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Abstract: In the absence of effective vaccines, antiviral drugs and personal protective
measures, such as voluntary self-isolation, have been a part of preparedness plans for the
next influenza pandemic. We used a household model to assess the effect of voluntary
self-isolation on outbreak control when antiviral drugs are not provided sufficiently early.
We found that the early initiation of voluntary self-isolation can overcome the negative
effects caused by a delay in antiviral drug distribution when enough symptomatic individuals
comply with home confinement at symptom onset. For example, for the baseline household
reproduction number RH0 = 2.5, if delays of one or two days occur between clinical
symptom development and the start of antiviral prophylaxis, then compliance rates of
q ≥ 0.41 and q ≥ 0.6, respectively, are required to achieve the same level of effectiveness
as starting antiviral prophylaxis at symptom onset. When the time to beginning voluntary
self-isolation after symptom onset increases from zero to two days, this strategy has a
limited effect on reducing the transmission of influenza; therefore, this strategy should be
implemented as soon as possible. In addition, the effect of voluntary self-isolation decreases
substantially with the proportion of asymptomatic infections increasing.
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1. Introduction

Influenza viruses are associated with high morbidity and mortality in humans and continue to be a
major threat to public health [1]. For example, Dawood et al. estimated that the emergence of pandemic
H1N1 in 2009 resulted in 200,000 respiratory deaths and 83,000 cardiovascular deaths worldwide [2].

Because influenza is an important global public health concern, the methods by which pandemic
influenza could be contained are of widespread interest, and a variety of control measures have been
implemented to contain the spread of influenza strains. Vaccination is the most widely available form of
disease control, and vaccination is most effective at the start of an epidemic [3]; however, several months
would be required to produce a vaccine against a novel influenza strain [4–6]. Before effective vaccines
would become available, prevention measures would be limited to antiviral medications and to personal
and societal hygienic measures.

Previous research has indicated that antiviral drugs can reduce the risk of becoming infected with
currently-circulating influenza strains and can inhibit infectivity [7–9]. The effective use of antiviral
drugs is a critical problem for influenza control. The measure of providing antiviral prophylaxis to
the close contacts of influenza patients has been recommended by the World Health Organization as
a principle of early aggressive measures to prevent pandemic influenza [10,11]. The United Kingdom
specifically implemented the policy of dispensing antiviral drugs to infected persons and their close
contacts between May and July 2009, and Pebody et al. suggested that this strategy was highly effective
in reducing the incidence of secondary cases [12]. Using stochastic epidemic simulations, Longini et
al. showed that targeted antiviral prophylaxis (i.e., offering antiviral prophylaxis to the close contacts
of suspected index influenza patients) was an effective control measure to contain pandemic influenza
until vaccines became available [1]. In addition, the combination of targeted antiviral prophylaxis and
other interventions has been successfully used to combat the spread of pandemic influenza [13–18].
Thus, in the present study, household-based antiviral prophylaxis is considered as a control measure.
As performed by Becker and Wang [8], household-based antiviral prophylaxis was carried out by
dispensing antiviral drugs to household members immediately after the first household case showed
clinical symptoms.

Unfortunately, logistical constraints, such as a limited distribution capacity and an insufficient
stockpile, might limit the effect of antiviral drugs [4]. Because influenza is a highly contagious
disease that can be transmitted via close contact with an infected individual, minimizing contact with
infected people helps reduce transmission [19]. Intervention measures aimed at reducing the contact
rates between infected and susceptible individuals should be considered. Voluntary home confinement
of infected individuals (i.e., voluntary self-isolation) can reduce contact between ill people and other
community members; thus, voluntary self-isolation is usually considered as an intervention capable
of limiting the transmission of pandemic influenza. The European Centre for Disease Prevention and
Control (ECDC) also recommends this measure [20]. Because self-isolation restricts the activity of ill
people, it is controversial [21]. The public’s doubts regarding the effectiveness of this intervention might
also make it a difficult strategy to implement [21]. To ease these doubts, it is important to investigate
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the efficacy of voluntary self-isolation in the control of pandemic influenza. Mathematical models are
powerful tools with which to study the dynamics of infectious diseases and to evaluate the effects of
various control measures [22,23]. Moreover, because transmission within a household is the dominant
mode of transmission of infections, household epidemic models have recently received widespread
attention [7,13,24–27].

Moreover, certain studies have suggested that asymptomatic cases and asymptomatic infections
indeed occur during influenza transmission. Based on active clinical follow-up and laboratory-confirmed
outcomes, Papenburg et al. estimated that approximately 10% of A(H1N1) 2009 infections were
completely asymptomatic [28]. Additionally, one recent study by Hayward et al. suggested that
for the 2009 H1N1 pandemic, the proportion of asymptomatic individuals was as high as 70% to
80% [29]. Several earlier studies confirmed that asymptomatic infections also occurred in H5N1
pandemic influenza [30,31]. Note that the presence of asymptomatic infections likely affects the
epidemic outbreak and the effectiveness of certain control measures. Hence, asymptomatic infection is a
critical factor when considering the transmission dynamics of infectious diseases and pandemic control
strategies. Many researchers have thus investigated the impact of asymptomatic cases and asymptomatic
infections [1,15,32,33].

Given these considerations, we used a household epidemic model to investigate how household-based
control measures, including household-based antiviral prophylaxis and voluntary self-isolation of
symptomatic individuals within households, contribute to the containment of influenza outbreaks. We
examined the effects of voluntary self-isolation alone and in combination with antiviral prophylaxis
on the control of pandemic influenza. We also explored the impacts of a delay in implementing
voluntary self-isolation and of asymptomatic infections on the effectiveness of voluntary self-isolation.
“Self-isolation” means that symptomatic individuals stay and confine themselves at home [34]. In
practice, it would be difficult for a government to offer antiviral drugs for prophylaxis, but not for treating
patients. Therefore, as in [35,36], an antiviral prophylaxis strategy of treating symptomatic initial cases
and offering prophylaxis to those who had close contact with these initial cases is considered. Hence,
the term “antiviral prophylaxis” in this paper refers to the use of antiviral drugs in the treatment of the
symptomatic index cases of influenza in a household and in the prophylaxis of those who have had close
contact with these index individuals.

2. Methods

We considered the spread of an influenza strain within a community of households. A household
refers to a group of people who share the same living facilities under a single shelter structure [37]. In
general, people more often have contact with their household members than with other persons outside
their households [21]. Suppose that the community consists of a large number of households of various
sizes. Let hn denote the proportion of households of size n (n = 1, 2, · · · ) in the community, and let

gj =
jhj

∞∑
n=1

nhn

(j = 1, 2, · · · ) denote the probability that a randomly-selected community member resides

in a household of size j.
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Based on certain literature on epidemic modeling [37,38], we assume that after the disease is
introduced into a household, the chance that a household member will be infected by infectious people
outside the household is negligible relative to the chance that he or she will be infected by an infectious
household member. In other words, outbreaks within affected households evolve independently of each
other [8,37]. The assumption of independence between household outbreaks is likely questionable,
but fortunately, this problem has been resolved by Ball et al. [39]. These researchers considered a
model that explicitly allows disease transmission between households and showed that given a major
outbreak, household outbreaks are actually approximately (i.e., asymptotically) independent if the
number of households is large [40]. The chain of infection in a household outbreak is denoted by
C = (c1, c2, c3, · · · ), where cj represents the number of infected individuals in the j-th generation. In this
study, the primary household case is considered to be the first generation. Suppose only one introductory
case lives in every infected household; hence, c1 equals one, and c2 is the number of individuals infected
by the primary case in the same household. For any j ≥ 2, cj represents the number of infected
individuals infected by the previous generation. For example, considering a household of size 5, the
members are called “a”, “b”, “c”, “d” and “e”. Suppose that this household consists of four susceptible
individuals and one introductory case and that “a” is the introductory case and infects “b”, “c” and “d”,
after which “b” infects “e”. Here, the chain is denoted by 1 → 3 → 1, i.e., c1 = 1, c2 = 3, c3 = 1,
ci = 0 (i ≥ 4). The probability that an epidemic chain C occurs in a household of size j is denoted by
P (C|j); vH denotes the average size of an outbreak within a household that is selected randomly from
the community.

It is inevitable that infectious individuals infect susceptible persons outside their households. We
assume that one k-th generation household case infects other susceptible persons outside his or her
household according to a Poisson process with a rate of µk [41], which is the average number of infected
persons generated by a single k-th generation infected individual. Additionally, the probability that one
k-th generation case in a household outbreak infects i members outside his or her household is denoted
by ϕi,k (i = 0, 1, 2, · · · ; k = 1, 2, · · · ). According to Ball et al. [39], under the condition that the
number of households is large and the number of infected households is relatively small, the probability
that a given infected household member will infect an individual outside his or her household who
is residing in a previously-infected household is negligible compared to the probability that a given
infected household member will infect an individual outside his or her household who is residing in
a previously-uninfected household. That is, each individual infected by one k-th generation infective
outside the latter’s household resides in an otherwise previously-uninfected household.

Let q denote the fraction of symptomatic individuals who comply with voluntary self-isolation.
We assume that the voluntary home confinement of patients begins on the l day after symptom onset.
As in [38], we assume that the infected individual’s symptoms appear TI days after infection. As
infected persons can transmit the infection prior to the onset of their symptoms, even self-isolated
individuals may transmit the infection outside their households. As above, we assume that a k-th
generation infected individual creates other infected individuals outside his or her household according
to a Poisson process with a rate of µ′

k, where µ′
k is the mean number of cases that one k-th generation

household patient infects outside of his or her household prior to voluntary self-isolation. Then, let



Int. J. Environ. Res. Public Health 2015, 12 9754

ϕ′
i,k (i = 0, 1, 2, · · · ; k = 1, 2, · · · ) represent the probability that one k-th generation household case

infects i individuals outside his or her household before voluntary self-isolation.
During the voluntary self-isolation period of patients, we assume that the behavior of their household

members is unconstrained. It is unrealistic to segregate infected individuals from their household
members [42]; thus, we further assume that self-isolation does not have any impact on the contacts
between the isolated individuals and their household members. That is, the transmission chain within a
household is not affected by the voluntary self-isolation strategy.

In addition to symptomatic cases, infected individuals who do not develop clinical symptoms also play
a major part in the transmission of influenza [43]. We therefore consider asymptomatic infections in our
model. We assume that infected people with influenza develop clinical symptoms with a probability of α.
We also assume that one k-th generation asymptomatic household case infects other susceptible persons
outside his or her household according to a Poisson process with a rate of ϵkµk. The parameter ϵk (k =

1, 2, · · · ) is the reduction in the infectiousness of the k-th generation individuals with asymptomatic
infection to other community members, where 0 ≤ ϵk ≤ 1. The case ϵk = 0 represents the scenario in
which asymptomatic infected people are not contagious, and ϵk = 1 corresponds to the scenario in which
asymptomatic cases and symptomatic cases have the same infectiousness. The probability that one k-th
generation asymptomatic case in a household outbreak infects i members outside his or her household is
denoted by ϕ′′

i,k (i = 0, 1, 2, · · · ; k = 1, 2, · · · ).
We assume that the epidemic is seeded by a single infected individual who arrives from another

location. Here, Y denotes the total number of cases in which antiviral prophylaxis and voluntary
self-isolation are implemented. The derivation method for the eventual mean number of infected
individuals is based on the premise that each newly-infected individual in the community will start
an independent epidemic process with the same eventual average number of patients. This method of
determining the eventual mean number of infected individuals was used by Becker and Wang [8]. The
eventual mean number of infected individuals, EY , can be obtained by:

EY =
vH

1−RH

, (1)

where:

RH = α

∞∑
j=1

gj
∑
C

P1(C|j)
j∑

k=1

ck (qµ
′
k + (1− q)µk)

+(1− α)
∞∑
j=1

gj
∑
C

P2(C|j)
j∑

k=1

ckϵkµk

(2)

which is the mean number of primary cases generated in the community by all of the infected individuals
of an affected household that is selected randomly from the community [8]. This is also the mean
number of households with infections that are generated by all infected individuals within a random
household outbreak [8,14,44], where P1(C|j) corresponds to the probability of an infection chain within
a household receiving antiviral drugs and P2(C|j) corresponds to the probability of an infection chain
within a household not receiving antiviral drugs. We briefly outline the derivation and interpretation
of Equation (1) in the Appendix. Obviously, the household reproduction number must be RH < 1 for
Equation (1) to be valid.
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To describe the effects of the control measures on the household reproductive number, RH , as
in [8], we adopt the approach of Glass and Becker [38] to describe within-household transmission.
We outline the method of [38] as follows. Transmission within the household is based on the Reed–Frost
model [37,45], but the probability of escaping being infected by a household case varies with the
generation [8]. The level of infectiousness of infected individuals is measured by the size of the
virus population carried by the individual. The size of the virus population follows a deterministic
birth-death process, with birth rate λ and death rate d. In the absence of control measures, the virus
population dynamics at first follow a deterministic birth process with a constant rate λ. TI days
after infection, influenza virus particles are cleared at a rate d because the body’s immune system is
activated. After antiviral drugs are dispensed to infected individuals, the effectiveness of these drugs is
represented by an additional death rate, δ, in the virus population. When antiviral drugs are dispensed
to susceptible individuals, the protective effects of these drugs are reflected in the reduction of the
per contact probability of transmission by a factor of σ [8]. In other words, the effects of antiviral
drugs on susceptibility change the parameter θ to θσ, where θ is the probability that a susceptible
individual escapes infection by a single household member in the absence of antiviral drugs. For a
full description of this change, please refer to [37]. According to [37], the parameter θ can be expressed
by θ = exp(−

∫∞
0

λxdx), where λx represents the infectiousness function.
As mentioned above, because generations differ in the amounts of time between being infected and

taking antiviral drugs, the probability that a susceptible individual escapes infection by an infected
household member is related to that infected household member’s generation. We let θi (i = 1, 2, · · · )
denote the probability that a susceptible household member avoids being infected by a single i-th
generation case.

3. Results

The containment of the spread of a disease in a community consisting of households is indicated by
a reduction in the household reproduction number, RH , to below one. For the purpose of containing
an outbreak, we show the effectiveness of various interventions strategies in reducing the household
reproduction number, RH . As in [8], we show the change in the household reproduction number,
RH , with respect to the parameters µ, which is the average number of cases that an infected individual
generates outside his or her household, and θ, which is the probability that an individual escapes infection
by an infectious household member during the latter’s entire infectious period, with the goal of describing
the effects of interventions on transmission. These definitions of parameters µ and θ apply to an entirely
susceptible community in the absence of any control measures. Because the parameter µ quantifies
between-household transmission and the parameter θ quantifies within-household transmission, they are
two important factors for determining the values of RH0. With the coordinates of µ and θ, we can display
the results with a wide range of values of RH0. The distribution of household sizes was simulated to be
consistent with Australian census data from 2001. For simplicity, households with only one person
and those with more than six persons were not considered, and the percentages of households with
2, 3, 4, 5, and 6 people were 44%, 21%, 21%, 10%, and 4%, respectively [8,38]. The values of the model
parameters are given in Table 1. These values are consistent with experimental data, as in [8,38].
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Table 1. Values of the model parameters.

Parameter Value Description
λ 4 Birth rate of the virus population.
d 5 Death rate of the virus population due to the immune response.
δ 0.5 Additional death rate of the virus population due to antiviral drugs.
σ 0.5 The factor by which the probability of infection during a single contact

is reduced for an individual who is taking antiviral drugs.
TI 2 The number of days after infection after which clinical symptoms appear.

3.1. Antiviral Prophylaxis and Voluntary Self-Isolation

The effects of prophylaxis with antiviral drugs have been studied previously [8]; the authors noted that
timely distribution of antiviral drugs can reduce the household reproduction number, RH , significantly.
However, because the distribution capacity is limited in practice [4], it would be difficult to dispense
antiviral drugs to affected households immediately after primary cases develop symptoms. Therefore,
we considered the combination of antiviral prophylaxis and voluntary self-isolation as the interventions
that would contain the transmission of influenza. We primarily focused on the role of voluntary
self-isolation when antiviral drugs cannot be dispensed in a timely manner. The delays of one or two
days were considered between symptom development and antiviral drug distribution. Home confinement
of symptomatic individuals began at clinical symptom onset. TA is the time at which antiviral drugs are
dispensed to all household members relative to the onset of the primary case’s symptoms. To evaluate
the effect of voluntary self-isolation, the following six scenarios were considered:

• Strategy 1: antiviral prophylaxis (antiviral drugs were distributed to all household members at the
introductory case’s symptom onset; i.e., TA = 0, q = 0);

• Strategy 2: antiviral prophylaxis (antiviral drugs were distributed to all household members one
day after the introductory case’s symptom onset; i.e., TA = 1, q = 0);

• Strategy 3: antiviral prophylaxis (antiviral drugs were distributed to all household members two
days after the introductory case’s symptom onset; i.e., TA = 2, q = 0);

• Strategy 4: antiviral prophylaxis and voluntary self-isolation (antiviral drugs were distributed to
all household members one day after the introductory case’s symptom onset, where the rate of
self-isolation compliance was q = 0.5; i.e., TA = 1, q = 0.5, l = 0);

• Strategy 5: antiviral prophylaxis and voluntary self-isolation (antiviral drugs were distributed to
all household members two days after the introductory case’s symptom onset, where the rate of
self-isolation compliance was q = 0.5; i.e., TA = 2, q = 0.5, l = 0);

• Strategy 6: antiviral prophylaxis and voluntary self-isolation (antiviral drugs were distributed to
all household members two days after the introductory case’s symptom onset, where the rate of
self-isolation compliance was q = 0.7; i.e., TA = 2, q = 0.7, l = 0).
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Figure 1 shows the effects of the above six strategies on reducing the household reproduction number,
RH , where α = 1 and other parameters assume the values in Table 1. The curves in Figure 1 show the
values of the parameter pairs (µ, θ) when RH equals one in the above six scenarios. For each curve in
Figure 1, the parameter pairs (µ, θ) that satisfy RH > 1 lie above the RH = 1 curve, and those that
satisfy RH < 1 lie below the RH = 1 curve.
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Figure 1. The effects of antiviral prophylaxis and voluntary self-isolation are displayed
in two scenarios: (a) one day delay on dispensing antiviral drugs; (b) two days delay on
dispensing antiviral drugs.

As shown in Figure 1a, Curve (iii) lies above Curve (ii), implying that the strategy of confining
patients at home expands the set of parameter values (µ, θ) for which RH < 1. In other words,
the implementation of voluntary self-isolation expands the set of scenarios for which containment is
achievable. In addition, Curve (iii) also lies slightly above Curve (i), denoting that Strategy 4 is nearly
as effective as Strategy 1 with regard to reducing the household reproduction number, RH < 1. Thus,
assuming that 50% of symptomatic individuals complied with home confinement at symptom onset, the
voluntary self-isolation would overcome the negative effect caused by an antiviral drug distribution delay
of one day.

Figure 1b shows that the implementation of voluntary self-isolation was also effective when a two-day
delay occurred between symptom development and the start of antiviral prophylaxis. Importantly,
however, a high-enough compliance rate is required to achieve the same level of effectiveness as the
strategy of dispensing antiviral drugs to affected households at symptom onset. Table 2 specifically
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lists the needed compliance rates to achieve the same level of effectiveness as Strategy 1 or RH < 1,
corresponding to delays of one or two days from the start of antiviral prophylaxis after clinical symptom
onset. These calculations assumed the baseline household reproduction numbers of RH0 = 2.5 and
θ = 0.5.

Table 2. The needed compliance rates to achieve the same level of effectiveness as
Strategy 1 or RH < 1.

Delay in start of antiviral prophylaxis The compliance rate The effectiveness of interventions

1 day (TA = 1) q = 0.41 same as the effectiveness of Strategy 1

2 days (TA = 2) q = 0.6 same as the effectiveness of Strategy 1

1 day (TA = 1) q ≥ 0.23 RH < 1

2 days (TA = 2) q ≥ 0.47 RH < 1

3.2. Voluntary Self-Isolation

We evaluated the effectiveness of voluntary self-isolation (as a single intervention) and explored how
the household reproduction number, RH , varied with the changes to the compliance rate, q.

The curves in Figure 2 show the values of parameters µ and θ when RH = 1 for scenarios in which (i)
no interventions were implemented, (ii) the fraction of voluntary self-isolation was 0.3, (iii) the fraction
of voluntary self-isolation was 0.5 or (iv) the fraction of voluntary self-isolation was 0.7. The last three
scenarios assumed that infected individuals confined themselves to home at symptom onset (i.e., l = 0).
The parameters α = 1, δ = 0, σ = 1 and other parameters assume the values in Table 1. For each curve
in Figure 2, the parameter pairs (µ, θ) that satisfy RH > 1 lie above the RH = 1 curve, and those that
satisfy RH < 1 lie below the RH = 1 curve.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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(i) no control
(ii) q=0.3, l=0
(iii) q=0.5, l=0
(iv) q=0.7, l=0

Figure 2. The effect of voluntary self-isolation.
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As Figure 2 shows, Curves (ii) through (iv) lie above Curve (i), implying that the implementation
of voluntary self-isolation expands the set of parameter pairs (µ, θ) for which RH < 1. That is,
the implementation of voluntary self-isolation effectively reduces the household reproduction number.
Moreover, comparing the three Curves (ii), (iii) and (iv), we can see that the increase in the compliance
rate q makes the RH = 1 curve shift upward and significantly expands the set of parameter points for
which RH < 1. When we calculate values of RH using the parameter points (µ, θ) that lie on Curves
(ii), (iii) and (iv), but suppose that no interventions are implemented, we obtain the values of RH in the
intervals [1.3127, 1.3159], [1.6627, 1.6668] and [2.2673, 2.2729] corresponding to q = 0.3, q = 0.5 and
q = 0.7, respectively. As shown here, an intervention strategy based only on voluntary self-isolation can
reduce values of RH from well above one to a value of one if a large proportion of infected individuals
follow a public health department’s voluntary self-isolation guidelines. Clearly, as the compliance rate
falls, the effectiveness of this strategy would be greatly reduced. However, if even 30% of cases are
persuaded to stay at home at the onset of their symptoms, transmission can be reduced to some extent.

3.3. The Impact of Delay in Voluntary Self-Isolation

The above results were obtained under the assumption that infected individuals voluntary self-isolate
at the onset of their symptoms. However, in practice, delays often occur between the onset of symptoms
and the implementation of voluntary self-isolation. Therefore, we considered how a delay in the
implementation of voluntary self-isolation affects the effect of the voluntary self-isolation strategy.
Considering a situation in which the compliance rate is 0.5 (q = 0.5) as an example, we examined
the influence of a delay in the implementation of voluntary self-isolation on the household reproduction
number, RH .

Four scenarios were used to evaluate the effect of delayed voluntary self-isolation (Figure 3): (i)
no interventions, (ii) voluntary self-isolation beginning two days after symptom onset, (iii) voluntary
self-isolation beginning one day after symptom onset and (iv) voluntary self-isolation beginning at
symptom onset. The parameters α = 1, δ = 0, σ = 1 and other parameters assume the values in
Table 1. For each curve in Figure 3, RH < 1 when the parameter points (µ, θ) lie below the RH = 1

curve and RH > 1 when the parameter pairs (µ, θ) lie above the RH = 1 curve.
Comparing Curves (iv) and (i) in Figure 3, we can find that the implementation of voluntary

self-isolation beginning at symptom onset significantly expands the set of parameter values (µ, θ)

for which RH < 1. This suggests that implementing the voluntary self-isolation strategy as soon
as symptoms appear leads to a significant expansion in the set of scenarios in which containment
is achievable (relative to the scenario in which no control measures were implemented). However,
as the time between symptom onset and the start of voluntary self-isolation increases, the set of
scenarios in which containment is achievable becomes smaller. Therefore, the effectiveness of voluntary
self-isolation in reducing transmission decreases when voluntary self-isolation is delayed. For example,
Curve (ii) lies slightly above Curve (i), which implies that home confinement of symptomatic individuals
beginning two days after the onset of symptoms results in a slight expansion in the set of scenarios in
which containment is possible. In other words, voluntary self-isolation had little effect on mitigating
the transmission of influenza when voluntary confinement of cases occurred two days after the onset of
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symptoms. Patients infected with influenza are infectious before their symptoms appear and are most
infectious in the two to three days after symptom onset [8]. Therefore, voluntary self-isolation strategies
are much more effective if implemented as soon as possible.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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1.8

θ

µ

 

 
(i) no controls
(ii) q=0.5, l=2
(iii) q=0.5, l=1
(iv) q=0.5, l=0

Figure 3. The impact of delay in voluntary self-isolation.

3.4. The Impact of Asymptomatic Infections

It is widely accepted that asymptomatic infection is an important route of influenza transmission [46].
Although asymptomatic cases can still shed the influenza virus, they are often excluded from the control
objects, because they do not show apparent clinical symptoms. Therefore, the existence of asymptomatic
infections will likely reduce the effectiveness of traditional control strategies. We examined the extent to
which asymptomatic infections influence the effectiveness of voluntary self-isolation.

Due to their features, asymptomatic cases are difficult to diagnose, so clinical evidence of
asymptomatic infection is extremely scarce [32]. The frequency of asymptomatic infections and the
infectivity of asymptomatic individuals are thus hard to ascertain. Although there are a considerable
variety of asymptomatic transmission scenarios, we assume that asymptomatic people have the same
infectiousness as those with obvious clinical symptoms (i.e., ϵk = 1, k = 1, 2, · · · ).

We assume that infected individuals would only consider placing themselves in self-isolation after
showing symptoms; consequently, asymptomatic cases and those individuals who develop clinical
symptoms, but are not willing to stay home, would infect the same number of people as they would
in the complete absence of voluntary self-isolation measures.

Based on the assumptions above, considering only voluntary self-isolation, the household
reproduction number, RH , can be expressed by:

RH = α
∞∑
j=1

gj
∑
C

P1(C|j)
j∑

k=1

ck (qµ
′
k + (1− q)µk)

+(1− α)
∞∑
j=1

gj
∑
C

P2(C|j)
j∑

k=1

ckµk

(3)
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where α is the probability that an infected individual will develop symptoms.
As noted by Carrat et al. [47], the frequency with which infected individuals develop

symptoms is a key consideration in intervention strategies. Some studies have suggested that about
two-thirds of individuals infected with influenza exhibit clinical symptoms, and the remainder are
asymptomatic [46,47]. According to Hayward et al. [29], asymptomatic individuals infected with
seasonal and pandemic influenza comprise approximately three-fourths of all infected individuals; only
one-fourth of infected individuals are symptomatic. Numerical simulations use three different values of
α (α = 1/4, 2/3, 1).

Figure 4 illustrates how asymptomatic infections influence the effectiveness of voluntary
self-isolation. Four scenarios were considered: (i) no intervention, (ii) q = 0.5 and α = 1,
(iii) q = 0.5 and α = 2/3 and (iv) q = 0.5 and α = 1/4. For each curve in Figure 4, RH < 1

when the parameters (µ, θ) lie below the RH = 1 curve and RH > 1 when the parameters (µ, θ) lie
above the RH = 1 curve. From Figure 4, we can see that as the value of the parameter α decreases,
the RH = 1 curve moves down. This phenomenon implies that the decrease in the probability that an
infected individual develops symptoms shrinks the set of scenarios in which containment is possible. In
short, the effectiveness of voluntary self-isolation decreases as the probability of developing symptoms
after infection decreases. For example, if an individual only has a one in four chance of developing
symptoms after infection, voluntary self-isolation of symptomatic individuals with a compliance rate
of q = 0.5 did not substantially reduce disease transmission. Assuming no voluntary self-isolation,
when the values of RH are calculated for the parameter pairs (µ, θ) on Curve (iv), RH values are
approximately 1.11. From this, we can see that voluntary self-isolation has only a limited effect on
reducing the values of RH if a high proportion of asymptomatic infections does indeed exist and if
asymptomatic infected people have the same infectiousness as those with obvious clinical symptoms.
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(i) no controls
(ii) q=0.5, l=0, α=1
(iii) q=0.5, l=0, α=2/3
(iv) q=0.5, l=0, α=1/4

Figure 4. The impact of asymptomatic infected individuals.
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4. Discussion and Conclusions

In the absence of a sufficient quantity of vaccines, antiviral drugs are often considered an important
countermeasure against the influenza virus.

The effects of targeted prophylactic use of antiviral drugs have been studied previously [8]; the authors
of that study noted that administering antiviral drugs to affected households immediately after symptom
onset in the initial case reduced transmission significantly; furthermore, the effectiveness of this strategy
decreases as antiviral drug distribution time increases. However, a delay between distribution of
antiviral drugs and onset of symptoms is usually inevitable in practice because of a limited capacity
to quickly distribute drugs [4]. In this case, measures aimed at reducing the contact rates between ill
and susceptible people should be considered. Therefore, voluntary self-isolation should be applied as an
intervention to reduce the transmission of pandemic influenza when antiviral drugs cannot be dispensed
in a timely manner.

Our results indicate that the implementation of a voluntary self-isolation strategy would improve
transmission containment or, in other words, that the household reproduction number, RH , would
be reduced to less than one if a large proportion of symptomatic infected individuals complied with
public health departments’ instructions to isolate themselves from other community members as soon as
symptoms appeared. Naturally, if fewer infected individuals complied with this recommendation, this
strategy would be less effective. However, if even a relatively small fraction of infected individuals were
to comply with voluntary self-isolation, transmission could be reduced to some extent, and voluntary
self-isolation is extremely critical when antiviral drugs are not immediately available. Importantly,
the home confinement of infected individuals only succeeds when ill people are willing to comply
with this containment measure. The effectiveness of voluntary self-isolation largely depends on
public adherence to this intervention measure. With further understanding of pandemic influenza, the
compliance with public health containment measures increased significantly [48]. Therefore, before
possible intervention measures can be implemented against pandemic influenza, it might be necessary to
disseminate knowledge of its clinical symptoms and associated containment measures to the public [34].

In addition, the efficacy of voluntary self-isolation is reduced if the implementation of voluntary
self-isolation is delayed. Simulation results suggest that voluntary self-isolation has little impact on
reducing the values of RH if voluntary self-isolation is implemented two days after the onset of
symptoms. Therefore, one prerequisite for the voluntary self-isolation policy is the timeliness of
its execution.

It is widely believed that asymptomatic infections are one of the major sources of influenza
transmission. Here, we evaluated the impact of asymptomatic cases on the spread of influenza using the
assumption that asymptomatic infected individuals were as infectious as symptomatic individuals [38].
We found that as the probability of infected individuals exhibiting symptoms decreases, the effectiveness
of voluntary self-isolation likewise decreases. If the frequency of asymptomatic infections exceeds a
given value, the effectiveness of voluntary self-isolation becomes very limited.

There are several requirements for the implementation of antiviral prophylaxis. (1) The stockpile
of antiviral drugs must be adequate. (2) Infected individuals must develop clinically-recognizable
symptoms and have access to healthcare. (3) Lastly, antiviral drugs must be dispensed rapidly to
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affected families. Some obstacles to the implementation of antiviral prophylaxis strategies may be
found in practice because of the level of logistical support that would be required. Therefore, voluntary
self-isolation should be implemented especially when antiviral drugs cannot be provided immediately.
Unfortunately, voluntary self-isolation strategies may inconvenience individuals, lead to economic losses
or even contribute to moral conflicts; thus, voluntary self-isolation remains a controversial strategy [21].
However, our results suggest that voluntary self-isolation is a feasible way to contain an influenza
pandemic. It is worthwhile to note that voluntary self-isolation should be implemented as early as
possible after symptoms develop and that, if an especially high proportion of cases are asymptomatic,
other control measures should be considered, because the effectiveness of voluntary self-isolation will
be reduced. These topics will be explored further in future studies.

Appendix

Outline of the Derivation of Equation (1)
During the containment phase of the pandemic, as [8], we assume that each newly-infected person

who is selected at random from the community gives rise to a new independent transmission process
with the same eventual mean number of cases. Then, the eventual mean number of cases, EY , satisfies
the following equation:

EY = α
∞∑
j=1

gj
∑
C

P1(C|j)
j∑

k=1

ck

(
q

∞∑
m=0

ϕ′
m,k(1 +mEY ) + (1− q)

∞∑
m=0

ϕm,k(1 +mEY )

)
+(1− α)

∞∑
j=1

gj
∑
C

P2(C|j)
j∑

k=1

ck
∞∑

m=0

ϕ′′
m,k(1 +mEY ).

By simply computation, we obtain:

EY = α
∞∑
j=1

gj
∑
C

P1(C|j)
j∑

k=1

ck + (1− α)
∞∑
j=1

gj
∑
C

P2(C|j)
j∑

k=1

ck

+EY

(
α

∞∑
j=1

gj
∑
C

P1(C|j)
j∑

k=1

ck (qµ
′
k + (1− q)µk) + (1− α)

∞∑
j=1

gj
∑
C

P2(C|j)
j∑

k=1

ckϵkµk

)
.

Denote:

vH = α

∞∑
j=1

gj
∑
C

P1(C|j)
j∑

k=1

ck + (1− α)
∞∑
j=1

gj
∑
C

P2(C|j)
j∑

k=1

ck,

which is the average size of an outbreak within a household that is selected randomly from the
community, and:

RH = α

∞∑
j=1

gj
∑
C

P1(C|j)
j∑

k=1

ck (qµ
′
k + (1− q)µk) + (1− α)

∞∑
j=1

gj
∑
C

P2(C|j)
j∑

k=1

ckϵkµk,

which is the mean number of primary cases generated in the community by all of the infected individuals
of an affected household that is selected randomly from the community. Then, the eventual mean number
of cases, EY , can be expressed as:

EY =
vH

1−RH

. (1)
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Obviously, the household reproduction number must be RH < 1 for Equation (1) to be valid.

Acknowledgments

This work was supported by National Natural Science Foundation of China (Project No: 71271042).

Conflicts of Interest

The authors declare no conflicts of interest.

References

1. Longini, I.M.; Halloran, M.E.; Nizam, A.; Yang, Y. Containing pandemic influenza with antiviral
agents. Am. J. Epidemiol. 2004, 159, 623–633.

2. Dawood, F.S.; Iuliano, A.D.; Reed, C.; Meltzer, M.I.; Shay, D.K.; Cheng, P.-Y.; Bandaranayake, D.;
Breiman, R.F.; Brooks, W.A.; Buchy, P.; et al. Estimated global mortality associated with the first
12 months of 2009 pandemic influenza A H1N1 virus circulation: A modeling study. Lancet.
Infect. Dis. 2012, 12, 687–695.

3. Yarmand, H.; Ivy, J.S.; Roberts, S.D. Identifying optimal mitigation strategies for responding to a
mild influenza epidemic. Simulation 2013, 89, 1400–1415.

4. Arinaminpathy, N.; McLean, A.R. Antiviral treatment for the control of pandemic influenza: Some
logistical constraints. J. R. Soc. Interface. 2008, 5, 545–553.

5. Fedson, D.S. Pandemic influenza and the global vaccine supply. Clin. Infect. Dis. 2003, 36,
1552–1561.

6. Webby, R.J.; Webster, R.G. Are we ready for pandemic influenza? Science 2003, 302, 1519–1522.
7. Welliver, R.; Monto, A.S.; Carewicz, O.; Schatteman, E.; Hassman, M.; Hedrick, J.; Jackson, H.C.;

Huson, L.; Ward, P.; Oxford, J.S.; et al. Effectiveness of oseltamivir in preventing influenza in
household contacts: A randomized controlled trial. J. Am. Med. Assoc. 2001, 285, 748–754.

8. Becker, N.G.; Wang, D. Can antiviral drugs contain pandemic influenza transmission? PLoS One
2011, 6, e17764.

9. Laskowski, M.; Greer, A.L.; Moghadas, S.M. Antiviral strategies for emerging influenza viruses in
remote communities. PloS ONE 2014, 9, e89651.

10. World Health Organization. WHO global influenza preparedness plan: The role of WHO
and recommendations for national measures before and during pandemics. Available online:
http://www.who.int/csr/resources/publications/influenza/WHO_CDS_CSR_GIP_2005_5.pdf
(accessed on 7 August 2015).

11. World Health Organization. Pandemic Influenza Preparedness and Response: A WHO Guidance
Document; World Health Organization: Geneva, Switzerland, 2009.

12. Pebody, R.G.; Harris, R.; Kafatos, G.; Chamberland, M.; Campbell, C.; Nguyen-Van-Tam, J.S.;
McLean, E.; Andrews, N.; White, P.J.; Wynne-Evans, E.; et al. Use of antiviral drugs to reduce
household transmission of pandemic (H1N1) 2009, United Kingdom. Emerg. Infect. Dis. 2011,
17, 990–999.



Int. J. Environ. Res. Public Health 2015, 12 9765

13. Black, A.J.; House, T.; Keeling, M.J.; Ross, J.V. Epidemiological consequences of
household-based antiviral prophylaxis for pandemic influenza. J. R. Soc. Interface 2013, 10,
doi:10.1098/rsif.2012.1019.

14. Wu, J.T.; Riley, S.; Fraser, C.; Leung, G.M. Reducing the impact of the next influenza pandemic
using household-based public health interventions. PLoS Med. 2006, 3, e361.

15. Longini, I.M.; Nizam, A.; Xu, S.; Ungchusak, K.; Hanshaoworakul, W.; Cummings, D.A.;
Halloran, M.E. Containing pandemic influenza at the source. Science 2005, 309, 1083–1087.

16. Halloran, M.E.; Ferguson, N.M.; Eubank, S.; Longini, I.M., Jr.; Cummings, D.A.T.; Lewis, B.; Xu,
S.; Fraser, C.; Vullikanti, A.; Germann, T.C.; et al. Modeling targeted layered containment of an
influenza pandemic in the United States. Proc. Natl. Acad. Sci. 2008, 105, 4639–4644.

17. Mniszewski, S.M.; Del Valle, S.Y.; Stroud, P.D.; Riese, J.M.; Sydoriak, S.J. EpiSimS simulation of
a multi-component strategy for pandemic influenza. In Proceedings of the 2008 Spring simulation
multiconference, San Diego, CA, USA, 14–17 April 2008; pp. 556–563.

18. Mniszewski, S.M.; Del Valle, S.Y.; Stroud, P.D.; Riese, J.M.; Sydoriak, S.J. Pandemic simulation of
antivirals + school closures: Buying time until strain-specific vaccine is available. Comput. Math.
Organ. Theory 2008, 14, 209–221.

19. Barnes, B.; Glass, K.; Becker, N.G. The role of health care workers and antiviral drugs in the
control of pandemic influenza. Math. Biosci. 2007, 209, 403–416.

20. Nicoll, A. Personal (non-pharmaceutical) protective measures for reducing transmission of
influenza-ECDC interim recommendations. Euro. Surveill. 2006, 11, E061012.

21. Becker, N.G.; Glass, K.; Li, Z.; Aldis, G.K. Controlling emerging infectious diseases like SARS.
Math. Biosci. 2005, 193, 205–221.

22. Gumel, A.B.; Ruan, S.; Day, T.; Watmough, J.; Brauer, F.; van den Driessche, P.; Gabrielson, D.;
Bowman, C.; Alexander, M.E.; Ardal, S. et al. Modelling strategies for controlling SARS
outbreaks. Proc. R. Soc. Lond. B Biol. Sci. 2004, 271, 2223–2232.

23. Lee, J.; Kim, J.; Kwon, H.D. Optimal control of an influenza model with seasonal forcing and
age-dependent transmission rates. J. Theor. Biol. 2013, 317, 310–320.

24. Yarmand, H.; Ivy, J.S. Optimal intervention strategies for an epidemic: A household view,
Simulation 2013, 89, 1505–1522.

25. Neal, P. Stochastic and deterministic analysis of SIS household epidemics. Adv. Appl. Probab.
2006, 38, 943–968.

26. House, T.; Keeling, M.J. Deterministic epidemic models with explicit household structure. Math.
Biosci. 2008, 213, 29–39.

27. House, T.; Keeling, M.J. Household structure and infectious disease transmission. Epidemiol.
Infect. 2009, 137, 654–661.

28. Papenburg, J.; Baz, M.; Hamelin, M. É.; RhÃl’aume, C.; Carbonneau, J.; Ouakki, M.; Rouleau, I.;
Hardy, I.; Skowronski, D.; Roger, M.; et al. Household transmission of the 2009 pandemic
A/H1N1 influenza virus: Elevated laboratory-confirmed secondary attack rates and evidence of
asymptomatic infections. Clin. Infect. Dis. 2010, 51, 1033–1041.



Int. J. Environ. Res. Public Health 2015, 12 9766

29. Hayward, A.C.; Fragaszy, E.B.; Bermingham, A.; Wang, L.; Copas, A.; Edmunds, W.J.;
Ferguson, N.; Goonetilleke, N.; Harvey, G.; Kovar, J.; et al. Comparative community burden
and severity of seasonal and pandemic influenza: Results of the Flu Watch cohort study. Lancet
Respir. Med. 2014, 2, 445–454.

30. Chan, P.K.S. Outbreak of avian influenza A (H5N1) virus infection in Hong Kong in 1997. Clin.
Infect. Dis. 2002, 34, S58–S64.

31. Graat, J.M.; Schouten, E.G.; Heijnen, M.L.A.; Kok, F.J.; Pallast, E.G.M.; de Greeff, S.C.;
Dorigo-Zetsma, J.W. A prospective, community-based study on virologic assessment among
elderly people with and without symptoms of acute respiratory infection. J. Clin. Epidemiol. 2003,
56, 1218–1223.

32. Hsu, S.B.; Hsieh, Y.H. On the role of asymptomatic infection in transmission dynamics of
infectious diseases. Bull. Math. Biol. 2008 70, 134–155.

33. Chowella, G.; Ammonb, C.E.; Hengartnera, N.W.; Hyman, J.M. Transmission dynamics of the
great influenza pandemic of 1918 in Geneva, Switzerland: Assessing the effects of hypothetical
interventions. J. Theor. Biol. 2006, 241, 193–204.

34. Haber, M.J.; Shay, D.K.; Davis, X.M.; Patel, R.; Jin, X.; Weintraub, E.; Orenstein, E.;
Thompson, W.W. Effectiveness of interventions to reduce contact rates during a simulated influenza
pandemic. Emerg. Infect. Dis. 2007, 13, 581–589.

35. Zhang, Q.; Wang, D. Antiviral Prophylaxis and Isolation for the Control of Pandemic Influenza.
Int. J. Environ. Res. Public. Health 2014, 11, 7690–7712.

36. Merler, S.; Ajelli, M.; Rizzo, C. Age-prioritized use of antivirals during an influenza pandemic.
BMC Infect. Dis. 2009, 9, doi:10.1186/1471-2334-9-117.

37. Becker, N.G. Analysis of Infectious Disease Data. Chapman and Hall: London, UK, 1989.
38. Glass, K.; Becker, N.G. Estimating antiviral effectiveness against pandemic influenza using

household data. J. R. Soc. Interface 2009, 6, 695–703.
39. Ball, F.G.; Mollison, D.; Scalia-Tomba, G. Epidemics with two levels of mixing. Ann. Appl.

Probab. 1997, 7, 46–89.
40. Becker, N.G.; Britton, T. Statistical studies of infectious disease incidence. J. R. Stat. Soc. Ser. B

1999, 61, 287–307.
41. Becker, N.G.; Bahrampour, A.; Dietz, K. Threshold parameters for epidemics in different

community settings. Math. Biosci. 1995, 129, 189–208.
42. Crokidakis, N.; Queirós, S.M.D. Probing into the effectiveness of self-isolation policies in epidemic

control. J. Stat. Mech. Theory. Exp. 2012, doi:10.1088/1742-5468/2012/06/P06003.
43. Prosper, O.; Saucedo, O.; Thompson, D.; Wang, X.H.; Castillo-Chavez, C. Modeling control

strategies for concurrent epidemics of seasonal and pandemic H1N1 influenza. Math. Biosci. Eng.
2011, 8, 141–170.

44. Fraser, C. Estimating individual and household reproduction numbers in an emerging epidemic.
PLoS ONE 2007, 2, e758.

45. Bailey, N.T.J. The Mathematical Theory of Infectious Diseases and Its Applications, 2nd ed;
Hafner Press: London, UK, 1975.



Int. J. Environ. Res. Public Health 2015, 12 9767

46. Hsieh, Y.H.; Tsai, C.A.; Lin, C.Y.; Chen, J.H.; King, C.C.; Chao, D.Y.; Cheng, K.F.; CIDER
Research Team. Asymptomatic ratio for seasonal H1N1 influenza infection among schoolchildren
in Taiwan. BMC Infect. Dis. 2014, 14, doi:10.1186/1471-2334-14-80.

47. Carrat, F.; Vergu, E.; Ferguson, N.M.; Lemaitre, M.; Cauchemez, S.; Leach, S.; Valleron, A.-J.
Time lines of infection and disease in human influenza: A review of volunteer challenge studies.
Am. J. Epidemiol. 2008, 167, 775–785.

48. Eastwood, K.; Durrheim, D.; Francis, J.L.; d’Espaignet, E.T.; Duncan, S.; Islam, F.; Speare, R.;
Knowledge about pandemic influenza and compliance with containment measures among
Australians. Bull. World Health Organ. 2009, 87, 588–594.

c⃝ 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).


	Introduction
	Methods
	Results
	Antiviral Prophylaxis and Voluntary Self-Isolation
	Voluntary Self-Isolation
	The Impact of Delay in Voluntary Self-Isolation
	The Impact of Asymptomatic Infections

	Discussion and Conclusions
	Appendix   

