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Abstract: Mortality represents an important outcome measure following coronary artery 

bypass grafting. Shorter survival times may reflect poor surgical quality and an increased 

number of costly postoperative complications. Quality control efforts aimed at increasing 

survival times may be misleading if not properly adjusted for case-mix severity. This paper 

demonstrates how to construct and cross-validate efficiency-outcome plots for a specified 

time (e.g., 6-month and 1-year survival) after coronary artery bypass grafting, accounting 

for baseline cardiovascular risk factors. The application of this approach to regional centers 
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allows for the localization of risk stratification rather than applying overly broad and  

non-specific models to their patient populations. 

Keywords: outcomes; coronary artery bypass grafting; CABG; survival; mortality 

 

1. Introduction 

Current models to predict outcomes after coronary artery bypass grafting (CABG) have been 

developed using statewide and national data [1,2]. However, predicted survival estimates from these 

databases tend to focus on hospitals in large urban areas, missing many rural regions with racially and 

economically diverse populations. Furthermore, prediction models are more likely to perform poorly 

when applied to groups or regions other than those in which they were derived. 

Models customized for regional centers or specific areas with unique patient populations are known 

to perform better than generalized models developed using patient data that is unrepresentative of the 

targeted population [3]. Accordingly, localized models are important for physicians to optimize 

individual postoperative care and to appropriately inform patients of their likelihood of survival  

after surgery. 

The development and application of individual institution quality measurements allow for constant 

evaluation and outcome improvement. To aid surgeons and centers, we have developed a simple 

graphical technique to examine risk-adjusted survival estimates that account for case-mix severity. 

This technique, displayed as efficiency-outcome plots, enables regional centers to examine their 

outcomes over contiguous time periods. It also fills an important gap in the quality assessment 

literature (e.g., graphical tools for monitoring surgical performance) by taking into account censored, 

time-to-event data. In this paper, we present the application of this graphical procedure with data from 

a large tertiary referral heart institute. 

2. Experimental Section 

The Institutional Review Board at the Brody School of Medicine, East Carolina University, 

approved the analysis. Details of the database have been previously described and are summarized 

below [4–12]. 

2.1. Patients and Variables 

The data used in this example analysis included patients undergoing first-time, isolated CABG at 

the East Carolina Heart Institute between 1 January 2001 and 31 December 2008. Patients were 

categorized into 2-year increments by date of surgery. Demographic data, comorbid conditions, 

coronary artery disease (CAD) severity, and surgical data were collected at the time of surgery.  

The analysis was restricted to black and white patients to minimize the potential for residual 

confounding (~1% other races). Racial identity was self-reported. Emergent cases were considered to 

have a different etiology following surgery and were excluded in our example (n = 97). 
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2.2. Definitions 

Mortality was defined as any cause of death postoperatively. CAD was defined as ≥50% stenosis 

and confirmed by angiography before surgery. Postoperative complications including operative 

mortality were defined as occurring within 30 days following CABG in or out of our hospital and after 

30 days during the same hospitalization following surgery. 

2.3. Setting 

The East Carolina Heart Institute is a tertiary care, population-based heart hospital located in 

eastern North Carolina, a rural region with a large economically impoverished population [4–12].  

The institute is the largest stand-alone facility devoted to cardiovascular care in the state of North 

Carolina. Cardiovascular disease is the leading cause of death in North Carolina with an unequal 

burden occurring in eastern North Carolina [13]. The majority of patients treated at the East Carolina 

Heart Institute live and remain within a 150-mile radius of the medical center. 

2.4. Data Collection and Follow-up 

The main sources of data were the Society of Thoracic Surgeons (STS) Adult Cardiac Surgery 

Database linked with the electronic medical record at the Brody School of Medicine. The National 

Death Index was used to obtain death dates for patients lost to follow-up and also used to validate 

death information collected in our electronic medical record. Linkage with the National Death Index 

was performed using a multiple criteria, deterministic matching algorithm [14]. Less than 5% of 

validated deaths failed to correctly match with the National Death Index. The Epidemiology and 

Outcomes Research Unit at the East Carolina Heart Institute regularly perform data quality and  

cross-field validation. 

2.5. Statistical Analysis 

Categorical variables were reported as frequency and percentage; continuous variables were 

reported as mean (plus or minus 1 standard deviation), median, and range. Trend across time periods 

was assessed using the Cochran-Armitage test for binary variables and a standard linear regression test 

(Ho: β1 = 0) for continuous variables. For categorical variables with more than two stratification levels, 

a chi-square test for non-zero correlation was used to assess trend. 

Risk-adjusted survival estimates at 6 months and 1 year were computed using the multivariable 

product-limit method with date of surgery as the reference point [15]. Patients who were still alive at 

the date of last contact were censored. The family of product-limit models is known to have strong 

uniform consistency and other desirable statistical properties [16–18]. When there are no covariates, 

the multivariable product-limit model approximates the actuarial survival curve [15,18,19].  

For cross-validation (model performance), we computed the percentage difference of fitted 

probabilities for each time period under the multivariable product-limit model to observe probabilities 

measured using standard survival curves. Percentage difference values within ±2.5% were considered 

to be in the equivalence zone. A Wilcoxon-signed rank sum test was used to test the null hypothesis 

that the general measure of central tendency for the percentage differences did not differ from zero.  
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The discriminate abilities of our models were assessed by examining estimated survival plots of key 

variables for risk group separation and also by computing the c-statistic concordance probability given 

censoring [20–22]. An interaction of model variables by time may affect overall fit and performance of 

the model. A test for this assumption was performed by including time-dependent covariates in our 

regression model [23]. The models included variables that have been previously reported to be 

associated with cardiovascular-related mortality, regardless of their statistical significance in our 

dataset [4–12]. These included age, sex, race, hypertension, CAD severity, heart failure, and prior 

stroke. Efficiency-outcome plots were generated to illustrate risk-adjusted survival by time period. 

Statistical significance was defined as p ≤ 0.05. SAS Version 9.3 (SAS Institute: Cary, NC, USA) was 

used for all analyses. 

3. Results and Discussion 

3.1. Results 

A total of 4639 patients underwent CABG between 2001 and 2008. Patient characteristics and 

postoperative complications stratified by time periods are shown in Tables 1 and 2, respectively. 

Table 1. Patient characteristics (N = 4639). 

Characteristic 
2001–2002 

n (%) 

2003–2004 

n (%) 

2005–2006 

n (%) 

2007–2008 

n (%) 
PTrend 

Overall 1574 (13) 1147 (9) 984 (8) 934 (7) - 

Age, Mean ± SD 64 ± 11 64 ± 10 64 ± 10 63 ± 10 0.23 † 

Male Sex 1094 (70) 812 (71) 712 (72) 695 (74) 0.0062 * 

White Race 1268 (81) 923 (80) 785 (80) 709 (76) 0.010 * 

BMI (mg/kg2), Mean ± SD 29 ± 5.6 30 ± 5.9 30 ± 5.8 30 ± 5.9 0.23 † 

Elective Surgery 706 (45) 741 (65) 466 (47) 382 (41) 0.0050 

CAD Severity 

     1 Vessel 

     2 Vessel 

     3 Vessel 

103 (7) 

387 (25) 

1084 (69) 

75 (7) 

294 (26) 

778 (68) 

53 (5) 

228 (23) 

703 (71) 

76 (8) 

254 (27) 

604 (65) 

0.18 †† 

Left Main Disease 280 (18) 284 (25) 343 (35) 245 (26) <0.0001 * 

Recent Smoker 424 (27) 356 (31) 301 (31) 322 (34) 0.0001 * 

Hypertension 1220 (78) 886 (77) 805 (82) 832 (89) <0.0001 * 

Diabetes 592 (38) 436 (38) 368 (37) 405 (43) 0.017 * 

Heart Failure 251 (16) 312 (27) 296 (30) 236 (25) <0.0001 * 

Dialysis 36 (2) 16 (1) 17 (2) 26 (3) 0.53 * 

PAD 199 (13) 173 (15) 179 (18) 166 (18) <0.0001 * 

COPD 96 (6) 201 (18) 199 (20) 245 (26) <0.0001 * 

Prior Stroke 107 (7) 99 (9) 84 (9) 93 (10) 0.0067 * 

Prior MI 691 (44) 541 (47) 455 (46) 470 (50) 0.0043 * 

Prior PCI 307 (19) 257 (22) 244 (25) 238 (25) 0.0001 * 

*
 Cochran-Armitage Trend Test; † Linear Regression; †† Chi-square Test for non-zero Correlation.  

BMI = body mass index; CAD = coronary artery disease; COPD = chronic obstructive pulmonary disease; 

MI = myocardial infarction; PAD = peripheral arterial disease; PCI = percutaneous coronary intervention;  

SD = standard deviation. 
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Table 2. Postoperative complications (N = 4639). 

Complication 
2001–2002 

n (%) 

2003–2004 

n (%) 

2005–2006 

n (%) 

2007–2008 

n (%) 
PTrend 

*
 

Myocardial Infarction 3 (<1) 3 (<1) 3 (<1) 3 (<1) 0.49 

Stroke 23 (1) 27 (2) 11 (1) 11 (1) 0.30 

ARDS 25 (2) 23 (2) 9 (1) 3 (<1) 0.0023 

Pneumonia 27 (2) 31 (3) 26 (3) 17 (2) 0.65 

Renal Failure 32 (2) 38 (3) 27 (3) 11 (1) 0.27 

Operative Mortality 46 (3) 41 (4) 25 (3) 13 (1) 0.018 
* Cochran-Armitage Trend Test; ARDS = acute respiratory distress syndrome. 

Efficiency-outcome plots of 6-month and 1-year risk-adjusted survival are shown in Figures 1  

and 2, respectively. Six-month survival increased during the analysis period (2001–2002: adjusted 

survival = 92.9%, 95%CI = 91.1–94.8; 2007–2008: adjusted survival = 97.5%, 95%CI = 96.0–98.9).  

A similar trend was observed for 1-year survival estimates (2001–2002: adjusted survival = 91.1%, 

95%CI = 88.9–93.3; 2007–2008: adjusted survival = 96.3%, 95%CI = 94.4–98.3). 

Figure 1. Efficiency-Outcome (EO) plot of risk-adjusted survival at six months 
*
. 

 

* 95% CI noted by horizontal bars. Estimates shown were adjusted for age, sex, race, CAD 

severity, hypertension, heart failure, and prior stroke. CAD = coronary artery disease; CI = 

confidence interval. 
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Figure 2. Efficiency-Outcome (EO) plot of risk-adjusted survival at one year 
*
. 

 

* 95% CI noted by horizontal bars. Estimates shown were adjusted for age, sex, race, CAD 

severity, hypertension, heart failure, and prior stroke. CAD = coronary artery disease; CI = 

confidence interval. 

Our model performed moderately well at differentiating patients who lived from those who died 

(Table 3). Furthermore, the overall percentage difference values for age, sex, race, CAD severity, 

hypertension, heart failure, and prior stroke were within the predefined equivalence region, indicating 

good model performance (Table 4). Although, statistically significant differences from the equivalence 

region were observed for sex and heart failure in the 2003–2004 time period, the maximum percentage 

differences for these variables were relatively small (sex: 3.9%; heart failure: 3.4%). Excluding these 

variables from the model did not substantively affect our adjusted survival estimates for this time 

period (6-month: 94.4%, 95%CI = 92.6–96.1; 1-year: 92.7%, 95%CI = 90.6–94.8). 

Table 3. C-statistic and 95% confidence interval. 

Year Period 
Number of 

Usable Pairs 

Number of 

Concordant Pairs 

Number of 

Discordant Pairs 

C-Statistic 

(95%CI) 

2001–2002 82,566 593,780 258,786 0.70 (0.62–0.77) 

2003–2004 324,328 214,520 109,798 0.66 (0.55–0.77) 

2005–2006 141,552 105,692 35,860 0.75 (0.59–0.88) 

2007–2008 88,635 60,128 28,507 0.68 (0.48–0.85) 

2001–2010 4,934,832 3,659,189 1,275,643 0.74 (0.69–0.79) 

CI = confidence interval. 
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Table 4. Differential cross-validation (model performance) for survival estimates. 

Characteristic (Levels) 
% Within Equivalence Region  

2001–2002 2003–2004 2005–2006 2007–2008 2001–2008 

Age (<65, ≥65) 100 
* 

100 
*
 100 

*
 100 

*
 100 

* 

Sex (Male, Female) 100 * 85 †† 100 * 94 * 100 * 

Race (Black, White) 100 * 100 * 100 * 100 * 100 * 

CAD Severity (1, ≥2 vessels) 100 * 100 * 100 * 100 * 100 * 

Hypertension (Yes, No) 100 * 100 * 100 * 100 * 100 * 

Heart Failure (Yes, No) 100 *  76 ††  100 * 100 * 100 * 

Prior Stroke (Yes, No) 100 * 94 * 100 * 100 * 100 * 

* p > 0.05; † p ≤ 0.05; †† p < 0.01. CAD = coronary artery disease. 

Statistically significant interactions by time were observed for sex (2003–2006) and heart failure 

(2003–2004) (Table 5). A sensitivity analysis removing these variables from the affected time periods 

did not substantially affect model estimates. 

Table 5. Test for interaction effects by time. 

Characteristic 
2001–2002 2003–2004 2005–2006 2007–2008 2001–2008 

χ
2 

p-value χ
2 

p-value χ
2 

p-value χ
2 

p-value χ
2 

p-value 

Age 0.25 0.62 0.32 0.57 0.19 0.66 0.32 0.57 0.0007 0.98 

Sex 1.05 0.31 7.18 0.0074 8.1 0.0044 2.8 0.095 6.93 0.0085 

Race 3.0 0.084 0.85 0.36 1.4 0.24 0.0 0.99 2.23 0.14 

2-vessel CAD 0.13 0.72 0.29 0.59 0.042 0.84 0.25 0.62 0.052 0.82 

3-vessel CAD 0.28 0.60 0.17 0.68 0.69 0.41 0.043 0.84 0.53 0.47 

Hypertension 0.038 0.85 1.2 0.28 0.012 0.91 3.1 0.079 0.035 0.85 

Heart Failure 0.089 0.76 3.9 0.048 0.042 0.84 1.1 0.29 2.24 0.13 

Prior Stroke 0.17 0.68 0.089 0.77 0.26 0.61 1.7 0.19 0.22 0.64 

All Covariates 5.22 0.73 22 0.0046 12 0.16 9.1 0.33 15.84 0.045 

χ2 = Chi-Square; CAD = coronary artery disease. 

3.2. Discussion 

Outcomes research is important for detecting performance changes and implementing quality 

improvements when necessary. Additionally, unwarranted, costly, and potentially harmful 

modifications to current clinical practice can be avoided. Focusing on patient-centered outcomes by 

incorporating individual risk factors and disease severity enables physicians to provide relevant 

information to patients and other stakeholders such as family members and caretakers. This information is 

particularly valuable for patients and their medical team who must decide on the best strategy for 

managing their postoperative care. 

In this paper, we describe a simple technique to visualize risk-adjusted survival estimates that 

account for differences in case-mix severity. The application of this approach to regional centers 

allows for the localization of risk stratification rather than applying overly broad and non-specific 

models to their patient populations. Efficiency-outcome plots can be used to monitor performance over 

continuous time periods to visually gauge whether deviations in outcomes have occurred independent 
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of case-mix. While confidence intervals are provided, this technique primarily serves as a graphical 

tool for monitoring quality over time. In the example provided from our institution, 6-month  

and 1-year risk-adjusted survival estimates improved for each consecutive 2-year time period,  

but especially between 2004 and 2005 (as indicated by the decreased slope). The observed 

improvements likely were attributable to better postoperative care (e.g., timely identification and 

management of complications), provider specialization, and hospital-wide quality control efforts. 

Case-mix severity may change with time, potentially biasing the comparison of survival estimates 

between time periods. This was evident in our data as more patients in consecutive time periods 

presented with a larger percentage of comorbid conditions (e.g., heart failure, diabetes, hypertension, 

prior stroke, and prior myocardial infarction). Comparing performance solely on the basis of  

crude-survival figures may be misleading, especially when patients have been artificially selected to 

improve surgical outcomes. Additionally, efficiency-outcome plots are able to detect improvements or 

deteriorations after process changes in clinical care have been implemented. Although we have 

provided an example of how to monitor survival after CABG, this technique is equally applicable to 

other surgical procedures and medical interventions. 

Prediction models for survival after CABG have recently been examined. A study using data from 

the New York State Cardiac Surgery Reporting System has developed a model for observed and 

predicted risk of death at years 1, 3, 5, and 7 after surgery [2]. However, data used in this analysis were 

specific to regions of New York and may have little interpretability to rural regions or other parts of 

the United States. Similarly, an analysis of data from the national STS Adult Cardiac Surgery Database 

has developed a risk prediction model for survival after CABG [1]. Notably, the applicability of this 

model to priority populations is limited as only 4% of the patients in this study were identified as 

black. The above studies highlight the shortcomings of applying generalized prediction models of 

survival to groups different from those in which they were originally constructed [3]. 

To date, several useful methods for plotting outcomes data (e.g., process charts, cumulative sum 

(CUSUM) charts, funnel plots, and resetting sequential probability ratio test (RSPRT) charts) to 

visually assess changes in risk over time for cardiovascular procedures have been presented in the 

literature [24–26]. Typically, these procedures have relied on parametric techniques such as  

likelihood-based scoring or the sequential probability ratio test. To the best of our knowledge, 

efficiency-outcome plots represent a unique application for generating continuous risk adjusted plots 

that account for censored data, independent of the parametric assumptions that underlie other 

commonly used graphical methods for risk assessment [24–26]. Efficiency-outcome plots also have the 

distinct advantage of tailoring the demographics to the center being assessed. The plots are simple to 

interpret and are easily generated using standard statistical software packages that compute 

multivariable product-limit survival probabilities. Furthermore, we have outlined how to cross-validate 

the model performance of efficiency-outcome plots using an equivalence region approach based on the 

percentage difference of fitted probabilities. 

In the example provided, intra- and postoperative management of CABG have improved within our 

center. This likely represents a similar trend observed at other cardiovascular surgical facilities across 

the United States. However, there could be exceptions, especially within rural regions, where a focus 

on quality improvement is not emphasized. The advantage of efficiency-outcome plots is that they are 

able to identify, in a timely manner, departures from the norm. This will enable health care institutions 
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to investigate the underlying cause of these changes and implement either reinforcing or corrective 

strategies. Furthermore, this method may be applied to other performance-related measures  

(e.g., patient satisfaction, return to work, quality of life, hospital acquired infections, operative 

mortality, operative time). We chose 6-month and 1-year survival for illustration purposes only. 

Specifically, the focus of the current manuscript was on introducing this novel method and 

providing our institution as an example. Given that the technique adjusts for case mix, the resulting 

plots may be compared between institutions as well. While, the latter is beyond the scope of the current 

study, it would be interesting to use efficiency-outcome plots to compare performance across 

institutions in a future study. 

3.3. Limitations 

The methodology described in our analysis has several limitations inherent to modeling censored 

survival data and must be considered when applying this technique. The estimation of adjusted 

survival probabilities assumes that the relationship between the log cumulative hazard and a set of 

covariates must be approximately linear [15]. Furthermore, censoring must be non-informative (i.e., 

not related to the probability of an event occurring). The latter assumption poses a limitation for any 

time-to-event model and must be addressed in the design phase. In some cases, adding interaction 

terms (including time) to our model may be necessary when the underlying data seriously violate the 

parallel hazard assumption [23]. Additionally, redundant and highly correlative variables may lead to 

unstable estimates and should be avoided. 

Contextual factors including surgeon training, experience, caseload, and turnover may have 

explained differences in quality measures over time. However, adjusting for these factors in our model 

would have led to over-adjustment and possibly masked any underlying differences in institutional 

practice. This would have been counterintuitive to the purpose of our model, which is to monitor 

changes in healthcare performance independent of changes in patient characteristics (e.g., case-mix). 

Efficiency-outcome plots rely on semi-parametric survival analysis methodology and do not have a 

simple, closed mathematical form. Consequently, estimates are derived using an iterative computer 

algorithm. However, such algorithms are commonly available in most standard statistical packages. 

4. Conclusions 

In this paper, we describe a practical technique to graphically monitor efficiency of care and 

consequent risk over time, and provide an example of how this model can be used in the 

cardiovascular surgery setting to improve overall healthcare performance. Efficiency-outcome plots 

allow individual centers to continuously assess quality measures and determine when process changes 

result in improved or poorer outcomes. Future research may benefit from active surveillance of 

morbidity and mortality following CABG to provide real-time quality measurements. 
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