses. One thousand simulations were 

performed to quantify local and spatial uncertainties in the LCA to identify OC mortality 

hot spots. The scatter plots and Spearman’s rank correlation yielded the relationship 

between OC mortality and concentrations of the seven metals in the 1 km cell grid. The 

correlation analysis results for the 1 km scale revealed a weak correlation between OC 

mortality rate and concentrations of the seven studied heavy metals in soil. Accordingly, 

the heavy metal concentrations in soil are not major determinants of OC mortality rates at 

the 1 km scale at which soils were sampled. The LCA statistical results for local indicator 

of spatial association (LISA) revealed that the sites with high probability of high-high 

(high value surrounded by high values) OC mortality at the 1 km grid scale were clustered 
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in southern, eastern, and mid-western Taiwan. The number of such sites was also 

significantly higher on agricultural land and in urban regions than on land with other uses. 

The proposed approach can be used to downscale and evaluate uncertainty in mortality 

data from a coarse scale to a fine scale at which useful additional information can be 

obtained for assessing and managing land use and risk. 

Keywords: spatial deconvolution; spatial correlation; oral cancer; heavy metals; land use; 

p-field simulation; kriging 

 

1. Introduction 

The occurrence of oral cancer (OC) has increased rapidly in Taiwan during the last three decades. 

The incidence of OC in males increased 5.3-fold from 1982 to 2001 [1]. Oral cancer is the fourth most 

common cause of cancer-related deaths in Taiwan and the most common cause of cancer-related 

deaths in males [2,3]. Heavy metals concentrations in soil and vegetation are known to be directly or 

indirectly related to cancer occurrence [1–4]. Some studies [1–3] have indicated that, since OC is 

spatially related to chronic exposure to heavy metals, including arsenic (As), chromium (Cr),  

and nickel (Ni), the distributions of these heavy metals can be used to map the distribution of cancer 

occurrence in Taiwan. Moreover, based on the results of the spatial lag model, Chiang et al. [3,4] have 

shown that, in Taiwan, the concentrations of Ni and Cr in soil are spatially correlated with OC mortality.  

Su et al. [2] has shown that the prevalence of betel quid chewing and cigarette smoking is not 

highly related to the high OC mortality in Changhua County in Taiwan, which is, in fact, caused by the 

pollutants in land with various uses, such as by the heavy metals released by electroplating factories. 

The high mortality rates associated with nasopharyngeal, lung, intestinal, and mesothelioma cancers 

have shown significant associations with two land use types agricultural and urban [5].  

Relevant studies have indicated that heavy metal enrichment in soil is associated with human activities, 

especially in built-up areas and on agricultural land [6–10]. Su et al. [1] suggested that, along with 

betel quid chewing and cigarette smoking, long-term exposure to As or Ni is a risk factor for OC.  

Su et al. [1] also confirmed the finding by Yuan et al. [11] that oral cancer is significantly related to 

levels of Ni and Cr in the blood, which can be affected by long-term exposure to Ni and Cr in the 

environment. However, cancer mortality data are usually aggregated over irregular spatial supports 

(scales) (such as counties or districts) and consist of a numerator and a denominator (rate) [12].  

Oral cancer mortality rates, the data of soil samples, and land uses are usually recorded on various 

scales, causing potential difficulties in evaluating the strengths of their relationships. Therefore,  

this study disaggregated these data and mapped them at a scale at which the relationships among  

OC mortality rate, soil samples data, and land use could be identified effectively.  

In epidemiology, area-to-point kriging is increasingly used to change the support for incidences of 

cancer and other diseases and to map cancer mortality distributions. Area-to-point (ATP) Poisson 

kriging can be used to obtain maps of mortality risk in which the visual bias associated with map 

interpretation is reduced [13]. Since ATP Poisson kriging can effectively downscale and map cancer 

rates [13–17], cancer rate maps generated by this kriging method can reveal potential “hot spots” that 
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are not evident when aerial or aggregated data are used [14]. ATP kriging has also been used to 

estimate the distribution of cancer mortality rates [13,16,17]. Recently, Goovaerts [18] used ATP binomial 

kriging to map prostate cancer rates by combining individual-level data and census tract-level data. 

Bonyah et al. [19] used Poisson kriging to filter the noise in Buruliulcer incidence data, map the 

corresponding risk at a finer resolution, and estimate geographical clustering of the disease at the scale 

of administrative units. Local cluster analysis can be used to detect hot spots of OC mortality rate 

using a downscaled OC mortality map. Although ATP Poisson kriging provides the kriging variance 

that is required to measure the uncertainty, it cannot be used directly to quantify the uncertainty of 

statistics such as the Local Indicator of Spatial Autocorrelation (LISA) statistic [20].  

However, combining Poisson kriging with stochastic simulation can generate multiple realizations of 

the spatial distribution of disease risk to quantify uncertainty in the spatial distribution of health 

outcomes, which can then be translated into uncertainty in the locations of disease clusters [21,22],  

the presence of significant boundaries [23], or the relationship between health outcomes and putative 

risk factors [20]. Accordingly, multi-location uncertainty, which is the jointly prevailing uncertainty at 

many specific locations, can be used to evaluate the reliability of delineation hot spots based on the 

probability of the hotspot area [20]. 

Local Cluster Analysis (LCA) using the LISA statistic is widely used to identify local clusters or 

outliers of high or low cancer risk [12,20,24,25]. The LISA value, and hence the conclusion about the 

presence of clusters and outliers, is related to the neighborhood structure [20]. A negative LISA 

statistic indicates a negative local auto-correlation and the presence of a spatial outlier whose kernel 

value is much lower (higher) than the mean of the surrounding values [20]. Clustering of low (high) 

values results in positive values of the LISA statistic. Any studied unit (county, district, or grid node or 

raster cell) with a p-value lower than the significance level is classified as a significant spatial outlier 

(HL: high value surrounded by low values, and LH: low value surrounded by high values), or a cluster 

(HH: high value surrounded by high values, and LL: low value surrounded by low values) [20].  

Other studies [12,20] have also successfully used ATP kriging and LCA to identify clusters of low 

(LL) and high (HH) cancer mortality risk in various areas. Relationships between cancer mortality risk 

and land use can be identified by overlapping the downscaled and the simulated OC mortality LISA 

and land use maps. 

This study calculated variogram of OC rate by using a deconvolution procedure. Based on the  

de-convoluted variogram of the OC rates, ATP Poisson kriging was used to downscale the OC rate 

data for Taiwan from the district-level scale to a 1 km  1 km grid scale at which soil and land use 

samples were obtained. The scatter plots and Spearman's rank correlation yielded the relationship 

between the OC mortality and the concentrations of the seven metals in soil in the grid of 1 km cells. 

LCA was used to obtain LISA statistics to identify hot spots of OC mortality rate based on the 

downscaled OC mortality map. Moreover, the LISA values on each map which was generated by the 

p-field simulation were computed to illustrate how the uncertainty of the HH (hotspot) affected the 

OC mortality rate in the delineated hotspots. The relationship between OC mortality and land use was 

identified by overlapping the maps of the downscaled and the simulated OC mortality, the LISA statistic, 

and land use. 
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2. Experimental Section  

2.1. Data Collection 

Data on oral cancer mortality rates were obtained from the Atlas of Cancer Mortality in Taiwan [3]. 

The data included the OC age-standardized mortality rates (ASMR) of males in 343 districts from 

1972 to 2001 [3]. Heavy metals concentrations were obtained from a nationwide survey performed by 

the Environmental Protection Administration (EPA) in Taiwan and included concentrations of arsenic 

(As), cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn) in soil at depths 

of 0–15 cm. Samples were obtained using a grid of 100 ha cells. The heavy metal concentration in  

100 ha was the average of that in 30 points. A total of 2,183 soil samples were collected across 

Taiwan, except in the center of the study area. The data of the heavy metal concentrations in soil were 

obtained from Chiang et al. and Su et al. [1,3]. The scatter plots between oral cancer mortality rate and 

heavy metal concentrations in soil were performed to confirm their spatial correlation. 

Figure. 1. (a) Location of study area. (b) Locations of heavy-metal samples. (c) Land uses 

in study area. 

 
(a) 

 
(b) 

 

(c) 
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Land use data for year 1999 were obtained from the Soil and Water Conservation Bureau of the 

Council of Agriculture, Taiwan. Land use maps generated and digitized by the Soil and Water 

Conservation Bureau based on 1:5,000 aerial photographs taken in 1999 were used to distinguish 

among 33 land uses in a vector format. Based on the definitions of land uses that are used by the 

Construction and Planning Agency of the Ministry of the Interior, Taiwan, land uses were reclassified 

into five broad classes—agricultural, forest, built-up, grassland, and water body (Figure 1c). 

2.2. Area-to-point Poisson Kriging 

Before performing ATP kriging, the point support covariance of risk )(hCR or the semivariogram

)(hR  was obtained, and an iterative de-convolution procedure was used to calculate the area-to-area 

and area-to-point covariance of the risk. The de-convolution procedure and estimator of OC mortality 

variogram detailed by Goovaerts (2006) [15] was used to de-convolute the semivariogram of the risk. 

This procedure was performed by an R program. Kriging, a best linear unbiased estimator, is a method 

of interpolation in which the interpolated values are modeled using a Gaussian process that is governed 

by a spatial correlation. Moreover, kriging depends on the expression of a spatial correlation,  

and it minimizes the prediction errors, which are themselves estimated based on observed values of the 

variable of interest [26]. A semivariogram was used herein to represent spatial correlation,  

and is defined using three parameters, which are the nugget effect, the sill and the range. The nugget 

effect represents the micro-scale variation or measurement error. The sill represents the variance of the 

random field. The range is the distance at which data are no longer autocorrelated. 

The formula used to calculate the observed mortality rate in area iv , )( ivz [13,20] was:  

)(/)()( iii vnvdvz    (1) 

where )( ivn  is the population in area iv ; )( ivd  is the number of cases of OC mortality, and )( ivD  is a 

random variable that follows a Poisson distribution with an expectation of )( ivn
 


 
)( ivr , where )( ivr  

is the local risk of OC mortality.  

The OC risk at location u , )( ur  is estimated as a linear combination of K neighboring risks [13,20]: 
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where )(  ui  , which is the kriging weight at location u , is obtained by solving the following 
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where 1ij  if ji   and 0ij  otherwise; 
*m  is the population-weighted mean of the N rates,  

and )(  u is the Lagrange multiplier. Area-to-area covariance ),( jiR vvC is )}(),({ ji vZvZCov , which is 
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the weighted average of the point-support covariance between any two locations in areas iv and jv .  

Area-to-point covariance ),( uvC iR  is the weighted average of the point-support covariance between 

any location in area iv  and location u : 
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where iP  and jP  are the numbers of points used to discretize the two areas iv  and jv , respectively. 

Weight ssw   is the product of population sizes within points )( sun and )( sun  : 

)()( ssss ununw    
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The kriging variance associated with the ATP Poisson kriging estimator is: 
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2.3. Cluster Analysis 

The similarity between OC mortality rate at site v  and the average rate recorded over
 

)( vj  

neighboring geographical units v
 
is measured by [14,22,27] :  
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where m  and s are the mean and standard deviation, respectively, of the set of mortality rates at  

N sites; )( vz is the OC mortality rate at site v ; similarly, )( jvz  is the OC mortality rate at site jv , 

and )( vj is the number of neighboring sites v . 

This LISA value is the product of the kernel rate and the average of the neighboring kernel rates. 

The empirically determined LISA values computed using the above equation are compared with the 

value implied by the null hypothesis of complete spatial randomness. However, ATP Poisson kriging 

provides the kriging variance, which cannot directly quantify the uncertainty of the LISA statistic.  

As described by Goovaerts and Kerry et al. [21,22], this uncertainty was quantified by analyzing 1,000  

p-field simulated OC mortality rate maps. The LISA values computed for each map generated by the 

p-field simulation [21] were used to evaluate how the uncertainty in OC mortality rates impacted the 

delineation of hotspot areas. Correlations of LISA values between two areas were tested in 1,000 

simulations in order to compute the probability of an area belonging to a local cluster and the 
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probability of an area being a spatial outlier [21]. Based on the p-field simulation, the lth realization of 

the OC mortality rate at site u , )()(

ur l  was computed using the following equation:  

)()()(ˆ)( )()(

  uwuurur ll    (9) 

where 1000,...,1l ; },...,1),({ )( Buw l  are generated using non-conditional sequential Gaussian 

simulation and using the semivariogram of the risk, rescaled to a unit sill [21,22], and B is the total 

number of 1 km × 1 km cells. Further details and simulation results for this procedure can be found in 

the literature [21–23]. 

This study used stochastic simulations to map OC mortality rates simultaneously at many locations 

within the study area. The critical proportions, which are the number of realizations where the location 

is classified as HH clusters (joint probabilities), were 95%, 96%, 97%, 98%, and 99%. These proportions 

were used to measure spatial uncertainties when delineating the HH areas of OC mortality.  

The joint probability (Pj, spatial uncertainty) associated with HH OC mortality rate in m HH locations 

),,,,( 321 muuuu  is written as follows [20]: 

     
1000/),,,,(P 321 mpj uuuun   (10) 

where 1,000 is the number of simulations, and ),,,,( 321 mp uuuun   is the number of the 1,000 

realizations in which all simulated OC mortality rates at m locations are HH; m is the number of the 

locations in which the HH covered proportions in the 1,000 p-field realizations exceeds the critical 

proportions; np is the number of realizations in which the simulated OC mortality rates at those  

m locations are all HH in each realization in the 1,000 realizations. 

2.4. Kruskal-Wallis Test for Comparing Mean Mortality Rates for All Land Use Types  

In the analysis of variance performed to determine whether the mean mortality rate for each land 

use type significantly differed from that throughout the study area, a Box-Cox transformation was 

attempted to convert the distributions of these rates into normal distributions. However, this method 

failed. Therefore, a nonparametric Kruskal-Wallis test was performed to determine whether the median 

mortality rates for the six land use types significantly differed from each other. Before the Kruskal-Wallis 

test, the Levene test was performed to test the homogeneity of the variance in OC mortality rate across 

the six land use types. When a significant difference was identified by Kruskal-Wallis test, a one-tailed 

multiple comparison test was then performed to identify significant differences in the mortality rates 

among the six land use types. 

3. Results 

3.1. Downscaled Spatial Distribution and Variance in OC Mortality Rate  

Figure 2 shows the omni-directional variogram of the oral cancer mortality rate of males at the 

district scale. The presented de-convolution models were used to convert the support data from the 

district scale to the 1km scale. The experimental variogram was de-convoluted using the point support 

model (exponential model) using an iterative algorithm. De-convolution models with a range of 90 km 

were used to estimate the mortality rates in 1 km cells over the entire study area. The variograms on 
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the district-level scale and the 1 km scale have sill values of 11.0 and 25.0 (per 100,000 people)
2
, 

respectively. Figure 3a–g show the scatter plots for downscaled OC mortality rates and the seven 

heavy metal concentrations in soil at the 1 km scale and the 95% confidence intervals for the 

Spearman’s rank correlation. The ranges of all of the 95% confidence intervals are around 0.08. 

Additionally, the 95% confidence intervals for Cd, Cr, and Pb had negative values; those for the 

remaining heavy metals exceeded 0. The strongest correlations (0.29 to 0.37) appeared in the scatter 

plot between the As concentration and OC mortality rate. In contrast, the weakest correlations  

(−0.12 to −0.04) appeared in the scatter plot between the Pb concentration and OC mortality rate. 

Figure 2. Experimental variograms of OC mortality of males (per 100,000 people)
2
,  

and experimental variograms fitted by exponential model and de-convolution models over 

Taiwan island. 

 

 
 

Figure 3. The scatter plots and the 95% confidence intervals of Spearman’s rank 

correlation between (a) As and OC, (b) Cd and OC, (c) Cr and OC,(d) Cu and OC,  

(e) Ni and OC, (f) Pb and OC, (g) Zn and OC. 

 
(a) 

 
(b) 
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Figure 3. Cont. 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 
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3.2. Estimated Spatial Distribution of OC Mortality Rate and Local Moran Statistics 

Figure 4b shows the OC mortality rate in a grid of 1 km × 1 km cells, which was estimated using 

ATP Poisson kriging on district-scale data (Figure 4a). High mortality rates were found in southern, 

eastern, and mid-western Taiwan.  

Figure 4. (a) Male oral cancer (OC) morality rate for districts (per 100,000 population); 

(b) downscaled Male OC mortality rate in a grid of 1 km × 1 km cells (per 100,000 

population); (c) variance in OC rate predicted by area-to-point (ATP) Poisson kriging  

(per 100,000 population)
2
; (d) population in each district. 

 
(a)  

(b) 

 
(c) 

 
(d) 
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Figure 4c shows high variances in OC predictions obtained by ATP Poisson kriging for central 

Taiwan, including the central mountains. Figure 4d shows the population in each district. The 

populations in central Taiwan and the central Mountains are lower than those in all other districts. 

Figure 5 shows the LISA maps generated by a Local Moran statistical test with the OC rates 

downscaled by ATP Poisson kriging. Almost all hot spots throughout Taiwan yielded significant 

results in the Local Moran statistical test. The high OC mortality areas (HH) tended to be concentrated 

in southern, eastern, and mid-western areas of Taiwan. The low OC mortality areas (LL) tended to be 

concentrated in northern and central Taiwan. 

Figure 5. A local indicator of spatial association (LISA) map based on oral cancer 

mortality rate downscaled by area-to-point (ATP) Poisson kriging. 

 

3.3. Correlation between Land-use and OC Mortality Rate 

For each land type, Figure 6 shows boxplots of OC mortality rates estimated by ATP Poisson 

kriging. The median OC mortality rate for agricultural land approximated 6.5 per hundred thousand 

people, which exceeded that for other land types. Grassland had the lowest mortality rate  

(3.0 per 100,000 population). The mean OC mortality rates for agriculture land, bodies of water,  

and built-up areas were significantly higher than the overall rate, but those in forestland and grassland 

were significantly lower. The variance in mortality rate was the lowest in built-up areas  

(9.8 (per 100,000 population)
2
) and highest in forestland (12.8 (per 100,000 population)

2
), where it 

exceeded the variance of mortality rate throughout the entire study area. The Kruskal-Wallis test also 

revealed a significant difference (p-value < 0.001) in OC mortality rates among land use types.  

The one-tailed multiple comparison test showed that agricultural land, water, and built-up land use 

types had significantly high OC mortality rates compared to other land use types. 
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Figure 6. Boxplots of oral cancer (OC) mortality rates (per 100,000 people) downscaled by 

ATP Poisson kriging throughout study area (Total) and on land of different types—agricultural 

land (Farm), forestland (Forest), grassland (Grass), water body (Water), built-up (Urban),  

and others (Others). 

 

Table 1 presents the proportions of hot spots on the six land types as estimated by ATP Poisson 

kriging. In each land type, the coverage by hot spots significantly differed from that in the overall 

study area. In agricultural land, bodies of water, built-up land, and land with other uses, coverage by 

hot spots was significantly larger than that of the overall study area. In contrast, coverage by hot spots 

was significantly lower in forestland and grassland compared to the overall study area.  

Agricultural land had the highest hotspot coverage (47%) while grassland had the lowest coverage (19%). 

Table 1. Proportions of hot spots on land of six types, estimated using ATP Poisson kriging. 

Land type Hotspot (%) 

Farm 46.4 

Forest 25.8 

Grass 19.3 

Water 36.2 

Urban 37.4 

Others 41.4 

Entire area 32.5 

3.4. p-field Simulation of OC Mortality Rate 

The spatial distribution of OC mortality rate was simulated 1,000 times using p-field simulation. 

Figure 7a–c show the OC mortality rate in the 1st and 8th of the 1,000 realizations, and the mean OC 

mortality rate of all 1,000 realizations, respectively. All three maps show that high mortality rates were 

concentrated in southern, eastern, and mid-western Taiwan. The uncertainty associated with the 

mortality maps was represented by the differences among the realizations. Figure 7d shows the LISA 

maps obtained by a Local Moran statistical test using the mean OC mortality rate from the 1,000  
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p-field simulations. Many areas in Taiwan yielded significant differences (hot spots and cold spots) in 

the Local Moran statistical tests. The hot spots (HH; High-High) of high OC mortality were in 

southern, eastern, and mid-western Taiwan (Figure 7d), and the cold spots (LL; Low-Low) of low OC 

mortality were in northern and central Taiwan. Figure 7e shows the proportion of hot spots  

(High-High) in 1,000 p-field realizations, which provides a measure of local uncertainty associated 

with a single location (grid) [20]. The areas with high (95%) hotspot coverage were located in 

southern, eastern, and mid-western Taiwan. The joint probabilities for the critical proportions 95%, 

96%, 97%, 98%, and 99% (spatial uncertainties) of areas covered by hot spots were 0.22, 0.31, 0.42, 

0.60, and 0.74, respectively. Figure 7f also shows the simulated distribution of OC mortality rates over 

the entire study area, which revealed a high (98%) reliability (>0.6).  

Figure 7. (a) The oral cancer (OC) mortality rate in the 1st realization (per 100,000 

population); (b) OC mortality rate in the 8th realization (per 100,000 population); (c) mean OC 

morality rate in 1,000 p-field realizations (per 100,000 population); (d) LISA map based on 

mean OC mortality rate data in 1,000 p-field realizations; (e) proportion of study area covered 

by hot spots (High-High) in 1,000 p-field realizations; (f) area of simulated distribution of  

OC mortality rates over the entire study area with a high (98%) reliability (>0.6). 

 

(a) 

 

(b) 
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Figure 7. Cont. 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

4. Discussion 

This study downscaled Taiwan OC mortality rate data from the district scale to a 1 km × 1 km grid 

scale and then added soil sample data and land use data for identifying the relationship between the  

OC mortality rate and land use. The scatter plots and Spearman's rank correlation yielded the 

relationship between OC mortality and concentrations of the seven metals in the grid with 1 km cells. 
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They show a weak correlation between the concentrations of the seven heavy metals in soil and the  

OC mortality rate at the 1 km scale. Local cluster analysis (LCA) identified hot spots of OC mortality 

(high-high; areas of high morality surrounded by areas with high mortality) in the 1 km grid cells that 

were clustered in southern, eastern, and mid-western Taiwan. High-high sites were significantly more 

prevalent on agricultural land and built-up land than on land with other uses. The 1,000 simulations of 

the OC mortality rate quantified local and spatial uncertainty in LCA results and further indicated  

OC mortality hotspots.  

4.1. Analysis of Variograms and the Relationship between OC and Heavy Metals 

The variogram of male oral cancer mortality rates shows a spatial structure with a low nugget effect 

(Figure 2). Therefore, the mortality rate data show a high spatial autocorrelation. The large difference 

between the experimental variogram and the de-convoluted variogram was resulted from their large 

difference in scale. All scatter plots between the mortality rate and heavy metal concentrations  

(Figure 3a–g) reveal a very weak relationship. According to the interpretation of the Spearman's 

correlation coefficients [28], the correlations between OC mortality and the seven heavy metals are 

categorized to the low or weak level. Therefore, a weak correlation between the concentrations of 

heavy metals in soil and the rate of mortality associated with oral cancer at the 1 km scale was 

observed in the study area. The findings differ slightly from those of previous studies that determined 

that concentrations of As, Cr and Ni in soil are spatially correlated with OC mortality rate [2–4,11] at 

the district scale in Taiwan. We supposed that the 1 km scale is too small to reflect accurately the dose 

of heavy metal to which residents are exposed. Additionally, the deposition of heavy metals from 

airborne pollutants can be observed at a much smaller scale (near the emission source) than the scale 

used for soil sampling herein. Therefore, the highly spatial correlation between exposure to heavy 

metals and deposition of heavy metals from airborne pollutants is revealed at district level but not at 

the 1km scale. 

4.2. Analysis of OC Mortality Patterns  

Oral cancer is more concentrated in the mid-western and southern parts of Taiwan than elsewhere 

(Figure 4a). The distribution is similar to that of mortality rates, as estimated using ATP Poisson 

kriging (Figure 4b). The survival rate in each district is not determined. ATP Poisson kriging provides 

the variability of prevalence within each district (Figure 4c), and shows that districts in the central 

mountainous area exhibit high predicted variability because they have low populations. 

To identify the hot spots of OC mortality rate, LISA statistics were computed using data that were 

downscaled by ATP Poisson kriging. The kriging generates smoother OC rate surfaces. The smoothing 

effect of kriging tends to enhances spatial autocorrelation in the OC rate map, with the rate of inflating 

artificially cluster sizes [20]. The predicted variance in the OC rate explains the variation in the kriging 

estimates. Predicted variance was high only in the cluster in the center of the study area, which made 

that cluster unreliable. The unreliability in this area did not affect the results of further analysis.  

Hot spots associated with a high risk of OC mortality rate were concentrated in southern and eastern 

areas of Taiwan and in Changhua County in mid-western Taiwan. These areas have numerous 

electroplating plants, which can produce severe heavy metal pollution. Additionally, Changhua county 
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ranks only 11th out of 23 counties in betel quid chewing in Taiwan [4,29–31]. The cigarette smoking 

and betel quid chewing rates that were obtained from a survey at the county level show that not all of 

the hot spots were in areas of high cigarette smoking or betel quid chewing rates (Figure 8a–f) [1]. 

Although the surveyed samples were not very large (46 to 1,381), they sufficed to confirm that 

cigarette smoking or betel quid chewing may not be the dominant factors in the accelerated incidence 

of OC in Changhua County. These findings support the association between OC mortality and the 

number of industrial facilities in a district [32,33].  

Figure 8. (a) Prevalence of betel quid chewing (%), (b) prevalence of cigarette smoking 

(%); (c) lower bound of 95% confidence interval of prevalence of betel quid chewing (%), 

and (d) prevalence of cigarette smoking (%); (e) upper bound of 95% confidence interval 

of prevalence of betel quid chewing (%), and (f) prevalence of cigarette smoking (%) 

 

(a) 

 

(b) 

 

(c) 

 

(d) 
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Figure 8. Cont. 

 

(e) 

 

(f) 

However, the concentrations of the seven heavy metals in soil near many such facilities are not 

unusually high. We suspect that the deposition of heavy metals in soil from airborne pollutants may be 

observed at a much smaller scale (near the emission source) than that used herein in soil sampling. 

Based on a study conducted in Changhua County, Su et al. suggested that chewing betel quid may be 

just an inducer of oral cancer but that heavy metal pollutants act as promoters in the development of 

oral cancer [1]. Other studies have suggested that a high prevalence of betel quid chewing and cigarette 

smoking are the main causes of seriously high oral cancer mortality rates in southern and eastern 

Taiwan [1,4]. However, further surveys of betel quid chewing and cigarette smoking data with a high 

confidence level are needed. Additional survey data would improve analyses of associations between 

OC and cigarette smoking or betel quid chewing. 

4.3. p-field Simulation of OC Mortality Rate 

The distribution of mean OC mortality rate in 1,000 p-field realizations (Figure 7c) is similar to that 

downscaled by ATP Poisson kriging (Figure 4b). Based on this consistency, the distributions of the hot 

spots that are calculated from mean OC mortality rate data in 1,000 p-field realizations (Figure 7d) are 

expected to be similar to the distributions obtained after data are downscaled by ATP Poisson kriging 

(Figure 5). Additionally, the locations of the hot spots as determined from the OC mortality rate 

downscaled by ATP Poisson kriging are locations with high proportions of hot spots in the 1,000 

realizations. However, in this study, the purpose of using p-field simulations to determine OC mortality 

rate was to quantify uncertainty in the LCA results. At a given critical proportion (95%, 96%, 97%, 

98%, or 99%), a higher joint probability indicates greater reliability of mapped hotspot locations.  

The proportions of hot spots obtained over the entire study area in the 1,000 realizations are consistent 

with the hotspot distributions in each realization when the critical proportion of hot spots exceeded 

98% with a joint probability >0.6 or exceeded 97.5% with a joint probability > 0.5. Kerry et al. [22] 

identified HH hotspot areas in which the proportion of hot spots exceeded 75%.  

Goovaerts [20] showed that a 90% proportion was reliable for identifying high mortality from cervical 
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cancer whereas a 75% proportion yielded the least reliable results. Unlike Goovaerts [20] and  

Kerry et al. [22], this study calculated joint probabilities to evaluate spatial uncertainty in the reliability 

of delineated hot spots. Given the 98% proportion and high reliability (>0.6) obtained in this study,  

the area of the simulated distribution of OC mortality rates over the entire study area was significantly 

smaller than that determined by ATP Poisson kriging (Figure 7f). However, the OC mortality risk may 

be low in the mapping of HH areas when the critical proportion is greater than 98%.  

4.4. Spatial Patterns of OC Mortality in Different Land Use Types  

The mean OC mortality rate and proportion of hot spots in agricultural land, near bodies of water, 

and in built-up areas significantly exceeded those in other land use types. This finding is consistent 

with the finding of Wei et al., who found that mortality from cancer may be higher in areas with high 

proportions of agricultural land or in built-up areas than elsewhere [5]. In this study, land used for 

industrial plants was classified as built-up land. People who live near factories or in agricultural areas 

in Taiwan typically have a higher than normal risk of exposure to heavy metals because, in recent 

decades, wastewater discharged from factories into agricultural land has caused severe heavy metal 

contamination [3,29]. This finding is consistent with studies that human activity, most of which occurs 

in built-up areas and on agricultural land, is associated with increased concentrations of heavy metals 

in soil [6–10]. Therefore, soil can reveal the amounts of heavy metals in the environment and the risk 

of heavy metals exposure in nearby residents [1,34]. Many studies have shown that, at the district scale, 

heavy metal concentrations in soil are highly correlated with the development of OC [1–4,11,35].  

This study found that exposure to heavy metals varies according to land use type and supports earlier 

studies showing that people who live near factories and in agricultural areas have a higher than normal 

risk of OC [1,11]. However, further research is needed to identify the main cause of the increased  

OC risk in people living in agricultural land and in urban areas in Taiwan. 

5. Conclusions 

Spatial correlations between the occurrence of OC and heavy metal concentrations in soil have been 

widely reported, however, this study revealed that these correlations were weak, especially given the 

spatial structure of OC occurrences. The de-convolution approach yielded variogram of OC mortality 

in a grid of 1km cells, and the scatter plots and Spearman's rank correlations yielded the relationship 

between the OC mortality and concentrations of the seven heavy metals in the grid with 1km cells. 

Land use showed a strong association with OC, particularly in agricultural land and built-up areas. 

However, mean OC mortality rates as well as the proportions of land covered by hot spots were 

significantly higher in agricultural land and in built-up areas than in other land use types.  

However, although this study identified a strong correlation between OC occurrence and land use, 

further evidence is needed to confirm this relationship and the high OC mortality rate in agricultural 

land and built-up areas. Stochastic simulation methods with Poisson kriging are highly reliable for 

delineating hot spots and for quantifying the local and spatial uncertainties in OC mortality rate and 

can provide the information that decision-makers and policy-makers need for effective environmental 

planning and management. The information obtained by the proposed approaches to calculating  

OC mortality can be considered when making land use decisions.  
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