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Abstract: Variation in the odds ratio (OR) resulting from selection of cutoffs for 

categorizing continuous variables is rarely discussed. We present results for the effect of 

varying cutoffs used to categorize a mismeasured exposure in a simulated population in the 

context of autism spectrum disorders research. Simulated cohorts were created with three 

distinct exposure-outcome curves and three measurement error variances for the exposure. 

ORs were calculated using logistic regression for 61 cutoffs (mean ± 3 standard deviations) 

used to dichotomize the observed exposure. ORs were calculated for five categories with a 

wide range for the cutoffs. For each scenario and cutoff, the OR, sensitivity, and specificity 

were calculated. The three exposure-outcome relationships had distinctly shaped OR (versus 

cutoff) curves, but increasing measurement error obscured the shape. At extreme cutoffs, 

there was non-monotonic oscillation in the ORs that cannot be attributed to “small numbers.” 

Exposure misclassification following categorization of the mismeasured exposure was 

differential, as predicted by theory. Sensitivity was higher among cases and specificity 

among controls. Cutoffs chosen for categorizing continuous variables can have profound 
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effects on study results. When measurement error is not too great, the shape of the OR curve 

may provide insight into the true shape of the exposure-disease relationship. 

Keywords: categorization; autism spectrum disorders; epidemiology methods; 

misclassification; dichotomization 

 

1. Introduction 

The cutoff used to dichotomize a continuous exposure variable may have a profound effect on the 

measures of association and interpretation of study results [1,2]. It is well-understood that, as the 

threshold for definition of “exposure” changes, the magnitude of the effect estimates, such as odds ratio 

(OR), will vary as well even though the true relative risk per unit of exposure is constant. For example, 

if one studies the association between obesity measured as body-mass index (BMI) and myocardial 

infarction, and categorizes BMI, then if (a) we set a threshold at BMI = 25 then we compare 

“underweight” and “overweight”, but if we (b) set a threshold at BMI = 30, then we compare “obese” 

patients with the rest. It is reasonable to expect different estimates of risk in the two analytical approaches 

even though they arise from the same underlying association of obesity and myocardial infarction. 

Frequently, data are analyzed using multiple cutoffs but only one of these categorizations is reported, 

creating publication bias in situ [3]. Presenting results for a wide range of plausible cutoffs, by plotting 

effect estimates against cutoffs, minimizes the potential for fishing for particular results, makes study 

results more useful to readers, and avoids the pitfalls of using data driven cutoffs or theory or guidance 

driven cutoffs that may change [4]. Analyzing continuous exposure data using more than one cutoff  

(two categories) magnifies the problem of selecting cutoffs as many different combinations of cutoffs 

may be plausible and estimates become increasingly unstable in finite datasets as the number of 

categories increases [5]. However, it is routinely done, with some justification, to explore the shapes of 

exposure-response associations, although even this has been criticized, with alternatives involving  

non-parametric techniques being suggested [6,7]. In addition, if more than two categories are analyzed, 

the cutoffs are frequently data driven, which has its own limitations. 

Environmental exposures and gestational age are examples of exposures that are inherently 

continuous but are frequently categorized and for which the recommended cutoffs tend to change over 

time or are under debate. For example, environmental regulations tend to lower the exposure threshold 

at which a change in risk is of interest, rendering studies presented with a limited range of cutoffs 

(perhaps based on exposure limits in existence at the time of the study) less useful for future risk 

assessment or meta-analysis. Likewise, the clinical thresholds for shortened gestation and “term” 

pregnancy have evolved over time [8,9] and underscore the importance of investigating more than one 

cutoff for gestational age. Our previous research presented estimates of effect for a wide range of cutoffs 

used to dichotomize the exposure of interest on an OR curve, plotting OR versus the cutoff [1,4].  

An “OR curve” was used in the context of autism spectrum disorders (ASD) research with results 

presented for a range of gestational age cutoffs to help clarify heterogeneity of the ASD-gestational age 

associations reported in the literature [4]. Our previous work presented OR curves for associations for 

which the shape of the underlying association was unknown. 
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There are also methodological caveats with dichotomization of an exposure that is imperfectly 

measured [10,11]. Even when measurement error in a continuous exposure is non-differential before 

categorization, the process of categorization creates dependence of the resulting misclassified binary 

variable on the outcome when (1) exposure categories are created from a continuous exposure that is 

assessed with error and (2) the exposure and outcome are not independent, producing heterogeneity of 

risk within exposure categories [12,13]. This study is an investigation of the first condition. In practice 

one can never be sure of the second condition (independence of exposure and outcome), and therefore 

evaluation of the degree of association must consider the possibility of differential misclassification. 

However, if one was certain that exposure and outcome are independent, then there would be no need to 

investigate their association using any exposure metric and the study investigating their association 

would not take place, rendering condition 2 of no import here. 

The extent to which such sources of differential misclassification produce important biases in 

epidemiologic analyses is currently not known as it can be expected to depend on multiple factors, 

including the degree of measurement error, the true strength of the effect of the exposure on the outcome, 

and the choice of the cutoff value. The contribution of model misspecification to bias in studies that 

categorize a mismeasured exposure variable is not known and it is beyond the scope of the present study 

to gauge the relative importance of the various sources of error. The influence of the true shape on the 

exposure-outcome association biases that arise from dichotomization is currently unknown as all prior 

research was conducted for “linear” models (in a sense that log (relative risk) was linear with exposure 

in simulations). It has long been recognized that this is a topic of some concern (e.g., [13]) but 

comprehensive evaluation of the degree of non-differential misclassification created by dichotomization 

is lacking. 

In this study we investigated the effects of changing the cutoffs for a hypothetical causal exposure, 

assessed with and without measurement error, on the association with ASD in a simulated population 

similar to the source population for the Early Autism Risk Longitudinal Investigation (EARLI). We also 

build on our previous work (in which the true shape of the underlying association was unknown) by 

investigating whether the shape of the OR curve provides insight into the true underlying shape of the 

exposure-outcome relationship. EARLI is an enriched-risk pregnancy cohort (mothers of a child affected 

by an ASD enrolled at the start of a subsequent pregnancy) intended to investigate environmental 

exposures potentially important in the etiology of ASD (http://www.earlistudy.org/) [14]. Our previous 

work that was informed by the EARLI described the potential impact of measurement error in exposures 

and outcomes under different scenarios of study size, precision of exposure measurement and magnitude 

of the true association [15]. Importantly, numerous continuous environmental exposures for which ideal 

cutoffs are either unknown (e.g., brominates, flame retardants, bisphenol-A) or contentious (e.g., 

mercury and lead) are of interest to EARLI due to suspicion of their neurotoxicity that is relevant to 

ASD. Although our work is motivated by EARLI, the simulations we conduct and conclusions should 

be of general interest; keeping the simulations closely connected to EARLI not only serves our own 

interest, but also illustrates how our simulation study can be adapted to the complexities of a specific 

problem rather than presenting conclusions for some unrealistically simplistic set-up. 
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Table 1. True and observed values in the simulated population. 

Values in the Population 

(Notation) 
True Values Observed Values 

Measurement 

Error 

Postulated True 

Association with 

Latent Measure of 

Outcome a 

Cutoffs Range (Increments) 

Environmental exposure 1 

(X1) 

X1 ~ N(0,1), correlated with X2 by Pearson correlation ρ 

= 0.7  
W1 = X1 + ε1 

ε1 ~ N(0, σ2),  

where σ2  

{0.0625, 0.25, 1} 

{0.15, 0.25, 0.5} 

−3 to 3 (in increments of 0.1) 

See Figure 1 for cutoffs for 5 

categories 

Environmental exposure 2 

(X2) 

X2 ~ N(0,1), correlated with X1 by Pearson correlation 

ρ = 0.7  
W2 = X2 + ε2 ε2~N(0, 0.25) 0 <1 vs. ≥1 

Sex (Z) Z~Binomial(0.5, 1) Z None 1  

Gestational age (Xga) 

Xga = (43 – γ), where γ ~ χ2(3) 

1 week was subtracted from the above gestational age 

for 5% of males 

Wga = R((Xga + εga); 23, 43),  

Where R(.) b is function that 

round expression to integers, and 

then truncated to 23 to 43 weeks. 

εga ~ N(0,
1

72
) 0.1 <37 vs. ≥37 

Autism endophenotype 

(latent, Y) 

Linear model: 

YLinear = β1X1 + β2X2 + β3Z + β4Xga + εy 

“Threshold” (semi-linear) model: 

If x1 < meanx1-standard deviationx1 then YThreshold = 

β2X2 + β3Z + β4Xga + εy 

If x1 ≥ meanx1-standard deviationx1 then YThreshold = 

1.5  β1X1 + β2X2 + β3Z + β4Xga + εy 

“Saturation” (semi-linear) model: 

If x1 < meanx1-standard deviationx1 then YSaturation = 

1.5  β1X1 + β2X2 + β3Z + β4Xga + εy 

If x1 ≥ meanx1-standard deviationx1 then YSaturation = 

0.5  β1X1 + β2X2 + β3Z + β4Xga + εy,  

εy ~ N(0,1) 

Y b = R(T(y); 0, 18), 

where T(.) is a function that is 

transformed to a Y log-normal 

distribution that matched the 

observed AOSI in EARLI 

due to rounding by 

R(.) b 
Not applicable 0–6, 7–18 

a coefficients of linear regression, see text and bottom of the table for details, β’s; b R(f(.); min, max) is the function that rounds values of function f(.) to integers and 

truncates values (retains only values) that fall within interval [min, max]. 



Int. J. Environ. Res. Public Health 2015, 12 10202 

 

2. Materials and Methods 

2.1. Simulated Population 

The population parameters used in this and our previous work [15] are listed in Table 1. Briefly, a 

population cohort of 1,000,000 children was generated with observed sex (Z) and gestational age (Wga) 

distributions similar to the general US population. We generated such a large simulated dataset in order 

to evaluate how our method performs when instabilities due to sampling error and small strata are not 

an issue. We simulated true gestational age Xga (in weeks) in the cohort as 43 − γ where γ ~ ~χ2(3) 

distribution, after which 5% of boys were assigned gestational age that was 1 week shorter to account 

for shortened gestation, on average, among boys [16]. Completed weeks of gestational age were 

considered (as is typically reported) and only live births between 23 and 43 weeks (inclusive) gestational 

age were included in the simulation. 

The cohort had simulated exposure to two agents: exposure 1, represented by X1, and exposure 2, 

represented by X2,that both follow standard normal distributions and are correlated (Pearson ρ = 0.7). 

Only exposure 1 exerts causal influence on ASD-related phenotype. This constellation of covariates 

assumed that there is no true confounding, since the outcome is independent of X2 and all other 

covariates are independent. The simulated population was created and analyses of the entire population 

(not a sample thereof) were conducted using SAS version 9.2 (SAS Institute, Cary, NC, USA). Ethics 

committee review and informed consent were not necessary as this was a simulation study. Our SAS 

code will be made available to other researchers upon request. 

2.2. Covariate Measurement Error 

We assumed that the two environmental exposures are observed with classical measurement error. 

The first (W1 = X1 + ε1, ε1 ~ N(0,σ2), where σ2  {0.0625, 0.25, 1} and will be referred to as the 

measurement error variance) is a causal exposure. The extent of measurement error spanned the plausible 

range: From good precision of environmental measurements with error approximately 6% of true 

exposure variability to poor precision with error variance equal to the true exposure variability.  

We present in detail only results for σ2 of 0.25 and 1, with the full details given in the Appendices.  

The second exposure (W2) was not causal (W2 = X2 + ε2, where ε2 ~ N(0,0.25)). Gestational age was 

subject to two sources of error: (a) Classical error in the observed continuous measure of the length of 

gestation, Wga = Xga + εga, where εga ~ N(0,σ2
ga) and (b) round-off error as gestational age was reported 

in completed weeks (23−43 weeks). All errors were conditionally independent of each other. 

2.3. Linear and Semi-Linear Risk Models 

In addition to X1, sex (sex ratio of 4 males: 1 female [17]) and gestational age [18–20] exerted some 

causal influence on dichotomous ASD status and continuous ASD-related phenotype (Y). We verified 

that these yielded parameter estimates within the expected range. The true shape of the  

exposure-response curve is unknown so the simulated disease was modeled using the following  

three forms: 
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Linear model: 

YLinear = β1X1 + β2X2 + β3Z + β4Xga + εy 

“Threshold” (semi-linear) model: 

If x1 < meanx1-standard deviationx1 then YThreshold = β2X2 + β3Z + β4Xga + εy 

If x1 ≥ meanx1-standard deviationx1 then YThreshold = 1.5  β1X1 + β2X2 + β3Z + β4Xga + εy 

“Saturation” (semi-linear) model: 

If x1 < meanx1-standard deviationx1 then YSaturation = 1.5  β1X1 + β2X2 + β3Z + β4Xga + εy 

If x1 ≥ meanx1-standard deviationx1 then YSaturation = 0.5  β1X1 + β2X2 + β3Z + β4Xga + εy,  

The slope of the causal association with X1 above and below the inflection point defined by  

(meanx1 − standard deviationx1) was altered to create deviation from linearity. For example, in the 

saturation model, the effect of X1 is three times greater below than above the inflection point  

(1.5  β1X1 / 0.5  β1X1 = 3). These multipliers were chosen arbitrarily but have numerical values that 

yield plausible “average” associations if the linear model was fitted to the data. For all models  

εy ~ N(0,1), β2 was 0 since X2 had no true effect on Y. The latent values of ASD-related phenotype 

(YLinear, Threshold, Saturation) were computed for each of three β1  {0.15, 0.25, 0.5} that correspond to 

“weak”, “moderate”, and “strong” underlying associations (see Heavner et al., [15] for more details on 

the simulation parameters). We present results only for the weak and strong associations in text, with all 

the details available in the Appendices. 

2.4. Case Definition and Outcome Misclassification 

The values of YLinear, YThreshold, and YSaturation were transformed to yield values in the valid range  

(0–18) for Autism Observation Scale in Infants (AOSI) scores [21], the outcome measure of interest. 

Latent continuous ASD-related endophenotype, was subjected to rounding error and categorized using 

a single clinically relevant cutoff. For YLinear, YThreshold and YSaturation, 𝑌𝑐
∗ = 0 if Y* is 0–6 and 𝑌𝑐

∗ = 1 if 

Y* is 7–18 (Table 1). For all exposure-disease models, subjects with a high AOSI score were considered 

to be cases. An AOSI score of at least seven has been shown to have clinical and/or etiologic 

significance. It must be noted that we do not equate high AOSI with a clinical diagnosis of ASD.  

We merely assert that ASD is a collection of traits that naturally occur on a continuous scale and are 

segregated into binary disease and healthy groups based on some criteria. This is consistent with the 

current conceptualization of ASD as a “spectrum” of phenotypes, not a definitive state common to all 

cases, as is true of other conditions (e.g., death from a cardiac event or acquisition of an infection). 

Various AOSI sub-scales may be more related to environmental exposure than others but this is not our 

focus here and our argument applies to any measures of continuous traits that have AOSI-like properties. 

2.5. Investigating the Effect of Changing the Cutoff(s) for the Observed Causal Exposure (W1) 

The mismeasured exposure was dichotomized in the first set of analysis and then a separate analysis 

was conducted where it was divided into five categories. 

  



Int. J. Environ. Res. Public Health 2015, 12 10204 

 

Two Categories 

W1 was dichotomized, yielding W1c, at 61 different cutoffs (cutoff = φ) ranging from the population 

mean plus or minus three standard deviations in increments of 0.1 such that W1c = 1 if W1 ≥ φ, and  

W1c = 0 if W1 < φ. The reference group for these dichotomized variables was W1c = 0. 

Five Categories 

W1 was then divided into five categories based on the number of standard deviations away from the 

mean value in the cohort. Four cutoffs (φ1 – φ4) were used such that the reference group was between  

φ2 and φ3 (referent group: φ2  ≤ W1 < φ3) (Figure 1). The distance between two consecutive cutoffs varied 

(distance between cutoffs = width of the reference group = δ) from 0.5 standard deviations to 1.5 standard 

deviations. The midpoint of category 3 (the reference category) was the estimated population mean (0) 

of W1. This resulted in three groups of equal width δ (the 2nd, 3rd (reference) and 4th groups) and two 

groups of varying width at the extremes of the exposure distribution (groups 1 and 5). A number of other 

multi-category approaches are reasonable and used in epidemiology (e.g., categories formed to ensure 

equal number of “cases”, categories reflecting percentiles of exposure distribution in disease-free 

individuals, categories based on hypothesized thresholds or other quantities with intuitive interpretation 

such as those relevance to clinical practice) but it is beyond the scope of this paper to compare them.  

We present an approach that bases the categories on the distribution of the exposure in the entire cohort; 

we make our SAS code available upon request for other researchers to explore alternative scenarios. 

 

Figure 1. Descriptions of four cutoffs and five categories for W1. 

2.6. Assessing the Effect of Variation in the Cutoff for W1 

For each W1c, a logistic model was computed in the form: 

𝐿𝑂𝐺𝐼𝑇(𝑝𝑟(𝑌𝑐
∗ = 1)) = 𝑐0 + 𝑐1𝑊1𝑐 + 𝑐2𝑊2𝑐 + 𝑐3𝑍 + 𝑐4𝑊𝑔𝑎𝑐 (𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐). 

Thus, for logistic models, exp (c1) is the odds ratio of the estimated effect of W1c (OR1) on odds of 

AOSI ≥ 7. All independent variables were considered as dichotomized predictors (W2c = 1 if W2 ≥ 1, 

W2c = 0 if W2 < 1 and Wgac = 1 if Wga ≥ 37, Wgac = 0 if Wga < 37) of the dichotomized AOSI score. 

Although these variables are not true confounders, their inclusion in the logistic models realistically 

simulates regression analyses that are common in ASD research. In addition, the inclusion of these 

variables is not detrimental to the model from a statistical perspective as the size of the population is 
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very large. We also fitted analogous logistic regression models with values of the exposures that were 

not contaminated by measurement error, e.g., with X1 instead of W1, etc. These models were repeated 

for the threshold and saturation models. 

OR curves were created for the analyses of changing the cutoff used to dichotomize W1. These curves 

were created by plotting the OR1 derived from logistic regression on the y-axis and the cutoff used to 

dichotomize W1 (φ) on the x-axis. A separate set of plots of the ORs versus the width of the reference 

group (δ) was created for the scenarios with five categories of W1 (yielding points for four ORs for each 

width of the reference group). 

We examined the degree of misclassification and its dependence on the outcome created by 

dichotomization of W1. The true classification with respect to the cutoff was the model without 

measurement error, i.e., when X1 is dichotomized. For each cutoff of W1, the sensitivity and specificity 

were calculated separately for cases and controls. Sensitivity and specificity were defined as follows: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
# 𝑒𝑥𝑝𝑜𝑠𝑒𝑑 𝑏𝑜𝑡ℎ 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑒𝑟𝑟𝑜𝑟 𝑎𝑛𝑑 𝑤𝑖𝑡ℎ 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑒𝑟𝑟𝑜𝑟

# 𝑒𝑥𝑝𝑜𝑠𝑒𝑑 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑒𝑟𝑟𝑜𝑟
 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
# 𝑢𝑛𝑒𝑥𝑝𝑜𝑠𝑒𝑑 𝑏𝑜𝑡ℎ 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑒𝑟𝑟𝑜𝑟 𝑎𝑛𝑑 𝑤𝑖𝑡ℎ 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑒𝑟𝑟𝑜𝑟

# 𝑢𝑛𝑒𝑥𝑝𝑜𝑠𝑒𝑑 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑒𝑟𝑟𝑜𝑟
 

3. Results and Discussion 

The characteristics of the population are similar to what was expected based on the simulation 

parameters (data not shown). The effect of changing the cutoff for dichotomizing W1 is shown in  

Figure 2 (and Figure A1). Each of the three exposure-outcome relationships had a distinctly shaped OR 

curve. Even with such a large population (n = 1,000,000), at the extreme cutoffs, there was  

non-monotonic oscillation in the effect estimates that is open to various interpretations. (In all scenarios, 

the greatest cutoff for the mismeasured exposure yielded more than 750 exposed cases, which is rarely 

attained even in ‘large’ epidemiology studies. For example, in the linear model with a weak true 

association and small measurement error, there were 846 cases with a mismeasured exposure at least as 

great as the highest cutoff.) The linear models had U-shaped graphs with slightly lower ORs for very 

large cutoffs compared to very small ones. For all strengths of the true association, the OR was 

increasingly underestimated (compared to the scenario with no measurement error) and the OR curve 

became flatter as measurement error increased. The highest estimates of OR tend to occur when cutoffs 

are made at the extremes of the exposure distribution, with changes from an easily dismissed OR of <2 

tending to occur with the cutoff in the center of the distribution and a clear “signal” of OR >2 apparent 

with categorizations at the extremes when there was a moderate underlying association. 

The semi-linear (threshold and saturation) models had a true inflection point (at one standard 

deviation below the mean). This inputted inflection point was obvious in the OR curves constructed 

under the semi-linear models without measurement error (Figure 2B,C). The OR curves appeared more 

linear and the inflection point was more obscured as the measurement error variance increased. In 

general, the OR became closer to the null as the measurement error increased. It is noteworthy that for 

the threshold model, contrary to intuition, dichotomization near the inflection point results in 

overestimation, rather than attenuation, of the OR in the presence of measurement error. 
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Weak true association Strong true association 

  

(A) Linear model 

  

(B) Threshold (semi-linear) model 

  

(C) Saturation (semi-linear) model 

No measurement error 

Measurement error variance = 0.0625 

Measurement error variance = 0.25  

Measurement error variance = 1 

The W1 cutoff was changed from −3.0 to 3.0 in increments of 0.1. Exposed W1
 ≥ cutoff, referent: W1 < cutoff. 

The vertical reference line for the semi-linear models is the inputted inflection point. 

Figure 2. Odds ratios (ORs) for different cutoffs (between mean ± 3 standard deviations) 

used to dichotomize a mismeasured exposure (W1).  
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The two distinct slopes (below and above the mean minus one standard deviation) were clear for both 

the threshold and saturation models without measurement error. There was an apparent inflection point 

for the threshold models with moderate or large variance in the measurement error. The shape of the 

graph changed and the inflection point seemed to move as the measurement error variance increased. 

The shape of the curves for the threshold model for cutoffs greater than the mean resemble the steeper 

curves of the equivalent part of the curves for the linear models, as expected. It is also apparent that the 

highest ORs are obtained when the cutoff is made in the steeper section of the true exposure-response 

curve: this can be used to distinguish the linear from non-linear exposure-response associations.  

The influence of choice of cutoff on the overall results is perhaps most clear in the case of the saturation 

model: for a moderate true association, cutoffs below the inflection point tend to yield evidence of a 

“strong” association (OR > 3) while cutoffs above the inflection point yield an OR less than two.  

ORs less than two are frequently dismissed as unimportant in the epidemiology literature.  

The effect of changing the cutoffs used to create five categories of the causal exposure is illustrated 

in Figure 3 and Figure A2. The graphs were distinct for each of the three exposure-response models. For 

the linear models, as the width of the reference group (δ) increased, the ORs were farther from the null 

for all scenarios. In addition, as the measurement error variance increased, the ORs for all four categories 

moved closer to the null. Again, we note that whereas under low measurement error the graphs can be 

used to distinguish between associations of different shapes, this identification of shapes becomes 

problematic as measurement error increases, even with the increase in number of categories from two to 

five. In practice, this may lead to both under- and over-interpretation of information contained in the 

data about the shape of the exposure-response relationship (e.g., dismissing non-linearity when it is 

present, or positing a curvilinear shape when the exposure-response is linear, respectively), even though 

it would leave little doubt that there is an association between the exposure and outcome. 

When the distance between cutoffs was shortened it was possible to gain more insight into possible 

thresholds and inflection points (Figure A3 contains OR curves when the true association was weak, 

varying the cutoffs used to create five categories by smaller increments (0.01)).  

The sensitivity and specificity for each cutoff used for dichotomization is illustrated in Figure 4 and 

Figure A4. There was a clear pattern of trade-off between sensitivity and specificity, with cutoffs at 

higher apparent exposure values producing classifiers that favored specificity over sensitivity and vice 

versa. Cutoffs in the center of the apparent exposure distribution produced values of sensitivity and 

specificity that were similar to each other. The curves for sensitivity and specificity cross below the 

mean for controls and above the mean for cases. The specificity is unstable for smaller cutoff values and 

the sensitivity is unstable for larger cutoff values. Sensitivity tended to be higher among cases and 

specificity higher among controls. The deviation from non-differential misclassification was most 

pronounced when dichotomization was done at the extremes of the exposure distribution. Furthermore, 

the degree of divergence from non-differential misclassification increased with the strength of the true  

exposure-outcome association as well as the magnitude of the measurement error variance.  

Receiver operator characteristic (ROC) curves for selected cutoffs (−3, −2, −1, 0, 1, 2, 3) are shown in 

Figure A5. In general, the ROC curves varied little by the cutoff used to dichotomize W1, particularly 

when the true association was weak. 
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Linear model 

Weak true association 

No measurement error   Measurement error variance = 0.25 Measurement error variance = 1 

   

Strong true association 

No measurement error   Measurement error variance = 0.25 Measurement error variance = 1 

   

Figure 3. Cont.  
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Threshold (semi-linear) model 

Weak true association 

No measurement error   Measurement error variance = 0.25 Measurement error variance = 1 

   

Strong true association 

No measurement error   Measurement error variance=0.25 Measurement error variance=1 

   

Figure 3. Cont. 
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Saturation (semi-linear) model 

Weak true association 

No measurement error   Measurement error variance=0.25 Measurement error variance=1 

   

Strong true association 

No measurement error  Measurement error variance = 0.25 Measurement error variance = 1 

   

Lowest exposure category 

 

Second lowest exposure category 

 

Second highest exposure category 

 

Highest exposure category 

 

Figure 3．Odds ratios (OR) for different cutoffs used to create 5 categories for the causal yet mismeasured exposure (W1) (δ is identified as 

“W1 delta” in the figure). The 4 W1 cutoffs were centered at 0 with δ from 0.5 to 1.5 standard deviations, in increments of 0.1. Reference 

category for W1 is mean +/− (0.5 × δ × standard deviation).  
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Weak true association Strong true association 

Measurement error variance = 0.25 Measurement error variance = 1 Measurement error variance = 0.25 Measurement error variance = 1 

Linear model 

    

Threshold model 

    

Figure 4. Cont. 
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Weak true association Strong true association 

Measurement error variance = 0.25 Measurement error variance = 1 Measurement error variance = 0.25 Measurement error variance = 1 

Saturation model 

    

Cases—black Controls—grey Sensitivity—solid lines Specificity—dotted lines 

Figure 4. Sensitivity and specificity at each cutoff for the mismeasured exposure (W1). 
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4. Discussion  

As expected, the cutoff (s) chosen for categorizing continuous variables has a profound effect on the 

results of this simulation study. The two types of OR plots presented here allow us to gain insight into 

the shape of the underlying exposure-outcome relationship, particularly in scenarios where there is 

minimal measurement error. This builds on our previous work [1,4] when we did not know the true 

shape of the underlying relationship. A U-shaped curve when the measure of the exposure of interest 

was dichotomized indicated that the underlying relationship was linear. This may have particular 

implication for meta-analyses of studies with binary exposures and outcomes. Cutoffs at different 

exposure values measured with different degrees of accuracy across studies may manufacture U-shaped 

associations and other non-linearities where none may in fact exist. As measurement error increases, we 

lose the ability to infer the shape of the underlying exposure-response relationship if the exposure of 

interest is dichotomized. The plots used for five categories of W1 may be a good way to infer shape, 

even in the presence of larger measurement error. In practice, it may be sensible for a post hoc correction 

for measurement error (e.g., [22,23]) to be applied to the data before construction of the OR curve. 

It is particularly important to investigate a wide range of cutoffs if there is a suspected inflection point 

as failure to include the true inflection point in the OR curve would likely lead to incorrect assumptions 

about the underlying shape of the exposure-response relationship. (Methods, such as those used by 

Hinkley [24] or Muggeo [25], may be used to identify such inflection points. However, we do not know 

how these operate with multiple sources of measurement error (in exposure and outcome) or under the 

realist conditions in ASD research that we simulated. Thus, we maintain that exploring the extent to 

which our approach is useful in addressing such question was justified, especially since our method is 

more easily implemented by researchers who do not have the support needed to implement more 

advanced statistical methods.) The number of categories and cutoffs are also important considerations 

as analyzing too many categories may lead to instability in the curve and incorrect inferences about the 

exposure-response relationship. If many categories are needed or desirable it is better to have a greater 

distance between cutoffs to obtain a clearer picture of the exposure-response relationship by minimizing 

cross-contamination of adjacent exposure groups. This simulation does not take into account random 

sampling error, the effects of which are well known. The use of smaller samples will lead to increasing 

instability, particularly in the tails of the OR curve. Our previous work [1] illustrated that in an OR curve 

for a large administrative dataset (n ~ 19,000), a relatively wide range of ORs was possible for what is 

suspected to be, at most, a modest association. Although we simulated a realistic scenario in autism 

research, model misspecification is an additional potential source of bias in this simulation and similar 

observational studies. 

Use of non-parametric methods to model non-linearity is an attractive alternative to categorization [7]. 

But there are problems for which one is interested in the change in risk due to a change in exposure 

below a certain level (as is the case in environmental epidemiology and is the aim of regulatory exposure 

limits). Furthermore, our method does not make any assumptions that are otherwise involved in 

modeling exposure-response shapes, e.g., splines assume no measurement error. We in fact show that 

under ‘small’ measurement error our approach can yield insights into the true shape of the  

exposure-response association without invoking unfamiliar or hard to test assumptions, or complications 
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involved in selection of the exact form of the spline to fit to the data (e.g., number of nodes and degree 

of smoothing are left to the investigator’s judgment and can be a source of uncertainty about just how 

much a given result is an artifact of selective reporting). Yet it is clear that measurement error leads to 

loss of features in the data and it is therefore perilous to infer any specific shape of the exposure-outcome 

association based on our method or any other method that does not correct for measurement error.  

Thus, we again reinforce the need to understand the nature of measurement error present in any  

particular analysis. 

5. Conclusions 

We presented results for a simple scenario in which there are no confounders and the theoretically 

optimal cutoffs for the other variables included in the regression models are known. The scenario 

presented here is common in autism research as well as other areas of epidemiology, in which sex and 

(gestational) age are included in the regression model even if they are not true confounders. We do not 

know how the presence of confounding may influence the OR curve and the inferences about the 

underlying shape of the exposure-response relationship but it is likely that it will be obscured. Our SAS 

code is available upon request for other researchers to apply to other scenarios.  

A discussion of the merits and limitations of categorization of continuous variables is outside the 

scope of this study and has been discussed in-depth elsewhere (e.g., Bennette and Vickers [6]).  

This study reinforced results of our previous work that demonstrated that although vastly different 

numerical estimates may be obtained with different cutoffs, presenting results for a wide range of cutoffs 

is feasible, provides valuable insight into the exposure-response relationship when measurement error is 

small, and may help prevent fishing for a desired study result [1,4]. We also demonstrate that noticeable 

differential exposure misclassification arises when measurement error is present in a dichotomized 

exposure estimate and the cutoff is at the extremes of the observed distribution. Thus, it is important to 

consider that in such settings, an investigator may incur bias of unpredictable direction despite 

attempting (as is often done) to reduce the impact of measurement error by separating truly and highly 

exposed subjects from the rest. 

It is possible (and relatively straightforward) to present measures of association for a wide range of 

cutoffs used to dichotomize a continuous exposure. If only one such cutoff is presented, the choice of 

cutoff has profound effects on the study results. Except in the presence of large measurement error,  

the shape of the OR curve may provide insight into the true shape of the underlying exposure-disease 

relationship. 
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Appendix 

 Weak true association Moderate true association Strong true association 

A. Linear model    

B. Threshold  

(semi-linear) model    

Figure A1. Cont. 
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 Weak true association Moderate true association Strong true association 

C. Saturation  

(semi-linear) model    

Figure A1. Odds ratios for different cutoffs (between mean ±3 standard deviations) used to dichotomize a mismeasured exposure (W1)  

(all scenarios for Figure 2). The X1 cutoff was changed from −3.0 to 3.0 in increments of 0.1.  Exposed W1 ≥ cutoff, referent: W1 < cutoff.  

The vertical reference line for the semi-linear models is the inputted inflection point. 
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Linear model 

A. Weak true association 

No measurement error  Measurement error variance = 0.0625 Measurement error variance = 0.25 Measurement error variance = 1 

    

B. Moderate true association 

No measurement error Measurement error variance = 0.0625 Measurement error variance = 0.25 Measurement error variance = 1 

    

Figure A2. Cont. 
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C. Strong true association 

No measurement error Measurement error variance = 0.0625 Measurement error variance = 0.25 Measurement error variance = 1 

    

Threshold (semi-linear) model 

D. Weak true association 

Measurement error variance = 0  Measurement error variance = 0.0625 Measurement error variance = 0.25 Measurement error variance = 1 

    

Figure A2. Cont. 
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E. Moderate true association 

Measurement error variance = 0  Measurement error variance = 0.0625 Measurement error variance = 0.25 Measurement error variance = 1 

    

F. Strong true association 

Measurement error variance = 0  Measurement error variance = 0.0625 Measurement error variance = 0.25 Measurement error variance = 1 

    

Figure A2. Cont. 
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Saturation (semi-linear) model 

G. Weak true association 

Measurement error variance = 0  Measurement error variance = 0.0625 Measurement error variance = 0.25 Measurement error variance = 1 

    

H. Moderate true association 

Measurement error variance = 0  Measurement error variance = 0.0625 Measurement error variance = 0.25 Measurement error variance = 1 

    

Figure A2. Cont. 
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I. Strong true association 

Measurement error variance = 0  Measurement error variance = 0.0625 Measurement error variance = 0.25 Measurement error variance = 1 

    

Lowest exposure category Second highest exposure category Second lowest exposure category Highest exposure category 

Figure A2. Odds ratios (OR) for different cutoffs used to create 5 categories for the causal yet mismeasuered exposure (W1) (all scenarios for 

Figure 3) (δ is identified as “W1 delta” in the figure). The 4 W1 cutoffs were centered at 0 with δ from 0.5 to 1.5 standard deviations, in 

increments of 0.1. Reference category for W1 is mean +/− (0.5 × δ × standard deviation). 
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A. Threshold (semi-linear) model 

No measurement error  Measurement error variance = 0.25 Measurement error variance = 1 

   

B. Saturation (semi-linear) model 

No measurement error  Measurement error variance = 0.25 Measurement error variance = 1 

   

Figure A3. Odds ratios (OR) for different cutoffs used to create 5 categories for mismeasured exposure (W1), 101 cutoffs, with the true “weak” 

association. The 4 W1 cutoffs were centered at 0 with δ from 0.5 to 1.5 standard deviations, in increments of 0.1. Reference category for W1 is 

mean +/−(0.5 × δ × standard deviation). 
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Linear model 

A. Weak true association 

Measurement error variance = 0.0625 Measurement error variance = 0.25 Measurement error variance = 1 

   

B. Moderate true association 

Measurement error variance = 0.0625 Measurement error variance = 0.25 Measurement error variance = 1 

   

Figure A4. Cont. 
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C. Strong true association 

Measurement error variance = 0.0625 Measurement error variance = 0.25 Measurement error variance = 1 

   

Threshold model 

D. Weak true association 

Measurement error variance = 0.0625 Measurement error variance = 0.25 Measurement error variance = 1 

   

Figure A4. Cont. 
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E. Moderate true association 

Measurement error variance = 0.0625 Measurement error variance = 0.25 Measurement error variance = 1 

   

F. Strong true association 

Measurement error variance = 0.0625 Measurement error variance = 0.25 Measurement error variance = 1 

   

Figure A4. Cont. 
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Saturation model 

G. Weak true association 

Measurement error variance = 0.0625 Measurement error variance = 0.25 Measurement error variance = 1 

   

H. Moderate true association 

Measurement error variance = 0.0625 Measurement error variance = 0.25 Measurement error variance = 1 

   

Figure A4. Cont. 
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I. Strong true association 

Measurement error variance = 0.0625 Measurement error variance = 0.25 Measurement error variance = 1 

   

Figure A4. Sensitivity and specificity at each cutoff for W1 (all scenarios for Figure 4). Cases—black; Controls—grey; Sensitivity—solid lines; 

Specificity—dotted lines. 

Linear model 

A. Weak true association 

Measurement error variance = 0 Measurement error variance = 0.0625 Measurement error variance = 0.25 Measurement error variance = 1 

    

Figure A5. Cont.  
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B. Moderate true association 

Measurement error variance = 0 Measurement error variance = 0.0625 Measurement error variance = 0.25 Measurement error variance = 1 

    

C. Strong true association 

Measurement error variance = 0 Measurement error variance = 0.0625 Measurement error variance = 0.25 Measurement error variance = 1 

    

Figure A5. Cont.  
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Threshold model 

A. Weak true association 

Measurement error variance = 0 Measurement error variance = 0.0625 Measurement error variance = 0.25 Measurement error variance = 1 

    

B. Moderate true association 

Measurement error variance = 0 Measurement error variance = 0.0625 Measurement error variance = 0.25 Measurement error variance = 1 

    

Figure A5. Cont.  
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C. Strong true association 

Measurement error variance = 0 Measurement error variance = 0.0625 Measurement error variance = 0.25 Measurement error variance = 1 

    

Saturation model 

A. Weak true association 

Measurement error variance = 0 Measurement error variance = 0.0625 Measurement error variance = 0.25 Measurement error variance = 1 

    

Figure A5. Cont.  
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B. Moderate true association 

Measurement error variance = 0 Measurement error variance = 0.0625 Measurement error variance = 0.25 Measurement error variance = 1 

    

C. Strong true association 

Measurement error variance = 0 Measurement error variance = 0.0625 Measurement error variance = 0.25 Measurement error variance = 1 

    

Cutoff = −3.0 Cutoff = −2.0 Cutoff = −1.0 Cutoff = 0 

Cutoff = 1.0 Cutoff = 2.0 C0utoff = 3  

Figure A5. ROC curves for selected cutoffs for W1. 
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