
 

Int. J. Environ. Res. Public Health 2014, 11, 9553-9577; doi:10.3390/ijerph110909553 

 
International Journal of 

Environmental Research and 
Public Health 

ISSN 1660-4601 
www.mdpi.com/journal/ijerph 

Article 

A Comparison of Exposure Metrics for Traffic-Related  
Air Pollutants: Application to Epidemiology Studies  
in Detroit, Michigan 

Stuart Batterman 1,*, Janet Burke 2, Vlad Isakov 2, Toby Lewis 3, Bhramar Mukherjee 4 and 

Thomas Robins 1 

1 Department of Environmental Health Sciences, School of Public Health, University of Michigan, 

1420 Washington Heights, Ann Arbor, MI 48109, USA; E-Mail: trobins@umich.edu 
2 National Exposure Research Laboratory, U.S. Environmental Protection Agency,  

109 T.W. Alexander Drive, Research Triangle Park, NC 27711, USA;  

E-Mails: burke.janet@epa.gov (J.K.); isakov.vlad@epa.gov (V.I.) 
3 Department of Pediatric Pulmonary, Medical School, University of Michigan,  

1500 East Medical Center Drive, Ann Arbor, MI 48109, USA; E-Mail: tobyl@med.umich.edu 
4 Department of Biostatistics, School of Public Health, University of Michigan,  

1420 Washington Heights, Ann Arbor, MI 48109, USA; E-Mail: bhramar@umich.edu 

* Author to whom correspondence should be addressed; E-Mail: stuartb@umich.edu;  

Tel.: +1-734-763-2417; Fax: +1-734-763-8095. 

Received: 6 June 2014; in revised form: 25 August 2014 / Accepted: 26 August 2014 /  

Published: 15 September 2014 

 

Abstract: Vehicles are major sources of air pollutant emissions, and individuals living 

near large roads endure high exposures and health risks associated with traffic-related air 

pollutants. Air pollution epidemiology, health risk, environmental justice, and transportation 

planning studies would all benefit from an improved understanding of the key information 

and metrics needed to assess exposures, as well as the strengths and limitations of alternate 

exposure metrics. This study develops and evaluates several metrics for characterizing 

exposure to traffic-related air pollutants for the 218 residential locations of participants in 

the NEXUS epidemiology study conducted in Detroit (MI, USA). Exposure metrics included 

proximity to major roads, traffic volume, vehicle mix, traffic density, vehicle exhaust 

emissions density, and pollutant concentrations predicted by dispersion models.  

Results presented for each metric include comparisons of exposure distributions,  

spatial variability, intraclass correlation, concordance and discordance rates, and overall 
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strengths and limitations. While showing some agreement, the simple categorical and 

proximity classifications (e.g., high diesel/low diesel traffic roads and distance from  

major roads) do not reflect the range and overlap of exposures seen in the other metrics. 

Information provided by the traffic density metric, defined as the number of kilometers 

traveled (VKT) per day within a 300 m buffer around each home, was reasonably 

consistent with the more sophisticated metrics. Dispersion modeling provided spatially- and 

temporally-resolved concentrations, along with apportionments that separated concentrations 

due to traffic emissions and other sources. While several of the exposure metrics showed 

broad agreement, including traffic density, emissions density and modeled concentrations, 

these alternatives still produced exposure classifications that differed for a substantial 

fraction of study participants, e.g., from 20% to 50% of homes, depending on the metric, 

would be incorrectly classified into “low”, “medium” or “high” traffic exposure classes. 

These and other results suggest the potential for exposure misclassification and the need 

for refined and validated exposure metrics. While data and computational demands for 

dispersion modeling of traffic emissions are non-trivial concerns, once established, 

dispersion modeling systems can provide exposure information for both on- and near-road 

environments that would benefit future traffic-related assessments. 

Keywords: air pollution; dispersion modeling; epidemiology; exhaust;  

exposure misclassification; PM2.5; traffic; vehicle 

 

1. Introduction 

Residential location and proximity to major roads have been widely used in analyses of exposures 

and adverse health effects that can result from traffic-related air pollutants, reflecting the elevated 

concentrations found near busy roads [1–9]. As an indicator or exposure surrogate, residential distance 

to roads, or more generally, residence location, is intended to reflect the portion of exposure received 

at home, which is generally the dominant share since most individuals spend the majority of their time 

at home [10]. Residence location or proximity to roads can be used as a surrogate exposure metric 

itself, or as an input to land use regression, dispersion, space-time (geostatistical), and hybrid models, 

which are designed to estimate ambient air concentrations and sometimes personal exposures [11–15].  

Actual exposure for any particular individual will be the result of many factors, e.g., the amount of 

time spent indoors and outdoors, building and vehicle cabin air exchange rates, and breathing rates [12]. 

Unfortunately, direct measurement of traffic-related air pollutant exposure is rarely practicable due to 

cost and logistical issues [15]. Ambient air quality monitoring networks do not provide the spatial 

coverage needed to estimate near-road exposures [13], and personal, home or biomarker measurements 

rarely are feasible in large scale studies. Still, it remains important to improve exposure estimates  

that are used in epidemiology, health impact, environmental justice and other studies [1,14,16–18].  

Improved estimates will minimize exposure misclassification that can bias results of epidemiology 

studies towards the null [19], incorrectly predict risks in health impact studies, and misidentify affected 

populations in environmental justice studies. 
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This paper explores alternate metrics for characterizing exposure to traffic-related air pollutants, 

including metrics based on proximity to major roads, traffic volume and density, traffic type,  

traffic emissions density, and pollutant concentrations from dispersion modeling. These metrics are 

being utilized in an ongoing epidemiology study investigating effects of diesel exhaust emissions on 

the respiratory health of asthmatic children in Detroit, MI, USA [20]. The evaluation of the exposure 

metrics presented in this paper includes a comparison of exposure distributions, spatial variability 

using maps coded by exposure group, intraclass correlations, and concordance rates.  

2. Methods 

2.1. Study Population 

The Near-road EXposures and effects of Urban air pollutants Study (NEXUS) was designed to 

examine near-roadway exposures to air pollutants and respiratory health in children with asthma living 

near major roads in Detroit, MI. This community-based participatory research (CBPR) study was 

designed and conducted with community input and consent. Children with asthma or symptoms of 

asthma from 6 to 14 years of age were recruited on the basis of the proximity of their home to major 

roads in three traffic categories: high diesel/high traffic (HDHT), defined as homes within 175 m of 

roads with >6000 commercial vehicles/day (commercial annual average daily traffic; CAADT) and 

>90,000 total vehicles/day (annual average daily traffic; AADT); low diesel/high traffic (LDHT), 

defined as homes within 175 m of roads with >90,000 AADT and <4500 commercial vehicles/day; 

and low diesel/low traffic (LDLT) homes located >300 m from roads with >25,000 AADT and greater 

than 500 m from roads with >90,000 AADT. In the initial groups, the designation of commercial 

vehicles was used as a surrogate for diesel vehicles. Children in the LDLT group were drawn from the 

same neighborhoods and school catchment areas as the other groups, but lived further from high-traffic 

corridors, thus minimizing possible confounding from unmeasured neighborhood-associated covariates.  

Ultimately, 139 children were recruited and participated in the study from September 2010 to 

December 2012. Because a number of children moved during the study, a total of 218 residence 

locations were considered (Figure 1). The study population had approximately equal distribution 

across the three traffic categories. The population was primarily minority (non-Hispanic Blacks 

constituted 82% of the participants, Hispanics 8%, non-Hispanic Whites 4%, and other/multiracial 6%). 

Many households were poor (about one-third of families reported annual household incomes  

below $15,000). 

2.2. Residential Proximity to Major Roadways 

Because concentrations of traffic-related air pollutants rapidly decrease with distance from roads, 

considerable effort was spent to obtain accurate estimates of home locations and the distance to major 

road. Initially, to guide field staff in their recruitment efforts, candidate homes were identified using 

GIS-produced maps, which identified buffers within 200 m of selected highways and the street and 

house numbers of residences within these buffers. For the children recruited and enrolled into the 

study, the resulting 218 home locations were geocoded using three approaches. The first used a  

hand-held GPS device (60CS, Garmin International Inc., Olathe, KS, USA) operated by our technician 
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who stood as close as possible to the residence’s front door. When the indicated accuracy was <10 m, 

the location was recorded on a data entry form and as a waypoint in the device’s memory.  

The calibration of the device was confirmed using several other GPS units. Second, online automated 

geocoding software provided by “Bing Maps” [21] was used by entering the number, street, city and 

ZIP code of each residence into this application, which returned latitude and longitude. The Bing Map 

estimates used the European Petroleum Survey Group (EPSG) code, a Mercator projection, and a spherical 

model of the earth [22]. The third geocoding estimate used the address locator in the online  

U.S. Streets Geocode Service in ArcGIS, ESRI ArcMap 10.0 (Redlands, CA, USA). This system uses 

a cascading sequence of geolocators starting with the Tele Atlas Address Points database, followed by the 

Tele Atlas Street Address Range database, 9-digit ZIP code, and then the 5-digit ZIP code locators [23].  

Figure 1. Map of modeled road network in study area, and locations of 218 homes of 

participants in NEXUS. Shaded area defines city of Detroit and population by Census 

Block group. Axis scales are Universal Traverse Mercator coordinates (m). AADT is 

annual average daily traffic (vehicles/day). Highlighted roads are National Functional 

Class 11, called high diesel/high traffic roads in NEXUS. Windsor, Canada (not shown),  

is immediately to the south-east. 
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All coordinates were converted to Universal Traverse Mercator (UTM) coordinates for use  

in subsequent analyses. If differences between the GPS and automated geocoding coordinates 

exceeded 100 m, data were checked, plotted, and if needed, our technician was sent out to confirm 

GPS coordinates a second (and sometimes a third) time, at which point all GPS measurements agreed. 

Final home locations are plotted in Figure 1. On average, the automated geocoding estimates diverged 

from GPS measurements at the NEXUS homes by an average 30 ± 23 m, although much larger errors 

were not infrequent, e.g., 75th and 95th percentile errors were ~50 and 75 m [24]. The bigger errors 

can represent a large fraction of the buffer width (200 m) used in the proximity metrics, suggesting that 

a fraction of homes geocoded using automated systems would be misclassified by such surrogate 

exposure metrics, especially since automated geocoding programs typically give larger errors than 

those found for Detroit [15,24].  

Distances from each residence to the nearest roads and highways were determined using  

ESRI ArcMap (version 10.0) “NEAR” function within the Proximity toolset, the 2012 Topologically 

Integrated Geographic Encoding and Referencing (TIGER) 2012 road shape files, and the North 

American Datum (NAD) for 1983. A second measure of distance to the nearest highway was 

calculated using the link-based road network for the emissions inventory described next. This distance 

averaged 20 m greater than the TIGER estimate, representing the distance to the road centerline rather 

than to the road edge. 

2.3. Road Network, Traffic Data and Emissions Inventory 

The modeled road network used 9701 links (linear segments) to represent 3109 km of roads,  

which included all but the smaller and numerous local roads in the ~800 km2 study area (Figure 1). 

Major roads (e.g., freeways) were represented using separate links for each direction, large service roads,  

if any, and ramps. Road network data obtained from the Southeast Michigan Council of Governments 

(SEMCOG) included the locations, number of lanes, and roadway type (e.g., freeway, arterial).  

The road network extended at least 5 km beyond the locations of the NEXUS homes,  

and fully encompassed the city of Detroit (area of ~355 km2).  

Hourly vehicle traffic volume and speed on each link were estimated using the SEMCOG Travel 

Demand Forecast Model, which used a TransCAD-based suite of applications, and temporal profiles 

for monthly, weekly and daily flows by vehicle class (e.g., heavy-duty diesel, light-duty gasoline).  

Where possible (e.g., for interstates), estimated vehicle flows were checked against observed traffic counts.  

Estimates of total and diesel vehicle volumes on major roads formed the basis of the initial 

participant recruitment and the exposure classification. The initial grouping of roads (as HDHT,  

LDHT and LDLT) used 2006 and 2007 maps with AADT and CAADT flows prepared by the 

Michigan Department of Transportation [25]. As described earlier, subsequent analyses used state and 

regional data and a traffic demand model to derive AADT for each road link for the year 2010. Traffic 

on the major road closest to each HDHT and LDHT residence was estimated by summing AADT 

values on the corresponding road-links, which included at least two links (one for each direction) and 

occasionally additional links if the road split or if ramps added to the road’s traffic in the vicinity of 

the residence. At three homes, two major roads had similar proximity and both were counted in the 

AADT estimate. The corresponding number of lanes on these roads was summed as another measure 
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of road size. Finally, the number of diesel vehicles on the closest major road was calculated as the 

product of the AADT (vehicles/day) and the fraction of diesel vehicles for the road type, which was 

5.23% for “other freeways” (National Functional Class or NFC 12) and 9.18% for interstates  

(NFC 11). These fractions represent the sum of light-duty diesel trucks, heavy-duty diesel trucks,  

and heavy-duty diesel vehicles (LDDV, LDDT, HDDV) as derived using state-level data from the  

U.S. Federal Highway Administration [26], and the U.S. EPA Emission Inventory Improvement 

Program [27].  

Primary mobile source emissions of particulate matter below 2.5 µm dia (PM2.5), oxides of nitrogen 

(NOx), carbon monoxide (CO) and other pollutants were estimated for each link on an hourly basis, 

thus producing a spatially and temporally resolved mobile source emissions inventory. The link-based 

inventory used emission factors representative of each vehicle class in the study area for the year 2010 

calculated using the MOVES2010a model with inputs including the average speed and flow on each 

link, local vehicle mix and age distribution, ambient temperature, season, and road type [28,29].  

Due to large uncertainties, particulate emissions for brake and pavement wear, and resuspension of 

dust were not included in the PM emissions estimates.  

Emissions-based exposure metrics incorporate the quantity of traffic-related pollutant emissions 

released, providing an exposure metric that may be particularly relevant to policies addressing 

emission controls, transportation control measures, and other actions that directly affect emissions. 

Emissions density (g/day) was estimated as the daily vehicle exhaust emissions within a 300 m buffer 

around each home. PM2.5, NOx and CO emissions were considered. 

2.4. Concentration Estimates and Dispersion Modeling 

We evaluated whether simple “box” models using the emissions density information discussed 

above could provide useful estimates of near-road pollutant concentrations. We assumed a wind speed 

u = 3.66 m/s (the long term Detroit average), a mixing height h = 100 m, and the average traffic-related 

PM2.5 emission rate Q in the 300 m buffer (r = 300 m) around high traffic homes. Concentrations were 

calculated as C = Q/(2 × u × r × h). 

Hourly pollutant concentrations for the year 2010 were predicted at each home for three cases: 

annual average concentrations due to on-road exhaust emissions; the maximum 24-h concentration also 

due to on-road exhaust emissions, and the “total” annual average concentration due to on-road,  

non-road and background sources. Each case used the road-link emissions inventory for the Detroit area 

described above, the new RLINE dispersion model specifically designed for roadway emissions [30,31], 

and hourly meteorological data from the Detroit City airport processed by AERMET.  

RLINE is a steady-state Gaussian formulation for near-surface releases with dispersion parameters that 

can simulate low wind meander conditions. (The model is available from the U.S. Environmental 

Protection Agency [32]. The third case used a hybrid model system that integrated RLINE, the 

ERMOD model for area and point sources in the region (including Canada) using source locations, 

emission rates and other parameters from the 2008 National Emissions Inventory (NEI), and estimated 

regional (background) concentrations determined using the Community Multiscale Air Quality 

(CMAQ) model, observations from air quality monitoring networks in the region, and a space/time 
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kriging model. As described elsewhere in this issue [31], this system is highly flexible, and model 

outputs can provide spatial and temporal patterns of air pollutants by source category.  

Detailed descriptions and evaluations of RLINE and the other dispersion models have been 

presented elsewhere [30,31,33–35]. In Detroit, model results have been compared to ambient 

observations collected in both routine monitoring networks (AQS) and during the NEXUS intensive 

campaign. Compared to AQS data, 24-h average PM2.5 concentrations correlated well (0.78 < r < 0.94) 

with 2010 data collected at four PM2.5 monitoring sites in Detroit, and most predictions were within a 

factor of two of observations. NOx concentrations predicted at the sole AQS monitoring site in Detroit 

reproduced morning and afternoon peaks but overpredicted the concentrations, likely due to 

contributions from regional sources since this site was several km from major highways. Compared to 

black carbon measured outside of 25 of the NEXUS homes and NOx measured at 9 homes in 

(September–November) 2010, a pollutant often specific to traffic-related emissions, the model 

generally captured the magnitude and dynamics of observed concentrations, although concentrations 

were overpredicted or missed at some sites and some specific hours, likely due to uncertainty in hourly 

traffic activity and emissions at the road link level. Further description of the evaluation of the 

modeling system in the Detroit application is presented elsewhere [35].  

2.5. Data Analysis 

Descriptive analyses included graphs of distributions stratified by the original HDHT, LDHT and 

LDLT groups. Differences in means between the HDHT and LDHT groups were evaluated using  

t-tests, and difference in distributions for the same groups were evaluated using the non-parametric 

Mann-Whitney (MW) tests. (Sample size n = 96 in all cases for both tests). Comparisons between 

exposure metrics used Spearman’s and Kendall’s τ-b correlation coefficients. The latter correlation 

coefficient measures interclass agreement by considering the number of concordant pairs of observations 

minus the number of discordant pairs, expressed as the fraction of total pairs, and accounts for ties. 

Both are non-parametric measures that range from −1 to 1.  

Additional measures of concordance/discordance rates were derived for exposures divided into 

“high”, “medium” and “low” categories to provide estimates potentially relevant to exposure 

misclassification, as discussed in the text. The first measure was defined as the percentage of homes 

identically classified after grouping each metric into tertiles (high, medium and low categories).  

Thus, 100% agreement indicates that each home is placed in the same tertile for the pair of metrics 

considered, while random assignment would be expected to yield 33% agreement. For distance,  

tertiles were reversed, i.e., the shortest distances (presumably the highest exposure) were placed in the 

third tertile. The skewness of several metrics produced non-uniform tertile ranges, i.e., for the number 

of lanes (0–6, 6–8 and 8–14), PM2.5 emissions (0–306, 306–1837, 1837–4027 g/day), 24-h peak  

(6–14, 14–18, 18–47 µg/m3) and annual average (0.8–1.6, 1.6–2.7, 2.7–9.4 µg/m3) PM2.5 concentrations. 

Thus, another concordance measure was used to examine agreement between “thirds,” defined using 

three evenly spaced bins between the metric’s minimum and a nominal maximum value,  

either the actual maximum or an adjusted value that provided at least 15 observations in the top third. 

This gave ranges for the distance metric of 3067–5025, 1534–3067 and 1–1534 m (reversed); 0–1300, 

1300–2600 and >2600 g/day for PM2.5 emissions; 0.8–1.6, 1.6–2.7 and >2.7 µg/m3 for annual average 



Int. J. Environ. Res. Public Health 2014, 11 9560 

 

 

PM2.5 concentrations; and 6–17, 17–27 and >27 µg/m3 for peak 24-h PM2.5 concentrations (Figure 3D, 

shown in section 3.2, illustrates differences between tertiles and thirds). Again, 100% agreement 

denotes that the pair of metrics placed each home at the same (low, medium or high) level.  

3. Results 

3.1. Grouping of Homes by Distance to Roads 

By design, many of the children participating in NEXUS lived close to major roads. Most children 

in the high traffic groups (HDHT and LDHT) lived near one of two interstate highways or two State of 

Michigan highways: I-75 (n = 30 residence locations), I-94 (n = 20), M10 (n = 30), and M-39 (n = 16).  

A few children lived near I-96 (n = 3), which was classified as a “medium” diesel high traffic road and 

not considered further in the present analysis.  

The distributions of distances from high traffic roads for the HDHT, LDHT and LDLT groups are 

shown in Figure 2. Means and distributions in the two high traffic groups did not differ (t-test: p = 0.641; 

MW test: p = 0.376), and the mean distance was 96 ± 45 m from the road edge. The distributions were 

rectangular (uniform) in nature, and one residence was as close as 1 m from the road edge  

(along I-75 in southwest Detroit). In contrast, distances in the LDLT group were much longer, 

averaging 1,562 ± 1,133 m (±standard deviation).  

Figure 2. Distribution of distances of homes to major roads for the three traffic exposure 

groups. (A) HDHT (high diesel/high traffic) and LDHT (low diesel/high traffic) homes;  

(B) LDLT (low diesel/low traffic) homes. Based on GPS home location and road edge. 

 

Among the HDHT and LDHT groups, distances from roads did not vary among the four major 

roads (Kruskal-Wallace test, p = 0.628), although the average distance for M-39 was 10 m less than 

those for the three other major roads. No general trends were noted for residence-road distances with 

respect to region of the city or distance from downtown. 
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Exposure metrics such as the proximity to roads, as well as metrics based on traffic activity and 

dispersion modeling that are discussed later, depend on the accuracy of geocoding for home and other 

locations, and the positional accuracy of the road network. The latter depends on many factors, 

including the representation of the road network, e.g., as road edges as used in the preceding analysis, 

or as links that represent the road centerline as used later with line source dispersion models. Both road 

shape files and road-link network generally closely matched detailed maps and photographs, however, 

discrepancies for road-links increased at road sections that were curved since link-based networks simplify 

geometry using a minimal number of linear segments. Such positional errors can lead to exposure 

misclassification, particularly for locations very near (e.g., within 20 to 50 m) of major roads.  

3.2. Total and Diesel Traffic Metrics 

The distributions of total and diesel traffic volume on major roads near the NEXUS homes are 

shown in Figure 3A,B and mapped in Figure 4A,B; descriptive statistics are in Table 1.  

As anticipated, diesel vehicle traffic was highly correlated to the total traffic (r = 0.93), however, 

there are important differences, as discussed below. The maps show the clustering of high traffic 

homes along five major highways: HDHT homes fall mostly in the south and east along I-75 and I-94 

(red circles, Figure 4A); LDHT homes are mostly in the north and west along M10 and M39  

(blue circles). The LDLT homes (green circles) are distributed throughout the region.  

Table 1. Statistics of AADT volume, diesel traffic volume, and number of lanes for the 

nearest highways at the high traffic (HDHT and LDHT) homes. Maximum values are 

affected by the three homes had equal distance to two highways (both were counted). 

Statistic 
All Traffic (Vehicles/Day) Diesel Traffic (Vehicles/Day) Number of Lanes 

HDHT LDHT All HDHT LDHT All HDHT LDHT All 
Average 133,737  143,965  138,638 9663  7529  8640  7.8 6.6 7.2 
St. Dev. 34,962  21,614  29,634  2510  1130  2237  1.8 1.1 1.6 
Minimum 76,723  106,508  76,723  7043  5570  5570  6 6 6 
25th Percentile 94,202  131,718  124,586 7716  6889  7182  6 6 6 
Median 144,013  137,845  140,722 8386  7209  8218  8 6 6 
75th Percentile 153,576  162,808  160,968 11,297  8515  8974  9 7 8 
95th Percentile 185,442  171,849  180,417 14,098  8988  13,711  11 9 10 
Maximum  211,750  187,373  211,750 16,235  9800  16,235  14 10 14 
Number 50 46 96 50 46 96 50 46 96 

Considering the total traffic (AADT) near the high traffic homes, the average volume was  

134,000 ± 30,000 vehicles/day and the average number of lanes was 7.2 ± 1.6. As noted above,  

three homes were equally near two major roads, including the home with the highest AADT,  

which was located at the I-94‒M-10 intersection (AADT = 212,000 vehicles/day, counting both 

roads); the two other homes were at the I-94‒I-96 and I-75‒I-96 junctions (178,000 and 134,000 

vehicles/day, respectively). Traffic volumes at such junctions can be difficult to estimate given the 

numbers of ramps and highway segments involved. Otherwise, the traffic volume estimates were due 

to a single road. The AADT distributions for HDHT and LDHT homes were similar (t-test: p = 0.091; 

MW test: p = 0.262; Figure 3A), although the HDHT group had a greater range and its lowest tertile 

had 25,000 fewer vehicles/day. AADT had negligible correlation with the home’s distance to the road  
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(r = −0.006). The maps suggest that each road had a wide range of traffic volumes, i.e., no apparent 

geographic bias. 

Figure 3. Distributions of selected exposure metrics coded by home group (HDHT = high 
diesel/high traffic; LDHT = low diesel/high traffic; LDLT = low diesel/low traffic).  
(A) Total traffic volume on major roads nearest home; (B) Diesel traffic volume on major 
roads nearest home; (C) Traffic density for roads within 300 m of home;  
(D) PM2.5 emissions density for roads within 300 m of home; (E) Annual average PM2.5 
concentrations due to on-road emissions; (F) Maximum 24-h average PM2.5 concentrations 
due to on-road emissions. Panel D depicts differences between tertiles (in grey)  
and thirds (in orange). 
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Figure 4. Depiction of selected exposure metrics mapped by home group (HDHT = high 

diesel/high traffic; LDHT = low diesel/high traffic; LDLT = low diesel/low traffic).  

(A) Total traffic volume on major roads nearest home; (B) Diesel traffic volume on major 

roads nearest home; (C) Traffic density for roads within 300 m of home. (D) PM2.5 emissions 

density for roads within 300 m of home; (E) Annual average PM2.5 concentrations due to  

on-road emissions; (F) Maximum 24-h average PM2.5 concentrations due to on-road emissions. 

In (A) and (B), LDLT homes are shown as green circles without coding for traffic volume.  
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Considering diesel traffic near the high traffic homes, the volume averaged 8640 ± 2240 vehicles/day, 

and eight homes had over 12,500 diesel vehicles/day. HDHT homes had an average of 2100 diesel 

vehicles/day more than LDHT homes, a statistically significant difference (t-test: p < 0.001; MW test, 

p < 0.001). Still, the distributions of HDHT and LDHT homes had considerable overlap, and roughly 

half of the two sets of homes had a comparable range of diesel volume (7000–9000 vehicles/day; 

Figure 3B). The highest diesel volume occurred for homes along I-75, while homes along the eastern 

portion of I-94 had lower diesel traffic volumes than other HDHT homes (Figure 4B). This resulted in 

part from reclassifying this section of I-94 to an “other highway” (NFC 12) designation rather than 

“interstate” in an attempt to better match the observed traffic classification. Diesel volume had negligible 

correlation with distance to the road (r = 0.001). Overall, estimates of diesel traffic are less certain than 

those for total traffic due to the variation in fleet mix and the limited classification data available.  

By design, the LDHT homes were intended to have commercial annual average daily traffic 

(CADT) below 4500 vehicles/day. There are several reasons for differences between the initial 

groupings and those computed using the road-link network. First, not all diesel traffic is “commercial” 

(and vice versa). Based on the fleet composition data used, the bulk of diesel traffic on major roads are 

heavy duty diesel vehicles (HDDV), which represent 84% of the diesel volume on interstates,  

and 71% on “other highways”. The balance of diesel vehicles is contributed by light duty diesel 

vehicles (LDDV) and light duty diesel trucks (LDDT), which respectively represent 11% and 6% of 

the diesel vehicles on interstates, and 20% and 9% on other highways. With the exception of the 6% to 

9% of the diesel vehicles classified as LDDVs, most LDDTs and all HDDVs form part of CADT.  

With the LDDV fraction removed, differences between the HDHT and LDHT categories slightly 

increase, e.g., the average volume of diesel traffic is 8700 ± 2,500 vehicles/day near the HDHT homes, 

and 6300 ± 950 vehicles/day near the LDHT homes. Second, CADT will include some  

gasoline-powered vehicles. However, the emissions inventory classifications do not correspond well to 

the AADT/CADT classifications. Third, the initial and road-link estimates of CADT used different 

data sources: the former depended on local measurements, while the latter used a mix of local, 

Michigan and national-level data. 

3.3. Traffic Density Metric 

A measure of traffic density, the number of vehicle-km traveled (VKT) per day within a 300 m 

radius of each home, was calculated using the road-link network. The average VKT/day was  

94,200 ± 24,900 for HDHT homes, 102,200 ± 17,230 for LDHT homes, and 12,700 ± 12,400 for 

LDLT homes. Differences in traffic density between HDHT and LDHT homes approached statistical 

significance (t-test: p = 0.071; MW test, p = 0.117; Figure 3C). This metric varied considerably within 

each home group, e.g., the range spanned a factor of 2.8 for HDHT homes, and variation for homes 

along the same highway could be considerable, e.g., the southwest section of I-75 has several HDHT 

homes with low traffic density (Figure 4C). Of the LDLT homes, 4% (n = 4) had moderately high 

traffic density (41,000 to 74,000 VKT/day), overlapping or nearly overlapping the high traffic homes. 

Based on this exposure metric, the LDHT homes had slightly greater exposure than HDHT homes.  

For most high traffic homes, the largest share by far of the traffic density metric was contributed by 

interstates and other highways. This exposure metric can be very sensitive to the distance criterion 
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since roads will drop out as the distance criterion (buffer size) decreases. For example, a 150 or 200 m 

buffer excluded the nearby highway for a few HDHT homes, dropping the KMT/day to nearly zero, 

despite large values obtained with the 300 m buffer.  

3.4. Emissions Density Metrics 

Figures 3D and 4D show the PM2.5 emissions density distributions and levels at each home.  

For PM2.5, the emissions density averaged 2,226 ± 568 g/day at HDHT homes, 2029 ± 379  

at LDHT homes, and only 315 ± 320 at LDLT homes. The distributions of PM2.5 emissions near 

HDHT and LDHT homes appeared similar, although outliers caused results of the statistical tests  

to vary (t-test: p = 0.052; MW test: p = 0.153), e.g., a few HDHT homes near intersections of major 

roads (e.g., I-95 and I-75) had very high emissions. For the high traffic homes, nearby highways 

contributed the bulk of emissions. Emissions rates in the 300 m buffers around LDLT homes were much 

lower, although a few homes had emissions densities that overlapped those in the high traffic group. 

Distributions and maps for NOx and CO emissions density are shown in Supplemental Figures S1 

and S2. Results for NOx parallel the findings for PM2.5. However, results for CO diverged as HDHT 

homes tended to have lower CO emissions within the 300 m buffer, although statistical significance 

was not reached (t-test: p = 0.072; MW test: p = 0.093). Some of the higher levels were found for 

homes along M39 (in the western portion of the study region), due to the lower CO contributions from 

diesel vehicles and the dominance of CO emissions from much more numerous (and gasoline-powered) 

automobiles. Overall, the pattern for CO closely resembled the traffic density metric (Figures 3C and 4C). 

Emission-based metrics may be especially relevant for the traffic analysis zones (TAZ) commonly 

used by metropolitan planning organizations for various purposes, although TAZs may be relatively 

large relative to the spatial variability of traffic-related air pollutants. Emission-based metrics can be 

developed for the major road nearest point of interest (e.g., a home), for roads within a local area,  

or for buffers around points of interest, as presented here. This metric is pollutant-specific and thus can 

account for differences in fleet mix, technology and transportation control measures (TCMs) that can 

affect emissions.  

3.5. Concentration Metrics 

The “box” model using the average emissions density around high traffic homes for PM2.5  

(2226 g/day) gave a predicted PM2.5 concentration of 0.12 µg/m3. This low estimate does not account 

for temporal variation in emission rates (e.g., rush-hour emissions are approximately twice the  

average rate) or meteorology (e.g., wind speeds near 1 m/s are not uncommon and mixing heights  

also vary). In addition, some homes had twice the average emission rate, and results will be sensitive 

to the buffer size and source configuration. The most significant limitation, however, is the validity of 

the fully mixed assumption near major roads where vertical dispersion of roadway emissions may not 

reach 100 m. As shown below, dispersion models designed for near-road applications yielded 

concentrations that were one to two orders of magnitude higher. Thus, while box models have been 

used at a city-wide or regional level [36], they do not appear useful for near-road applications.  

Dispersion modeling results for PM2.5 are summarized in Table 2, and concentration distributions 

and maps are shown in the bottom panels of Figure 3 and in Figure 4. Considering emissions from 
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local traffic and annual average concentrations, PM2.5 levels at high traffic homes were 1.6 µg/m3 

higher than those at LDLT homes, or about twice that at the LDLT homes. Considering 24-h peak 

concentrations, PM2.5 levels at several HDHT homes were estimated to exceed 40 µg/m3, which is high 

relative to PM2.5 standards. (Highly elevated concentrations at a few homes are shown as a sharp 

uptick in Figure 3E,F) (the U.S. National Ambient Air Quality Standards are currently 12 and 35 µg/m3 

for annual and 24-h averages, respectively). The average 24-h peak across the high traffic homes was 

11 µg/m3 more than levels at the LDLT homes, again about twice the level. Considering the “total” 

PM2.5 estimated by the hybrid model, regional sources were dominant, contributing about 12 µg/m3 on 

an annual average basis across the homes. Given the relatively high contribution of PM2.5 by regional 

sources, the spatial variability due to local sources was significantly reduced, e.g., PM2.5 levels at low 

and high traffic homes differed by only 10% to 20% (Distributions and maps of total PM2.5 are shown 

in the Supplemental Materials).  

Table 2. Statistics of PM2.5 concentrations (µg/m3) predicted at home of NEXUS 

participants, classified by exposure group (HDHT = high diesel/high traffic; LDHT = low 

diesel/high traffic; LDLT = low diesel/low traffic). The hybrid annual average includes  

on-road, area, point and regional sources.  

Statistic 
Onroad, Annual Average Onroad, 24-hr Peak Hybrid, Annual Average 

HDHT LDHT LDLT HDHT LDHT LDLT HDHT LDHT LDLT 

Average 3.3 3.2 1.5 21.4 22.8 12.9 15.6 15.6 13.9 

St. Dev. 1.2 1.0 0.4 6.3 6.2 2.9 1.4 1.5 1.3 

Minimum 2.2 2.1 0.8 12.0 14.9 6.4 13.3 13.7 12.1 

25th Percentile 2.7 2.4 1.3 16.4 17.9 10.7 14.6 14.4 13.0 

Median 2.9 3.0 1.5 20.8 20.6 12.7 15.4 15.3 13.6 

75th Percentile 3.8 3.6 1.6 25.4 26.2 14.8 16.2 16.3 14.4 

95th Percentile 4.8 4.8 2.4 29.6 34.7 17.9 18.2 18.6 16.5 

Maximum 9.4 6.4 3.3 47.4 35.4 21.1 20.7 19.2 19.7 

Number 50 46 102 50 46 102 50 46 102 

The distributions of annual average PM2.5 concentrations at HDHT and LDHT homes due to local 

traffic were very similar (t-test: p = 0.637; MW test: p = 0.523, Figures 3E and S3); peak 24-h 

concentrations tended to be slightly but not statistically higher at the LDHT homes (t-test: p = 0.251; 

MW test: p = 0.235; Figure 3E,F). The highest prediction, considered an outlier since it considerably 

exceeded any other prediction, occurred at a home very near I-75. Excluding this point, concentrations 

due to local traffic varied by about 3-fold in each exposure group.  

Unlike the metrics discussed earlier, dispersion modeling results are expressed as concentrations 

that permit direct and meaningful comparisons to air quality standards, monitoring data and other 

studies. For example, a recent application of a hybrid dispersion model in London, England showed 

annual average PM2.5 contributions from 1 to 5 µg/m3 due to local vehicle exhaust (depending on site), 

and about 11 µg/m3 due to other local and regional sources [11]. Both the traffic and regional PM2.5 

contributions were very similar to those predicted for Detroit. While an intercity comparison 

incorporating meteorology and spatial factors is beyond the present scope, the volume of traffic and 

the number of large and high emitting diesel trucks on Detroit’s highways may produce PM2.5 
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concentrations that are comparable to those in London, despite Detroit’s smaller size and lower 

fraction of diesel vehicles.  

3.6. Comparison of Exposure Metrics  

Table 3 compares the exposure metrics using Spearman’s and Kendall’s τ-b correlation coefficients. 

To include the original categorical proximity classifications in this analysis, LDLT, LDHT and HDHT 

groups were coded two ways: as 1, 2 and 3 respectively in the “Group1” variable, with the assumption 

that exposures were ranked as HDHT > LDHT > LDLT; and as 1, 2 and 2 in the “Group2” variable 

with the assumption that exposures were HDHT ≈ LDHT > LDLT, as suggested by most metrics. 

Table 3 colors the higher (>0.6 and >0.8, absolute value) correlation coefficients. For the Spearman 

coefficients, absolute values above 0.17 (n = 96 for comparisons involving only high traffic groups) or 

0.12 (n = 198 to 218 for other comparisons) are statistically significant (p < 0.05, 1-sided test).  

While the measures have some differences, e.g., the Spearman coefficients are 3% to 23% higher than 

the Kendall τ-b coefficients and contrasts in Kendall’s τ-b coefficients tend to be larger,  

similar patterns emerge.  

The original proximity classifications (“Group1” and “Group2”) are related to distance to the 

nearest highway (defining variables), to traffic density (VKT/day in the 300 m buffer around  

each home), and to PM2.5 and CO emissions density metrics using the same buffers. While maximum 

24-h and annual average PM2.5 concentrations from local traffic were closely correlated,  

predicted PM2.5 concentrations had only modest agreement with most of the other exposure metrics, 

although correlations with the traffic density and distance metrics might be viewed as reasonable.  

Differences among the metrics can occur for a number of reasons. Metrics that depended on a  

single road, i.e., the original groups, distance to, traffic volume on, and number of lanes on the nearest 

major road, fared poorly in comparisons since these metrics excluded the influence of other roads, 

among other reasons. Still, these simple metrics have some value. Second, traffic density and 

emissions density are very strongly related, and may yield equivalent spatial patterns.  

Third, predicted concentrations (e.g., annual average and 24-h maxima) were not as strongly related to 

the two density metrics, most likely a result of the dispersion modeling accounting for meteorological 

influences, e.g., directional effects. Fourth, while concentrations of different pollutants and 

concentrations using different averaging times and statistics (e.g., average vs. peak) show differences, 

the long term spatial patterns are relatively similar and a single metric may be sufficient for many 

applications. (In contrast, short-term patterns, e.g., daily levels, will vary considerably due to both the 

influence of meteorology and traffic patterns.) In health effects studies such as NEXUS,  

it is also useful to understand the relative ranking of exposures, discussed next.  

Table 4 presents results of the concordance analysis related to exposure misclassification (assuming 

that one of the metrics in the pairwise comparison reflects the true exposure). Metrics with higher  

(>60% and >80%) agreement are highlighted. The concordance measures estimate the misclassification 

relevant for comparison to the three original groups (HDHT, LDHT, LDLT). As discussed next, 

concordance measures can be sensitive to the metric’s distribution and the bin cutoffs used. 
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Table 3. Comparison of exposure metrics at the NEXUS homes using Spearman (top) and 

Kendall τ-b correlation coefficients. Shaded numbers show absolute value of correlations 

above 0.6 and 0.8. Variables: Group1 = LDLT, LDHT and HDHT assigned 1, 2, 3, 

respectively; Group2 = LDLT, LDHT and HDHT assigned 1, 2, 2, respectively; 

 Distance = distance to nearest major highway (LDHT and HDHT only); AADT = traffic 

volume on nearest major road (LDHT and HDHT only); Lanes = number of lanes on 

nearest major road (LDHT and HDHT only); Diesel = diesel vehicles volume on nearest 

major road (LDHT and HDHT only); VKT = traffic density as vehicles-km-traveled/day  

in 300 m buffer around home; PMemis = PM2.5 emissions in 300 m buffer;  

COemis = CO emissions in 300 buffer; PMave = 2010 annual average PM2.5 concentration 

due to local traffic; PMmax = 2010 maximum 24-h average PM2.5 concentration from  

local traffic; PMtot = 2010 annual average PM2.5 concentration from all sources.  

Sample size is n = 218, except for comparisons involving AADT, Lanes, and Diesel metrics 

where n = 116 since only high traffic homes are considered. (a) not calculated due to 

variable definition.  

Type and  

Metric 

Group1 Group2 Distance AADT Lanes Diesel VKT PMemisCOemisPMave PMmax PMtot

(Group) (Group) (m) (veh/day) (no) (veh/day)(km/day) (g/day) (g/day) (ug/m3)(ug/m3) (ug/m3)

Spearman correlation coefficients  

Group1 1.00                       

Group2 0.95 1.00                     

Distance −0.81 −0.87 1.00                   

AADT −0.12 (a) 0.06 1.00                 

Lanes 0.39 (a) 0.31 −0.08 1.00               

Diesel 0.47 (a) −0.02 0.66 0.12 1.00             

VKT 0.80 0.86 −0.66 0.50 −0.43 0.26 1.00           

PMemis 0.83 0.85 −0.66 0.36 −0.33 0.47 0.98 1.00         

COemis 0.79 0.86 −0.66 0.48 −0.43 0.25 1.00 0.98 1.00       

PMave 0.78 0.82 −0.75 0.15 −0.24 0.23 0.78 0.78 0.78 1.00     

PMmax 0.70 0.76 −0.71 0.35 −0.23 0.27 0.74 0.73 0.75 0.90 1.00   

PMtot 0.56 0.59 −0.57 0.13 −0.08 0.17 0.55 0.54 0.55 0.74 0.71 1.00 

Kendall Tau-B coefficients matrix   

Group1 1.00                       

Group2 0.90 1.00                     

Distance −0.62 −0.71 1.00                   

AADT −0.10 (a) 0.04 1.00                 

Lanes 0.36 (a) 0.23 −0.07 1.00               

Diesel 0.39 (a) −0.02 0.60 0.09 1.00             

VKT 0.61 0.71 −0.42 0.42 −0.34 0.19 1.00           

PMemis 0.66 0.70 −0.42 0.28 −0.26 0.36 0.90 1.00         

COemis 0.60 0.70 −0.41 0.40 −0.34 0.18 0.98 0.91 1.00       

PMave 0.62 0.67 −0.58 0.12 −0.18 0.16 0.55 0.56 0.55 1.00     

PMmax 0.54 0.62 −0.52 0.27 −0.18 0.19 0.53 0.52 0.53 0.74 1.00   

PMtot 0.44 0.49 −0.40 0.09 −0.06 0.12 0.38 0.37 0.38 0.56 0.52 1.00 



Int. J. Environ. Res. Public Health 2014, 11 9569 

 

 

Table 4. Comparison of exposure metrics at the NEXUS homes showing concordance with 

classifications using tertiles and “thirds”. Shaded numbers show percentage agreement 

above 60 and 80%. Variables and sample size are defined in Table 3. 

Type and Metric 
Group1 Group2 Distance AADT Lanes Diesel VKT PMemis COemis PMave PMmax PMtot

(group) (group) (m) (veh/day) (no) (veh/day) (km/day) (g/day) (g/day) (ug/m3) (ug/m3) (ug/m3)

Agreement among tertiles (percent)                 

Group1 100                       

Group2 75 100                     

Distance 58 44 100                   

AADT 28 36 33 100                 

Lanes 24 26 18 38 100               

Diesel 33 39 27 56 34 100             

VKT 52 45 49 34 19 37 100           

PMemis 56 45 49 37 17 43 89 100         

COemis 53 45 48 33 21 35 96 90 100       

PMave 60 51 66 32 20 34 58 61 59 100     

PMmax 54 45 62 41 18 35 58 56 57 75 100   

PMtot 55 52 58 42 22 36 51 50 50 64 64 100 

Agreement with thirds (percent)                   

Group1 100                       

Group2 75 100                     

Distance 31 7 100                   

AADT 45 71 16 100                 

Lanes 15 33 15 34 100               

Diesel 53 76 21 67 40 100             

VKT 70 76 28 35 28 42 100           

PMemis 76 90 14 60 31 74 80 100         

COemis 70 73 30 33 28 38 97 78 100       

PMave 64 80 12 47 33 50 70 77 69 100     

PMmax 65 76 15 60 30 48 68 76 66 77 100   

PMtot 56 68 13 44 39 43 61 62 59 72 67 100 

The original proximity classification for NEXUS homes (“Group1” in Table 4) matched the tertiles 

and thirds groupings for PM2.5 concentrations predicted by the dispersion model for 54% to 65% of 

homes. Considering only the low and high traffic categories (“Group2”), the percentage of homes that 

matched PM2.5 concentration tertiles was lower (45% to 52%), but higher for thirds (60% to 80%).  

The same five metrics that were highly correlated (traffic density, emissions density for CO and PM2.5, 

annual average and peak 24-h average PM2.5 concentrations from traffic, Table 3), and sometimes the 

total PM2.5 (including all sources) had higher agreement, e.g., 50% to 96% using tertiles, and 59% to 

97% using thirds. Very high concordance was found (and expected) for traffic density and  

CO emissions density. Overall, the concordance measures in Table 4 and the correlations in Table 3 

produced similar patterns among the metrics. While over half of the homes were similarly placed into 

“low”, “medium” or “high” traffic exposure classes using either the original groups or one of the other 

metrics discussed, 20% to 50% of homes, depending on the metric, were categorized differently. 

We also examined rates of “severe” discordance using both tertiles and third, but considering homes 

placed in the high exposure group by one metric, but in the low exposure group by the second metric 

(Table S1). Paralleling the analysis above, severe discordance rates among five more comprehensive 

metrics (traffic density, CO and PM2.5 emissions densities, and annual average and 24-h peak 

concentration) were low (0%–6%). 
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However, rates using total or diesel traffic volume on the nearest major road with these five metrics 

were 11% to 22% using tertiles, and 43% to 52% using thirds. Severe discordance rates using the 

simple distance-to-highway metric compared to the five metrics were also low (1%–3% using tertiles), 

meaning that few LDLT homes were placed in the upper tertiles of the five metrics and few HDHT or 

LDHT homes were placed in low tertiles of the same metrics. In addition to reinforcing earlier 

conclusions, this analysis indicates severe discordance is rare among exposure metrics using traffic 

density, emissions density, or concentrations.  

4. Discussion 

Table 5 summarizes the exposure metrics, describing their strengths, limitations, data requirements, 

and key results in NEXUS. Each metric provides different information (noted in the table and not 

repeated here). Several additional points are noteworthy. First, traffic-related exposures should be 

viewed as a continuum, and exposure groups are not “homogeneous.” For example, most of exposure 

metrics for the NEXUS homes in each of the three initial groups (LDLT, LDHT and HDHT) typically 

spanned a 3-fold range, with considerable overlap between groups. Second, exposures result from 

multiple emission sources, and concentrations depend on source characteristics (e.g., emission rate) 

and dispersion (e.g., wind direction and stability), factors that vary in time. While an emphasis on 

nearby sources (e.g., major roads) makes analyses more tractable, such simplifying assumptions  

can be inaccurate, and the choice of a distance cut-off is arbitrary. As examples, concentrations of 

traffic-related pollutants at NEXUS homes near major highways varied greatly from day-to-day, and 

homes that were distant (>500 m) from highways sometimes still received considerable levels of 

traffic-related pollutants. Third, the minimum information needed to evaluate spatial variability 

(typically using the long term average) of traffic-related exposure includes the distance-to-road and 

traffic volume for the larger and nearby roads.  

The suggested minimum information, distance-to-road and traffic volume, can be expressed in the 

relatively simple traffic density metric, which correlated reasonably well with predicted PM2.5 

concentrations (r = 0.78 for annual averages, r = 0.74 for 24-h peaks). Traffic density has been 

identified as one of the strongest predictor variables in recent land-use regression (LUR) models of 

traffic related air pollutants [37]. However, traffic density metrics do not provide concentrations and, 

even if incorporated into LUR models, results may be limited in terms of comparability across cities 

and time [38,39]. The dispersion models provided spatial and temporal concentration predictions as 

well as source apportionment information, e.g., the PM2.5 share due to traffic. While data and 

computationally intensive, such models have a strong physical basis and also are amenable to 

forecasting and scenario analysis [14]. 
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Table 5. Summary of metrics used for exposure to traffic-related air pollutants in NEXUS. 

Type Exposure Metric 
as Defined for NEXUS 

Strengths Limitations Results in Detroit 

1. Distance 
to major road 

Distance from home to 
road edge, and distance 
from home to road 
centerline, using GPS 
home location. 

Simple to construct. 

Low data needs. 

Can potentially distinguish 
roads with varying traffic 
volume, vehicle mix, or 
other characteristics. 

Distance limit used as cutoffs 
for classifying 
homes/receptors is arbitrary.  

May not consider traffic 
volume, vehicle mix, and 
other factors.  

Sensitivity to distance 
calculation, e.g., using road 
edge or centerline. 

HDHT and LDHT roads 
had comparable distances 
to homes.  

LDLT distances 
considerably exceeded 
HDHT and LDHT groups, 
by design and recruitment 
approach. 

2. Total 
traffic 
volume on 
nearby roads 

AADT roads within  
200 m of homes,  
using nearest road edge  
and GPS home location. 

Relatively simple to 
construct.  

Reasonably good volume 
estimates on major roads.  

Can select period of day, 
e.g., rush-hour. 

Traffic volume estimates 
needed.  

Distance criterion used to 
determine road is arbitrary.  

Does not provide metric for 
low traffic groups. 

HDHT and LDHT groups 
largely indistinguishable. 

HDHT group had 
considerable range. 

3. Diesel  
(or truck or 
commercial) 
traffic 
volume on 
nearby roads 

Roads within 200 m of 
homes using road edge 
and GPS home location. 

Relatively simple to 
construct.  

May relate to PM 
emissions from diesel 
traffic.  

Can select period of day. 

Difficult to estimate diesel 
traffic volume accurately. 

Does not account for type of 
diesel vehicles and emissions.  

Otherwise as 2 above. 

HDHT and LDHT groups 
were largely indistinguish-
able.  HDHT group had 
roughly 10%–20% higher 
diesel volumes than LDHT 
group, but about 2/3 of the 
values overlapped. 

4. Local 
traffic 
density 

AADT on road segments 
with 300 m distance 
(buffer) around each 
home, based on distance to 
road centerline, GPS home 
location, and traffic-
demand model estimates  
of AADT. 

Includes local traffic 
emissions that might affect 
receptor.  

Result (VKT/day) is easily 
interpretable and possibly 
generalizable.  

Large range across sites.  

Can be applied to irregular 
shaped sources and 
receptors.  

Can select period of day. 
Relevant to traffic analysis 
zones used by planners. 

Moderately high data needs. 

Computationally intensive.  

Sensitive to distance criterion, 
which is somewhat arbitrary. 

Uncertainty of traffic 
estimates on all but major 
roads. 

Excludes smaller roads. 

LDHT group had slightly 
greater exposure than the 
HDHT group. 

All but a few LDLT 
homes had low values. 

5. Emissions 
on local 
roads 

 

As 4 above with addition 
of annual average road-
link emissions estimates 
for PM2.5, NOx and CO. 

Incorporates vehicle 
emissions of pollutants of 
interest.  

Reflects vehicle mix on 
roads.  

Also as 4 above. 

Results depend on pollutant, 
to an extent.  

High data needs. 

Computationally intensive. 

Difficult to estimate  
emissions accurately. 

For PM2.5 and NOx, 
HDHT had slightly higher 
exposure than LDLT. 

For CO, results are 
reversed but very similar 

All but a few LDLT 
homes had much lower 
values. 

6. Pollutant 
concentration 
predictions 

PM2.5 predictions at 
homes used road-link 
emissions inventory and 
RLINE dispersion model; 
area and point sources 
using AERMOD and 
regional sources handled 
using CMAQ and kriging 
interpolations of 
monitoring data. 

Incorporates effects of 
emissions, meteorology, 
and location in 
physically-based 
approach. 

Quantifies and apportions 
concentrations due to 
each sources, e.g., traffic.  

Can be derived for 
specific periods of day, 
season or year, e.g., daily 
predictions at rush hour 
periods.  

Inter-study comparisons 
are possible and 
meaningful. 

Results depend on pollutant, 
averaging time, and statistic. 

High data needs. 

Computationally intensive. 

Uncertainty not well 
characterized.  

Results potentially sensitive 
to many factors, including 
home placement. 

For PM2.5, HDHT and 
LDHT distributions were 
similar although some 
dependence on averaging 
time and statistic. 

PM2.5 contributions from 
local traffic at HDHT and 
LDHT homes were about 
twice those at LDLT 
homes.  

Regional sources provide 
much (80%) of total 
PM2.5, but smaller 
contributions of NOx and 
CO. 
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This paper has focused on exposure metrics for on-road vehicle emissions. Results for other 

pollutants and other locations will depend on the pollutant itself, the relative significance of on-road, 

area, point and regional emission sources, the locations of emission sources with respect to residence 

and other locations frequented by the population, the prevailing meteorology and terrain. In Detroit 

and many other cities, results expressed in Table 5 would likely be similar for NO2, carbon monoxide, 

elemental carbon, PAHs, and ultrafine PM given the significance of on-road emissions in urban areas. 

However, results for volatile organic compounds (VOCs) may differ given the large share of emissions 

occurring during refueling and at other non-road locations, while results for PM2.5 may be dominated 

by background levels and secondary formation. As noted in the table, these issues can be addressed by 

dispersion models, but these differences will not be captured by simpler metrics like proximity to roads 

and traffic density. Further differences may exist between regions and countries. In the U.S.,  

for example, the vehicle mix is dominated by spark ignition (gasoline) engines that have low PM 

emissions, and most vehicles have catalytic and other controls that reduce gaseous emissions, however, 

most cities are surrounded and bisected by high traffic freeways. In Europe, in contrast, cities tend to 

have fewer freeways, thus traffic (and emissions) may be somewhat more evenly distributed,  

but the European fleet has a large fraction of diesel vehicles with higher PM2.5 emissions, and 

emissions of other pollutants historically have been less well controlled. While this can increase 

pollutant levels in urban areas and strengthen linkages between proximity, traffic intensity and 

pollutant concentrations, background levels can be high for pollutants like PM2.5. Given that land-use 

regression models have performed well in both U.S. and Europe for several pollutants, relationships 

between the simpler exposure metrics and pollutant concentrations in U.S. and European cities may be, 

in general, comparable to those in Detroit, although the reasons for the agreement may vary. 

5. Conclusions 

Surrogate exposure metrics for traffic-related air pollution exposures developed and compared  

in this study include proximity to highways, traffic volume, traffic density, number of lanes,  

emissions density, and concentration predictions from dispersion models. These metrics were critiqued 

individually and collectively, focusing on results obtained at the 218 home locations of participants  

in the Detroit-area NEXUS epidemiology study. Comparisons included examination of exposure 

distributions, spatial variability using maps coded by exposure group, Spearman’s and Kendal’s τ rank 

correlation coefficients, and concordance rates. While showing some agreement, simple categorical 

and proximity classifications (high diesel/low diesel traffic roads and distance from major roads) did 

not reflect the range and overlap of exposures seen in the other metrics. Information provided by the 

traffic density metric, defined as the number of kilometers traveled per day within a 300 m buffer 

around the home, was reasonably consistent with the more sophisticated metrics, although this metric 

does not provide information related to concentrations or temporal variability. Dispersion modeling 

provided this information, along with source apportionment results that separated concentrations from 

traffic emissions and other sources. At the NEXUS homes, the annual average and 24-h peak 

concentrations showed a high degree of spatial agreement. While there is broad agreement between 

several of the surrogate exposure metrics, including traffic density, emissions density and dispersion 

modeling, most of these alternatives still produced significantly different exposure classifications, 
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suggesting the potential for exposure misclassification and the need for refined and validated  

exposure metrics. 

The analyses also indicated the need for accurate geocoding of homes and roads given the spatial 

variability of pollutant levels near roads. Positional errors in the range of 30 to 50 m, and sometimes 

much more, should be anticipated using automated geocoding software and by positional errors in the 

representation of the road network.  

Dispersion modeling systems can provide exposure information relevant to on- and near-road 

environments, not only at homes, as demonstrated in the Detroit, but also at schools, parks, 

workplaces, commuting routes and other locations where people are exposed. While assembling the 

data and the computational demands for dispersion modeling of traffic emissions in large urban areas 

are non-trivial issues, future traffic-related health assessments, including epidemiological, risk and 

environmental justice studies, would benefit from such information. Further, this information can be 

used in hybrid models that simulate indoor exposures and time-activity behaviors, thus providing a 

refined estimate of air pollution exposure. At the community level, exposure assessments used in 

conjunction with transportation planning tools would advance policy initiatives aimed at mitigating 

traffic-related air pollutant exposures and health effects. 
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