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Abstract: In this study,a deconvolution procedure was useccteatea variogramof oral
cancer (OC) rate Based on the variogrgrareato-point (ATP) Poisson krigingand pfield
simulationwereused to downscalend simulate, respectivelihe OC rate data for Taiwan
from the district scaldo a 1km x 1 km grid scale. Local cluster analysis (LCA) of
OC mortality rate was then performetd identify OC mortality ratehot spots based on the
downscaledand the gield-simulated OC mortality map. The relationship between
OC mortality and land use was studi®&y overlapping the maps of the downscaled
OC mortality, the LCA results, and the land us@mne thousand simuians were
performed to quantify local and spatial uncertainties in the LCA to identify OC mortality
hot spots. The scatter plots and Spearn@anrank correlationyielded the relationship
betweenOC mortality andconcentrations of the seven metaisthe 1 km cell grid. The
correlation analysisesults for the km scale revealed a weak correlation between OC
mortality rate and concentrations thie severstudiedheavy metalsn soil. Accordingly,

the heavy metal concentrations in soiénot major determinants @C mortality rates at

the 1km scale at which soils were samplétie LCA statistical results folocal indicator

of spatial associatiollLISA) revealedthat the sites witthigh probability ofhigh-high
(high value surrounded bydh values)OC mortalityatthe 1km grid scale were clustered
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in southern, eastern, and mweéstern Taiwan. The number of such sites was also
significantly higher on agricultural land and in urban regions than on land with other uses.
The proposed approaccan be used to downscaed evaluate uncertainty mortality

data from a coarse scale to a fine scale at which usefiitionalinformation can be
obtained for assessing and managing land use and risk.

Keywords: spatialdeconvolution spatialcorrelation oral cancerheavy metalsland use
p-field simulation kriging

1. Introduction

The occurrence of oral cancer (OC) has increased rapidly in Taiwan duringtttiedasdecades.

The incidence of OC in males increasedfsld from 1982 to 201 [1]. Oral cancer is the fourth most
common cause of canesrlated deaths in Taiwan and the most common cause of aateted

deaths in malef2,3]. Heavy metals concentrations in soil aretjetationare known to be directly or
indirectly related to ancer occurrencgli 4]. Some studie$li 3] haveindicatal that, since OC is
spatially related to chronic exposure to heavy metals, including arsenic (As), chrq@mm

and nickel (Ni), the distributions of these heavy metals can be used to map the distribution of cancer
occurrence in TaiwarMoreover, based on the results of the spatial lag m@dehnget al. [3,4] have

shown that, in Taiwan, the concentrations of N &r in soil are spatially correlated with OC mortality.

Su et al. [2] has shownthat the prevalence of betel quid chewing and cigarette smoking is not
highly related to the high OC mortality in Changl@auntyin Taiwan, which is, in fact, caused by the
pollutants in land with various uses, such as by the heavy metals released by electroplating factories
The high mortality rates associated with nasopharyngeal, lung, intestinal, and mesothelioma cancer:
have shwn significant assaations with two land use typesgricultural and urban 5].
Relevant studies have indicated that heavy metal enrichment in soil is associated with human activities,
especially in buitup areas and on agricultural laf@i 10]. Su et al [1] suggested that, along with
betel quid chewing and cigarette smoking, kegn exposure to As or Ni is a risk factor for OC.
Suet al.[1] also confirmed the finding byuan et al. [11] that oral cancer is significantly related to
levels of Ni and Cr in the blood, which can be affected by-kengn exposure to Ni and Cr in the
environment. Howevergcancer mortalitydata are usually aggregated over irregular spatipports
(scales) (sch as counties or districts) and consist of a numerator and a denominator 1Zhte) [
Oral cancermortality rates, thalataof soil samples, and land uses are usually recorded on various
scales, causing potential difficulties in evaluating the strengths of their relation$higefore
this studydisaggregatedhese data and magg themat a scale at which the relationshipsong
OC mortality rate, soil samples data, and land use could be identified effectively.

In epidemiology, areto-point kriging isincreasingly usetb change the support for incidences of
cancer and other diseases and to map cancer mortality distnfutreato-point (ATP) Poisson
kriging can be used to obtain maps of mortality risk in which the visual bias associated with map
interpretation is reduced. §]. Since ATP Poisson krigingan effectivelydownscale and map cancer
rates[13/ 17], cancer ratenaps generated by this kriging method can reveal potéhtglspots that
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are not evident when aerial or aggregated data are [adpdATP kriging has also been used to
estimate the distribution of cancer mortality rate%16,17]. Recently, Goovaert§18] used ATP binomial
kriging to map prostate cancer rates by combining indivithval data and census trdevel data.
Bonyahet al. [19] usedPoissonkriging to filter the noise irBuruliulcer incidence data, map the
corresponding risk at a finers@ution, and estimate geographical clustering of the disease at the scale
of administrative units. Local cluster analysis canusedto detect hot spots of OC mortality rate
using a downscaled OC mortality majgdthough ATP Poisson kriging provides theding variance

that is required to measure the uncertainty, it cannot be used directly to quantify the uncertainty of
statistics such as thd.ocal Indicator of Spatial AutocorrelationLIGA) statistic [20].
However, combining Poisson krigingith stochastic simulation can generate multiple realizations of
the spatial distribution of disease risk to quantify uncertainty in the spatial distribution of health
outcomes, which can then be translated into uncertainty in the Iacafiahsease clsters[21,22],

the presence of significant boundarj@8], or the relationship between health outcomes and putative
risk factors[20]. Accordingly, multilocation uncertainty, which is the jointly prevailing uncertainty at
many specific locations, can lsed to evaluate the reliability of delineation Bpbts based on the
probability of the hotspot arg¢aq].

Local Cluster Analysis (LCA) using the LISA statistic is widely used to identify local clusters or
outliers of high or low cancer rigd 2,20,24,25]. The LISA value, and hence the conclusion about the
presence of clusters and outliers, is related to the neighborhood strigfluré negative LISA
statistic indicates a negative local aatwrelation and the presence of a spatial outlier whoseskern
value is much lower (higher) than the mean of the surrounding vi20esClustering of low (high)
values results in positive values of the LISA statistic. Any studied unit (county, district, or grid node or
raster cell) with a ywalue lower than theignificance level is classified as a significant spatial outlier
(HL: high value surrounded by low values, and LH: low value surrounded by high values), or a cluster
(HH: high value surrounded by high values, and LL: low value surrounded by low v§A@gs)
Other studieg12,20] have also successfully used ATP kriging and LCA to iderdifisters oflow
(LL) and high (HH) cancer mortality risk in various areas. Relationships between cancer mortality risk
and land use can be identified by overlapping thergcaledand the simulate@C mortality LISA
and land use maps.

This study calculated variogram of OC rate by using a deconvolution procedure. Based on the
de-convolued variogramof the OC rates, ATP Poisson kriging as usedo downscale the OC rate
data for Taiwan from the distrietevel scale to a km 3 1 km grid scale at which soil and land use
samples were obtained. Tlseatter plots andpearman's rankorrelationyielded the relationship
betweenthe OC mortality andhe concentrations of the seven metalsoil in the gridof 1 km cells.

LCA was used to obtain LISA statistics to identify hot spots of OC mortality rate based on the
downscaled OC mortality maploreover the LISA values on each map which was generbtethe

p-field simulation were computed to illustrate how the uncertainty of the HH (hotspot) affected the
OC mortality rate in the delineated hotspdthe relationship between OC mortality and land use was
identifiedby overlapping the maps of the dowalsdand the simulate®C mortality, the LISA statistic,

and land use.
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2. Experimental Section
2.1.Data Collection

Data on oral cancer mortality rates were obtained from the Atlas of Cancer Mortality in T3jwan
The data included the OC agtandardized mortality rates (ASMRj males in 343districts from
1972 to 2001 3]. Heavy metals concentrations wexigtainedfrom a nationwide survey performed by
the Environmental Protection Administration (EPA) in Taiwad &ncluded concentrations of arsenic
(As), cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn) in soil at depths
of O 15 cm. Samples were obtained using a grid @ Aa cells.The heavy metal concentration in
100 ha was thevarage of that in 30 point&\ total of 2183 soil samples were collected across
Taiwan except inthe center of the studyrea The data oftie heavy metatoncentrations in soil were
obtained from Chiangt al.and Suet al.[1,3]. The scatteiplotsbetween oral cancer mortality rate and
heavy metatoncentrations in soWwereperformedo confirm their spatial correlation

Figure. 1.(a) Location of study aregb) Locations of heawnetal sampledc) Land uses

in study area
South Kgrea /.
uth KQ L ﬁ
Japan '},
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Land use data for year 1999 were obtained from the Soil and Water Conservation Bureau of the
Council of Agriculture, Taiwan. Land use maps generated and digitized by the Soil and Water
Conservation Bureau based on ,Q® aerial photographs taken in 1999 were used to distinguish
among 33 land uses in a vector format. Based on the definitions of land uses that are used by the
Construction and Planning Agency of the Ministry of the Interior, Taiwan, land usesegtastied
into five broad classés agricultural, forest, budtp, grassland, and water bo@iigure1c).

2.2. Areato-point PoissorKriging

Before performing ATP kriging, the point support covariance of Ggfh)or the semivariogram
g-(h) was obtained, and an iterative-cienvolution procedure was used to calculate the-tarasea
and aredo-point covariance of the risk. The-denvolution procedurand estimator o©OC mortality
variogramdetailed byGoovaert§2006)[15 was used to deonvolute the semivariogram of the risk.
This procedure was performed by an R program. Krigangest linear unbiased estimaisra method
of interpolation in which the interpolated values are modeled using a Gaussian process Weahelgo
by a spatial correlation. Moreover, krigindepends on the expression of a spatial correlation,
and it minimizes the prediction errors, which are themselves estimated based on observed values of th
variable of interest[26]. A semivariogram was esl herein to represent spatial correlation,
and is defined using three parameters, which are the nugget effect, the sill and the range. The nugge
effect represents the micezale variation or measurement error. The sill represents the variance of the
random field. The range is the distance at which data are no longer autocorrelated.

The formula used to calculate the observed mortality rate invarez(V; ) [13,20] was

z(v;) =d(v;)/n(v) (1)

wheren(V,) is the population in are®, ; d(Vv,) is the number of cases of OC mortality, db(l) is a
random variable that follows a Poisson distribution with an expeataf n(v;) 3 r(v), wherer(v)
is the local risk of OC mortality.

The OC risk at locatiom,, , r(u,) is estimated as a linear combinatioiafeighboring risk$13,20]:

fu,) =4 /,0.)2) @

where /,(u,) , which is the kriging weight at locatiou,, , is obtainedby solving thefollowing

system ofquations:

A/, )éCR(v.,v)+d ()u +mu,)=Co(viu,) i=1..K

=1

a/t)=t €

where g =1 if i:j and g, =0 otherwise;m is the populatiorweighted mean of the N rates

and nfu,)is theLagrange multiplierAreato-area covariancéR(\/i ,Vj)is CoZ(Vv),Z(v,)} , whichis
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the weighted average of the pesupport covariance between any two locations in aveasdv; .
Areato-point covarianceC.(V;,u,) is the weighted average of the pespport covariance between
any loation in areav, and locationu,, :

= 1 1]
CR(V| !Vj) = Wa a W$ic(us’usi)
a a Wssi s=1 si=1
=1 s (4)

R
CalvU,) =8 W, C(u,.u,)
aw, =
A (5)
whereP and P, are the numbers of points used to discretize the two afeasdv,, respectively.
Weightw,, is the product of population sizes within poim,) and n(u,):

W =n(u,) 3 n(uy)

R P
with & n(u,) =n(v;) and & n(ug) =n(v,) (6)
s=1 s=1
The kriging variancassociated witthe ATP Poisson kriging estimator is

sz(ua)=6R(O)- a/i(ua)ER(Vi’ua)' ”(ua) (7)

i=1

2.3. ClusterAnalysis

The similarity between OC mortality rate at sweand the average rate recorded oyév,)
neighboring geographical univs is measured bj14,22,27] :

N 2i(va) 5 - mgd

ez(v,)- mg, a1, ez(v;)- mad

|(V):,—
u : € u
? s Ugmiv) & s a2

(8)

wherem and Sare the mean and standard deviation, respectively, of the set of mortality rates at
N sites z(v,)is the OC mortality rate at site, ; similarly, z(v,) is the OC mortality rate at sitg,
and j(v,)is the number of neighboring sites.

This LISA value is the product dhe kernel rate and the average of the neighboring kernel rates.
The empirically determined LISA values computed using the above equation are compared with the
value implied bythe null hypothesis of complete spatial randomniessvever,ATP Poisson krigig
provides the kriging variance, which cannot directly quantify the uncertainty of the LISA statistic.
As described by Goovaerts and Keetyal.[21,22], this uncertainty was quantified by analyzing 1,000
p-field simulated OC mortality rate maps. The LISA values computed for each map generated by the
p-field simulation[21] were used t@valuatehow the uncertainty in OC mortality rates impacted the
delineation of hotspot area€orrelations of LISAvaluesbetween two areas were tested Q0D
simulations in order to compute the probability of an area belonging to a local cluster and the
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probability of an area being a spatial out[i2t]. Based on the-peld simulation, thdth realization of
the OC morthity rate at siteu, ,r’(u,) was computed using the following equation:

rO(u,) =Hu,) +s U)W’ (u,) (9)

wherel =1,...1000; {w" (u,),a =1...,B} are generated using naonditional sequential Gaussian
simulation and using the semivariogram of the risk, rescaled to a urj2ls#P], and B is the total
number of 1km x 1 km cells. Further details and simulation results for this procedure can be found in
the literaturg 217 23].

This study usedtschastic simulation®d map OC mortality rates simultaneously at many locations
within the study areal'he critical proportions, which are the number of realizations where the location
is classified as HH clusters (joint probabilities), were 95%, 96%, 97%, 98%, and B8%eproportions
were used to measure spatial uncertainties when delineating the ki afeOC mortality.

The joint probability (R spatial uncertainty) associated with HH OC mortality rate in m HH locations
(u,u,,u;,? ,u_)is written as followq20]:

P, =n,(u,u,,u;,? ,u,)/1000 (20

where 1,000 is the number of simulations, amdu,,u,,u,,? ,u,) is the number of the 000
realizations in which all simulated OC mortality rates at m locatewasHH; m is the number of the
locations in which the HH covered proportions in the 1,06Id realizationsexceedshe critical
proportions;n, is the number of realizations which the simulated OC mortality rates at those
m locations are all HH in each realization in the 1,000 realizations.

2.4. KruskalWallis Testfor ComparingMeanMortality Ratesfor All Land Use Types

In the analysis of variance performed to determinetindreghe meanmortality ratefor eachland
use type significantly differed from that throughout the study,aaeBoxCox transformation was
attempted to convert the distributions of these rates into normal distributions. However, this method
failed. Therefore, a nonparametric Kruskéallis test waperformedto determine whether thmedian
mortality rate for the six landuse typesignificantly differed from each otheBefore the KruskaWallis
test, the Levene test was performed to testibmogeneity of the variance in OC mortality rate across
the sixlandusetypes. When a significant difference was identified by Kru$kallis test, a on¢ailed
multiple comparison test was then performed to identify significant differences matidity rates
among the six landse types

3. Results
3.1.DownscaledSpatial Distributionand Variancein OC Mortality Rate

Figure 2 showghe omnidirectional variogram of the oral cancer mortality rafemalesat the
district scale. The presented-denvolution models were used to convert the supgata from the
district scaleo the 1km scaleThe experimental variogram was-denvolutedusing the point support
model (exponential model) usira iterative algathm. De-convolution modelsvith a range of 9&m
were used to estimate the mortality rates kmlcells over the iire study area. The variograman
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the districtlevel scale and the km scale have sill values of 11.0 and 2fp@r 100,000 peopl®)
regectively. Figure 3a g show the scatter plots for downscaled OC mortality rates and the seven
heavy metal concentrations in sa@it the 1 km scaleand the 95% confidence intervals for the

S p e a rsmamkcorrelation. The ranges of all of the 95% confidence intervals are around 0.08.
Additionally, the 95% confidence intervals for Cd, Cr, and Pb had negative values; those for the
remaining heavy metals exceeded 0. The strongest correlations (0.29 to P&a@dip the scatter

plot between the Asoncentration and OC mortality rate. In contrast, the weakest corrslation
(T0 . 1 20.04) appéadin the scatter plot between the Pb concentration and OC mortality rate.

Figure 2. Experimentalvariogramsof OC mortality of males (per 100,000 peopl&)
and experimental variogranigted by exponential modelnd deconvolution model®ver
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3.2.EstimatedSpatial Distributionof OCMortality RateandLocal MoranStatistics

Figure4b shows the OC mortality rate in a grid okih x 1 km cells, which wagstimatedusing
ATP Poisson krigingon district-scale dataKigure4a). High mortality rates were found in southern,
eastern, and midiestern Taiwan.

Figure 4. (a) Male oral @ancer (OC)morality rate fordistricts per 100,000 population);
(b) downscaledMale OC mortality rate in a grid of km x 1 km cells per 100,000
population); €¢) variance in OC rate predicted lareato-point (ATP) Poisson kriging
(per 100,00(opulation? (d) population in each district.
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Figure 4c showshigh variances in OC predictions obtained by ATP Poisson kriging for central
Taiwan including the central mountainsFigure 4d shows thepopulation in each district. The
populations incentral Taiwan and theentral Mountainsare lower than those in all other districts.
Figure 5 shows the LISA maps generated bylLacal Moran statistical test with the OC rates
downscaled by ATP Poisson kmgj. Almost all hotspots throughout Taiwan yielded significant
results in the Local Moran statistical test. Tiigh OC mortality areas (H) tended to be concentrated
in southern, eastern, and migstern areas of Taiwan. The low OC mortality afga3$ tended to be
concentratech northern and central Taiwan.

Figure 5. A local indicatorof spatial associatiofflLISA) map based on oral cancer
mortality rate downscaled areato-point (ATP) Poisson kriging.

[(JNot Significant
M High-high (HH)
M High-low (HL)
M Low-low (LL)
M Low-high (LH)

3.3. Correlation betweehanduse and OQMortality Rate

For each land typefFigure 6 shows boxplots of OC mortality rateestimaed by ATP Poisson
kriging. The median OC mortality rate for agricultural land approximated 6.%yedredthousand
people, which exceed that for other land types. @&ssland ha the lowest mortality rate
(3.0 per 100,000 populationT.he mean OC mortality rates fagriculture land bodies of water,
and builtup areasveresignificantly higher than the overall rate, but those in forestland and grassland
were significantly lower. The variance in mortality rate was the lowest in -bpiltareas
(9.8 (per 100,000population? and highest in forestland (12(Ber 100,000population?), where it
exceeded the variance of mortality rate throughout the entire atedyThe KruskalWallis test also
revealed a significant differencg-¢alue < 0.001) in OC mortality rateemongland use types.
The onetailed multiple comparison test showed that agricultural land, water, aneupugéind us
types had significantliigh OC mortality rates compared to other land use types.
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Figure 6. Boxplots of oral cancefOC) mortality rateg(per 100,000 peoplejownscaled by

ATP Poisson kriging throughout study area (Taak} on land of different typésagricultural
land (Farm), forestland (Forest), grassland (Grass), vieawdy (Water), builtup (Urban),

and others (Others).
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Table 1 presents the proportions of hot spots on the six land tygesirmstedby ATP Poisson
kriging. In each land type, theoverage by hot spots significantly differed from that in the overall
study arealn agricultural land, bodies of water, builp land, and land with other uses, coverage by
hot spots was significantly larger than that of the overall study Breantrast, coverage by hot spots
was significantly lower in forestland and grassland compared to the overall study area.
Agricultural land had the highest hotspot coverage (47%) while grassland had the lowest coverage (19%).

Table 1 Proportions of hospotson land of six typesstimated using ATP Poisson kriging

Land type Hotspot (%)
Farm 46.4
Forest 25.8
Grass 19.3
Water 36.2
Urban 37.4
Others 41.4

Entire area 325

3.4. p-field Simulationof OCMortality Rate

The spatial distribution of O@ortality rate was simulated@DO times using {field simulation.
Figure 7ai c showthe OC mortality rate in the 1st aBth of the 1,000 realizations, and the mean OC
mortality rate of all 1000 realizations, respectivelill three maps show thaigh matality rates were
concentratedn southern, eastern, and migestern Taiwan.The uncertainty associated with the
mortality maps was represented by the differences among the realizations.7@ighmvs theLISA
mays obtained bya Local Moran statisticalest using themean OCmortality rate from the 1000
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p-field simulations. Many areas Taiwan yielded significant differencélsot spots and cold spots)

the Local Moran statistical testThe hotspots (HH High-High) of high OC mortality were in
southern, eastern, and maestern TaiwarfFigure7d), and the cold spot&.L; Low-Low) of low OC
mortality were in northern and central TaiwaRigure & shows the proportion of haspots
(High-High) in 1,000 pfield realizations, which provides a measurelafal uncertainty associated
with a single location(grid) [20]. The areaswith high (95%) hotspot coverageere locatedin
southern, eastern, and migstern TaiwanThe joint probabilities for the critical pportions 95%,
96%, 97%, 98%, and 99% (spatial uncertainties) of areas covered bgdistwere 0.22, 0.31, 0.42,
0.60, and 0.74, respectively. Figurfealso shows the simulated distribution of OC mortality rates over
the entire study area, which revehkehigh (98%) reliability (>0.6).

Figure 7. (@) The oral cancer (OCjnortality ratein the 1strealization (per 100,000
population);(b) OC mortality ratein the 8threalization(per 100,000 populationf¢) mean OC
morality rate in J000 pfield realizationg(per 100,000 population)d) LISA map based on
mean OQOmortality rate datén 1,000 pfield realizations; €) proportion of study area covered
by hot spots (HigiHigh) in 1,000 pfield realizations; (f) area of simulated distrioat of
OC mortality rates over the entire study area with a high (98%) reliability (>0.6)
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Figure 7. Cont.
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4. Discussion

This study downscale@aiwan OCmortality ratedata from the districscale to a km x 1 km grid
scale and then added soil sample dataland usedatafor identifying the relationship between the
OC mortality rate and land us@he scatter plots and Spearman's rank correlayi@mided the
relationship betwee®C mortality andconcentration®f the seven metals the grid with 1km cells.



