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Abstract: Sunscreen products are predominantly regulated as over-the-counter (OTC) drugs by the
US FDA. The “active” ingredients function as ultraviolet filters. Once a sunscreen product is generally
recognized as safe and effective (GRASE) via an OTC drug review process, new formulations using
these ingredients do not require FDA review and approval, however, the majority of ingredients
have never been tested to uncover any potential endocrine activity and their ability to interact with
the estrogen receptor (ER) is unknown, despite the fact that this is a very extensively studied target
related to endocrine activity. Consequently, we have developed an in silico model to prioritize single
ingredient estrogen receptor activity for use when actual animal data are inadequate, equivocal,
or absent. It relies on consensus modeling to qualitatively and quantitatively predict ER binding
activity. As proof of concept, the model was applied to ingredients commonly used in sunscreen
products worldwide and a few reference chemicals. Of the 32 chemicals with unknown ER binding
activity that were evaluated, seven were predicted to be active estrogenic compounds. Five of the
seven were confirmed by the published data. Further experimental data is needed to confirm the
other two predictions.

Keywords: sunscreen; ingredient; estrogenic activity; prediction; model

1. Introduction

Endocrine active chemicals arise from many different sources, including pesticides, industrial
chemicals, pharmaceuticals, and consumer products. Exposure to any of these chemicals may
systemically mimic the biological activities of hormones. Since the mid-1990s, there has been
public concern about endocrine disrupting chemicals and this concern is made more burdensome by
continuous ingredient innovations. Catching up via chemical hazard screening approaches has been
actively pursued, but focused on industrial, pharmaceutical and agricultural chemicals due to their
potential acute toxicity as well as greater exposure in humans. Relatively less attention has been paid
to cosmetic and personal care products, despite the significant innovations witnessed in this industry.

Topically-applied products intended to help prevent sunburn, decrease the risk of skin
cancer, or decrease the effects of skin aging caused by the sun are collectively considered to be
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“sunscreen products”. In the United States (US), these products are regulated by the Food & Drug
Administration (FDA) as drugs. Sunscreen products currently available in the US are predominantly
regulated as over-the-counter (OTC) drugs. The ingredient workhorses in sunscreen products are the
“active” ingredients which function as ultraviolet (UV) filters of either UVA and/or UVB rays. The OTC
drug review involves a determination by FDA that a sunscreen UV filter is generally recognized as
safe and effective (GRASE) based on the available scientific evidence. Once an ingredient UV filter
receives GRASE status via an OTC drug review process, new formulations using these ingredients do
not require FDA premarket review and approval. The latest OTC monograph setting FDA’s rules for
sunscreen products was published in the Federal Register on 17 June 2011 [1] and instituted fully in
December of 2013.

There are risks and benefits associated with sunscreen use. The benefit is to lessen the chances
of developing skin cancer when used as directed with other sun protection measures. FDA and
other public health agencies continue to urge consumers to take sun protection measures, of which
regular use of broad spectrum sunscreen products with a minimum SPF value of 15 is one element [2].
The risk is with continuous innovation in sunscreen formulation technology and its influence on the
market use of sunscreen UV filters as well as excipients, which are typically not rigorously tested.
Such is the case when assessing the risk of potential adverse effects deriving from ingredient endocrine
activity. Even the ability of an ingredient to interact with the estrogen receptor (ER), which is a very
extensively studied target related to endocrine activity, may be unknown. Therefore, a rapid way
to categorize ingredients with unknown estrogenic activity into active and inactive ones is deemed
helpful to provide a basis for prioritizing chemicals for more definitive but expensive testing.

To evaluate the estrogenic activity of UV filters used in sunscreen products worldwide,
we searched against in the publically available database referred to as the endocrine disruptor
knowledge base (EDKB). EDKB actually contains in vitro and in vivo experimental estrogenic data
for more than 3000 chemicals from multiple assays and its structures [3]. Since most of UV filters
ingredients were found to have no such experimental data, we then used a consensus modeling
method to predict their qualitatively and quantitatively binding activity towards the estrogen receptor
(ER). The consensus modeling comprised two Decision Forest (DF) models that were built using
two different training data sets. The two DF models were validated using five-fold cross validations
and external chemicals. In addition to utilizing this consensus modeling to predict ER binding activity
of UV filters, similar predictions were done on unrelated compounds to make reference comparisons
as well to a few excipient ingredients frequently added to sunscreen formulations.

2. Materials and Methods

2.1. Study Design

We chose 38 ingredients of interest and their structures are given in Figure 1. We searched
experimental estrogenic activity data for these ingredients on the estrogenic activity database
(EADB) [4], a recently updated database in the endocrine disruptor knowledge base (EDKB) [3].

For the ingredients that were not contained in EABD, their estrogenic activities were predicted
using consensus DF models in two tiers. In the first tier, the ingredients were qualitatively classified
as ER binders and non-binders as illustrated by the workflow shown in Figure 2. In the second tier,
ER binding affinities of the sunscreen ingredients that were classified as ER binders in the first tier
prediction were estimated using a quantitative consensus regression model as depicted by Figure 3.
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Figure 1. Structures of the 38 ingredients selected for this work. The numbers under structures were used 
in the text and Tables. The compounds shown in panel (A) were used in UV and non-UV filers. The 
compounds given in panel (B) are the benzophenone derivatives (potential excipients in sunscreen 
products and cosmetics). 

Figure 1. Structures of the 38 ingredients selected for this work. The numbers under structures were
used in the text and Tables. The compounds shown in panel (A) were used in UV and non-UV filers;
The compounds given in panel (B) are the benzophenone derivatives (potential excipients in sunscreen
products and cosmetics).
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Figure 2. Workflow of the consensus classification modeling for classifying sunscreen 
ingredients as ER binders and non-binders. 

The qualitative consensus classification model development is illustrated by the workflow shown 
in Figure 2. The 232 chemicals with ER binding activity determined in our laboratory [5] were used as a 
training data set (TS-1) to build a DF classification model (M-1). The 1086 chemicals with estrogenic 
activity data curated in our previous study [6] were used as another training data set (TS-2) to construct 
another DF classification model (M-2). To demonstrate, reliable individual DF classification models were 
developed using TS-1 and TS-2, 1000 iterations of 5-fold cross validations were carried out using TS-1 
and TS-2. Most chemicals in TS-2 were not included in TS-1 and thus were used as an external validation 
set to estimate performance of the classification model M-1 that was trained using TS-1. The individual 
DF classification models (M-1 and M-2) were then used for classification of the ingredients lacking 
experimental data into ER binder or non-binder. The classification models output probabilities represent 
the likelihood of the ingredients to be classified as ER binders. Two probabilities of a compound were 
then averaged as a consensus classification of the ingredient as an ER binder or non-binder. 

Figure 2. Workflow of the consensus classification modeling for classifying sunscreen ingredients as
ER binders and non-binders.

The qualitative consensus classification model development is illustrated by the workflow shown
in Figure 2. The 232 chemicals with ER binding activity determined in our laboratory [5] were
used as a training data set (TS-1) to build a DF classification model (M-1). The 1086 chemicals with
estrogenic activity data curated in our previous study [6] were used as another training data set (TS-2)
to construct another DF classification model (M-2). To demonstrate, reliable individual DF classification
models were developed using TS-1 and TS-2, 1000 iterations of 5-fold cross validations were carried
out using TS-1 and TS-2. Most chemicals in TS-2 were not included in TS-1 and thus were used as
an external validation set to estimate performance of the classification model M-1 that was trained using
TS-1. The individual DF classification models (M-1 and M-2) were then used for classification of the
ingredients lacking experimental data into ER binder or non-binder. The classification models output
probabilities represent the likelihood of the ingredients to be classified as ER binders. Two probabilities
of a compound were then averaged as a consensus classification of the ingredient as an ER binder
or non-binder.
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Figure 3. Workflow of the consensus regression modeling for estimating ER binding affinity of 
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For the ingredients that were classified as potential ER binders, their binding affinities to ER were 
then qualitatively estimated using a consensus DF regression model. The quantitative consensus DF 
regression model development is illustrated by the workflow shown in Figure 3. The logarithmic relative 
binding affinity (logRBA) values of 131 ER binders from TS-1 were used as a training data set (TS-3) to 
build a DF regression model (M-3). The 350 chemicals in TS-2 are ER binders with logRBA values 
experimentally determined and were used as another training data set (TS-4) to construct another DF 
regression model (M-4). To demonstrate reliable individual DF regression models can be developed 
using TS-3 and TS-4, 1000 iterations of 5-fold cross validations were carried out using TS-3 and TS-4. 
Most chemicals in TS-4 were not included in TS-3 and thus were used as an external validation set to 
estimate the performance of DF regression model M-3 that was trained using TS-3. The individual DF 
regression models (M-3 and M-4) were then used for estimating logRBA values for the sunscreen 
ingredients that were classified as ER binders. For each ingredient, the two logRBA values output from 
M-3 and M-4 were then averaged for a consensus prediction of estrogenic activity for the ingredient. 
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Two data sets (TS-1 and TS-2) were used for training qualitative DF classification models and two 
data sets (TS-3 and TS-4) were used for training quantitative DF regression models. The data sets contain 
the ER binding activity measured using the competitive rat ER binding assay in our previous studies [6] 

Figure 3. Workflow of the consensus regression modeling for estimating ER binding affinity of
sunscreen ingredients.

For the ingredients that were classified as potential ER binders, their binding affinities to ER were
then qualitatively estimated using a consensus DF regression model. The quantitative consensus DF
regression model development is illustrated by the workflow shown in Figure 3. The logarithmic
relative binding affinity (logRBA) values of 131 ER binders from TS-1 were used as a training data set
(TS-3) to build a DF regression model (M-3). The 350 chemicals in TS-2 are ER binders with logRBA
values experimentally determined and were used as another training data set (TS-4) to construct
another DF regression model (M-4). To demonstrate reliable individual DF regression models can
be developed using TS-3 and TS-4, 1000 iterations of 5-fold cross validations were carried out using
TS-3 and TS-4. Most chemicals in TS-4 were not included in TS-3 and thus were used as an external
validation set to estimate the performance of DF regression model M-3 that was trained using TS-3.
The individual DF regression models (M-3 and M-4) were then used for estimating logRBA values
for the sunscreen ingredients that were classified as ER binders. For each ingredient, the two logRBA
values output from M-3 and M-4 were then averaged for a consensus prediction of estrogenic activity
for the ingredient.

2.2. Training Data Sets

Two data sets (TS-1 and TS-2) were used for training qualitative DF classification models and
two data sets (TS-3 and TS-4) were used for training quantitative DF regression models. The data
sets contain the ER binding activity measured using the competitive rat ER binding assay in our
previous studies [6] and can be obtained from our databases EADB and EDKB [3,4]. TS-1 contained
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232 chemicals. Of the 232 chemicals, 131 showed ER binding activity and used as TS-3. The remaining
101 chemicals did not show ER binding activity and were defined as ER non-binders in this study.
TS-1 was used to develop prediction models of ER binding activity [7–9]. TS-2 contained 1086 chemicals
whose estrogenic activity data were curated from the literature. Of the 1086 chemicals, 350 were
categorized as ER binders and 736 as ER non-binders [6]. The 350 chemicals and their logRBA values
were used as TS-4.

2.3. Sunscreen Ingredients

The chemicals, as seen in Figure 1, are common ultraviolet (UV) filters used worldwide (1–24).
They are considered to be “active” ingredients for they function as UV filters of either UVA and/or
UVB rays and are thus “workhorse” ingredients in sun protection products. The remaining compounds
were chosen as reference (25 and 27) or as examples of potential excipients found in sunscreen products
and cosmetics (26, 28–38). The names shown for all these chemicals in Tables 1 and 2 are both their
United States adopted names and International Nomenclature of Cosmetic Ingredients (INCI) names.

Table 1. Estrogenic activity of sunscreen ingredients.

Compounds, UV Filters Qualitative Prediction * Quantitative
Prediction **ID CAS OTC Drug Name/INCI Name +/− Conf

1 150-13-0 Aminobenzoic acid/PABA + (26) logRA10 = −3.523
2 118-60-5 Octisale/Ethylhexyl Salicylate − (30)
3 131-57-7 Oxybenzone/Benzophenone-3 − (5)
4 131-53-3 Dioxybenzone/Benzophenone-8 − (5,27)
5 21245-02-3 Padimate/Penthyl Dimethyl PABA − (27)
6 4065-45-6 Sulisobenzone/Benzophenone-4 + 0.310 −2.915
7 38102-62-4 4-Methylbenzylidene camphor + 0.102 −1.431
8 2174-16-5 Trolamine salicylate/TEA salicylate − 0.794

9 27503-81-7 Ensulizole/Phenylbenzimidazole
Sulfonic Acid − 0.034

10 70356-09-1 Avobenzone/Butyl
Methoxydibenzoylmethane − 0.601

11 104-28-9 Cinoxate/Cinoxate − 0.654
12 134-09-8 Meradimate/Menthyl Anthranilate − 0.581
13 5466-77-3 Octinoxate/Octyl methoxycinnamate − 0.597
14 6197-30-4 Octocrylene/Octocrylene − 0.157
15 71617-10-2 Isoamyl p-Methoxycinnamate − 0.654
16 155633-54-8 Drometrizole trisiloxane − 0.077

17 103597-45-1 Methylene bis-Benzotriazolyl
Tetramethylbutylphenol − 0.191

18 118-56-9 Homosalate/Homosalate − 0.206
19 13463-67-7 Titanium dioxide/Titanium dioxide − 0.694
20 1314-13-2 Zinc oxide/Zinc oxide − 0.795
21 154702-15-5 Diethylhexyl butamidotriazone − 0.756
22 88122-99-0 Ethylhexyl triazone − 0.756

23 187393-00-6 bis-Ethylhexyloxyphenol
methoxyphenyl triazine − 0.012

24 92761-26-7 Ecamsule/terephthalylidene
dicamphor sulfonic acid − 0.072

Reference Compounds, non UV filters

25 3380-34-5 Triclosan/Triclosan + (28) logRBA = −3.280
26 190085-41-7 Butyloctyl Salicylate + 0.827 −0.853
27 65277-42-1 Ketoconazole − 0.046

* Prediction confidence is a number between 0 and 1 for indication of confidence for a prediction: the smaller the
number, the less confident the prediction. ** Prediction is in log10(RBA). RBA is the relative binding affinity to
the natural estrogen, estradiol. RBA of estradiol is set to 100 and, thus, its log10(RBA) = 2. INCI = International
Nomenclature of Cosmetic Ingredients. INCI names are used in the United States, the European Union,
Japan and many other countries for listing ingredients on sunscreen product labels.
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Table 2. Predicted Estrogenic activity of benzophenone derivatives.

Compounds, Benzophenone Derivative Qualitative Prediction * Quantitative
Prediction **ID CAS Name/INCI Name +/− Conf

3 131-57-7 Oxybenzone/Benzophenone-3 − (5)
4 131-53-3 Dioxybenzone/Benzophenone-8 − (5,27)
6 4065-45-6 Sulisobenzone/Benzophenone-4 + 0.310 −2.915

28 131-56-6 2,4-dihydroxybenzophenone/
Benzophenone-1 + 0.875 −2.710

29 131-55-5 2,2′,4,4′-Tetrahydroxybenzophenone/
Benzophenone-2 + 0.900 −1.609

30 6628-37-1 Sulisobenzone sodium/Benzophenone-5 + 0.600 −2.614

31 85-19-8 5-Chloro-2-
hydroxybenzophenone/Benzophenone-7 + 0.777 −2.778

32 131-54-4 2,2′-Dihydroxy-4,4′-
dimethoxybenzophenone/Benzophenone-6 − 0.100

33 76656-36-5
Sodium 2,2′-dihydroxy-4,4′-

dimethoxybenzophenone-5,5′-
disulfonate/Benzophenone-9

− 0.300

34 1641-17-4 Mexenone, 2-hydroxy-4-methoxy-4′-
methylbenzophenone/Benzophenone-10 − 0.100

35 1341-54-4 Benzophenone-11 − 0.100
36 1843-05-6 Octabenzone/Benzophenone-12 − 0.140
37 954-16-5 Trimethylbenzophenone − 0.997
38 119-61-9 Benzophenone − 0.996

* Prediction confidence is a number between 0 and 1 for indication of confidence for a prediction: the smaller the
number, the less confident the prediction. ** Prediction is in log10(RBA). RBA is the relative binding affinity to
the natural estrogen, estradiol. RBA of estradiol is set to 100 and, thus, its log10(RBA) = 2. INCI = International
Nomenclature of Cosmetic Ingredients. INCI names are used in the United States, the European Union,
Japan and many other countries for listing ingredients on sunscreen product labels.

2.4. Molecular Descriptors

Molecular descriptors are numerical descriptions of chemical structures and are used in
quantitative structure-activity relationship (QSAR) models. The Mold2 descriptors calculation tool
(http://www.fda.gov/ScienceResearch/BioinformaticsTools/Mold2/default.htm) [10] was used to
generate the descriptors for the chemicals of the training sets (TS-1, TS-2, TS-3 and TS-4) as
well as the sunscreen ingredients. Mold2 is a free software package that calculates molecular
descriptors based on two-dimensional structures of chemicals. Mold2 is utmost fast in computation
because it utilizes the extremely fast ring structure recognition algorithm [11] and adopted the
efficient system of representation of chemical structures [12,13] that were initially developed in
a structure elucidation expert system based on infrared [14] and nuclear magnetic resonance (NMR)
spectra [15–17]. Mold2 molecular descriptors have been used in the development of various successful
QSAR models [18–22]. For each chemical in the training data sets and the sunscreen ingredients,
Mold2 calculated 777 molecular descriptors. The 777 molecular descriptors were then preprocessed by
filtering out those with the same values for all the chemicals in a training data set. The descriptors,
after filtering, were used to develop the DF classification and regression models.

2.5. Individual Models

Decision Forest (DF) is a machine learning algorithm that combines numerous decision tree
models to make more accurate predictions [23–25]. DF can be used for development of both
classification and regression models. Because combining multiple similar decision tree models most
likely does not improve predictions, DF algorithm combines decision tree models that are well trained
based on different chemical features. The diversity in chemistry of the decision tree models to be
combined warrants that each of the combined models contributes to the final model in different but
complementary ways. Our previous publications described the rationale and technical details of DF
algorithm [23–25]. Briefly, DF algorithm consists of four steps: (1) construct a decision tree based on

http://www.fda.gov/ScienceResearch/BioinformaticsTools/Mold2/default.htm
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a pool of molecular descriptors; (2) exclude the descriptors used in the decision tree from the pool of
molecular descriptors; (3) repeat steps (1) and (2) until improvement is seen in a sufficient number of
decision trees that have been constructed; and (4) combine the results from all decision trees as the
final predictions.

In the development of DF classification models, each member decision tree model was assigned
a probability between 0 and 1 to classify a chemical. The probability value was computed as division
of number of ER binders in the terminal node by size of the terminal node. The probability values
output from all the decision trees for a chemical were averaged to classify the chemical as ER binder,
if the average probability >0.5, or ER non-binder if the average probability ≤0.5. To construct a DF
regression model, a number of regression tree models were built. Each regression tree model output
a regressed logRBA value for a chemical. The regressed logRBA values from all member regression
trees were averaged as the final estimation of estrogenic activity for the chemicals.

2.6. Prediction Performance

Performance of a DF classification model can be measured using different metrics. We used
five parameters to measure performance of DF classification models: prediction accuracy, sensitivity,
specificity, Matthews correlation coefficient (MCC) and balanced accuracy. These five performance
parameters were calculated using Formulas (1) to (5):

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Sensitivity =
TP

TP + FN
(2)

Speci f icity =
TN

TN + FP
(3)

MCC =
TP× TN − FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(4)

Balanced Accuracy =
TP(TN + FP) + TN(TP + FN)

2(TP + FN)(TN + FP)
(5)

In Equations (1) to (5), true positive (TP) indicates number of ER binders that were classified
as ER binders, true negative (TN) represents number of ER non-binders that were classified as ER
non-binders, false negative (FN) means number of ER binders that were classified as ER non-binders,
and false positive (FP) denotes number of ER non-binders that were classified as ER binders.

To measure performance of a DF regression model, the predicted values were compared with
the actual values. The predictive ability of a DF regression model was quantified using the predictive
squared correlation coefficient Q2 calculated by Equation (6):

Q2 = 1− PRESS
TSS

= 1−

n
∑

i=1
(Yi − Pi)

2

n
∑

i=1
(Yi −Yi)

2
(6)

In Equation (6), n is the total number of chemicals predicted using the model, the total sum of
squares (TSS) is the sum of squared deviations from the mean of actual data, the sum of squares of the
prediction errors (PRESS) is the sum of squared difference between predicted values and actual values.
Pi is the predicted value for chemical i, Yi is the actual value of chemical i, Yi is the mean values of
actual data of all chemicals predicted. The value of Q2 is between −1 and 1. Q2 = 0 indicates a model is
not better than the prediction using the mean value of the actual data, i.e., the larger the Q2, the better
the performance of the model.
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2.7. Cross Validations

To evaluate the performance of DF classification and regression models, we conducted 5-fold
cross validations on the four training data sets TS-1 and TS-2 as shown in Figure 2 and TS-3 and TS-4
as shown in Figure 3. More specifically, in one 5-fold cross validations run, a data set (TS-1 or TS-2
or TS-3 or TS-4) were randomly divided into five most equal portions. One portion was left and the
other 4 portions were used as a training data set to construct a DF classification or regression model.
The left portion of chemicals was then predicted using the constructed DF model. This process was
iterated so that each of the 5 portions was left out once, and only once, to be predicted by the models
trained using the remaining 4 portions. The results yielded from the 5 DF models were then combined
for calculation of the above described performance parameter. The 5-fold cross validation process
was repeated 1000 times using different random divisions of the whole data set into five most equal
portions so that the performance estimation is a statistically robust estimation.

2.8. External Validations

Result from a 5-fold cross validation consists of predictions for all chemicals in a data set and
usually is better than the result of testing on a new data set. External validation is more reliable and
necessary performance evaluation of a QSAR model. In this study, most chemicals in TS-2 were not
included in TS-1 and were used to estimate performance of the DF classification model M-1 that was
trained using TS-1 as the external validation as shown in Figure 2. Similarly, most chemicals in TS-4
were not included in TS-3 and were used to estimate performance of the DF regression model M-3 that
was trained using TS-3 as the external validation as shown in Figure 3.

2.9. Consensus Modeling

Multiple factors affect performance of QSAR models. For example, limited chemical structural
space covered by the training chemicals makes the model performing worse on chemicals out of the
chemical space. To improve model performance, a consensus strategy was adopted for the prediction
of ingredient estrogenic activity.

In the consensus classification modeling, each ingredient was classified into ER binder or
non-binder using the two DF classification models (M-1 and M-2) that were constructed using TS-1 and
TS-2. The probabilities output from M-1 and M-2 indicate how likely the ingredient can be classified as
ER Binder. The two probabilities of the same ingredient were averaged as the consensus classification
(ER binder or non-binder) for the ingredient.

In the estimation of ER binding affinity by the consensus regression modeling for the ingredients
that were classified as ER binders, the two DF regression models (M-3 and M-4) that were constructed
using TS-3 and TS-4 were used to predict logRBA values for the ingredients. The predicted logRBA
values from M-3 and M-4 for the same ingredient were averaged as the consensus prediction for
the ingredient.

2.10. Prediction Confidence

The classification (binder or non-binder) output from the consensus classification modeling for
a chemical is a probability p that is a continuous value and was used as the likelihood to classify the
chemical as an ER binder (p > 0.5) or non-binder (p ≤ 0.5). This p value indicates the confidence for
the classification. A good classification model is expected to have more chemicals classified at high
confidence level. The classification confidence was calculated for each of the ingredients from the
consensus DF classification modeling using Equation (7):

Con f idence =
|p− 0.5|

0.5
(7)
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The calculated classification confidence is a value between 0 and 1. The larger the confidence
value is, the more reliable is the classification.

3. Results

3.1. Database Search

We first searched EDKB for estrogenic activity data of 27 ingredients of interest, including 24 UV
filters, 2 reference compounds and 1 sunscreen product excipient. Experimental estrogenic data were
found for 5 UV filters and the search results are listed in Table 1. The experimental ER binding affinities
in Table 1 were given as logarithmic relative binding affinity (logRBA) values to the nature hormone
estradiol whose logRBA was set to 2. Aminobenzoic acid (1) had weak estrogenic activity in yeast
two-hybrid assay with a logarithmic 10% relative activity (logRA10) of −3.523 that was calculated
by the concentration of a chemical showing 10% of the agonist activity of 10−7 M of the natural
hormone E2, which is the optimum effective concentration for E2 [26]. Compounds 3 (oxybenzone)
and 4 (dioxybenzone) were determined as ER non-binders using rat uterine cytosolic ER competitive
binding assay [5]. Compounds 2 (octisale), 4 (dioxybenzone), and 5 (padimate) did not show activity
in ER in vitro binding assay with RI-labeled estradiol as reference ligand [27]. We were not able to find
experimental data for the rest of the 19 UV filters in EADB. The reference compound triclosan (25)
showed weak ER binding activity in rat uterine cytosolic ER competitive binding assay with a logRBA
value of −3.280 [28].

3.2. Cross Validations

To classify the 19 sunscreen ingredients into ER binders and non-binders, we built two DF
classification models using two TS-1 and TS-2. To assess if reliable classification models can be
constructed, 1000 iterations of 5-fold cross-validations were conducted on TS-1 and TS-2 for estimation
performances of the DF classification models. The five performance parameters that were calculated
using formulas (1) to (5) for the 1000 iterations of 5-fold cross validations were plotted for TS-1 in
Figure 4A and TS-2 in Figure 4B. The mean values and standard deviations of the five performance
parameters for TS-1 and TS-2 are listed in Table 3. The DF classification models had overall classification
accuracy of >80%, indicating good classification models could be generated using TS-1 and TS-2.
The small standard deviations for the performance parameter values demonstrated that the DF
classification models performed consistently. Therefore, the classification models (M-1 and M-2) built
from TS-1 and TS-2 should be statistically reliable.

Table 3. Cross validation results.

Parameter
Result (Mean ± Std)

TS-1 TS-2

Accuracy 0.816 (±0.018) 0.801 (±0.009)
Sensitivity 0.859 (±0.020) 0.640 (±0.018)
Specificity 0.761 (±0.031) 0.877 (±0.010)

MCC 0.625 (±0.037) 0.533 (±0.021)
Balanced Accuracy 0.810 (±0.019) 0.758 (±0.010)

Std: standard deviation; MCC: Mathews correlation coefficient.
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Figure 4. Classification performance of the 5-fold cross validations. Classification accuracy (blue),
sensitivity (red), specificity (magenta), MCC (cyan) and balanced accuracy (black) of the 1000 iterations
of 5-fold cross validations were plotted for TS-1 (A) and TS-2 (B). Parameter values were indicated at
the x-axis and the y-axis represents the frequency of cross validations.

For the ingredients that were classified as ER binders by the consensus DF classification model,
we constructed two DF regression models using two TS-3 and TS-4 for estimation of their binding
affinity. To evaluate reliability of the constructed regression models, 1000 iterations of 5-fold
cross-validations were conducted on TS-3 and TS-4 for estimation performances of the DF regression
models. The predictive squared correlation coefficient Q2 values of the 1000 iterations of 5-fold cross
validations were plotted as blue and red lines in Figure 5A for TS-3 and TS-4, respectively.

The mean and standard deviation of the Q2 values were 0.712 and 0.027 for TS-3 and 0.690 and
0.018 for TS-4, indicating accurate and robust regression models could be generated based on TS-3
and TS-4. The predicted logRBA values of the 131 chemicals in TS-3 were plotted against their actual
experimental logRBA values in Figure 5B. The predicted logRBA values of the 350 chemicals in TS-4
were plotted against their actual experimental logRBA values in Figure 5C. Overall, the predicted ER
binding affinity values were close to the actual binding affinity values for the 5-fold cross validations
on TS-3 and TS-4. Therefore, the regression models (M-3 and M-4) trained on TS-3 and TS-4 should be
statistically reliable.
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plotted as blue and red lines for TS-3 and TS-4 (A). The average predicted logRBA of the 1000 iterations
of 5-fold cross validations were plotted against the actual logRBA for TS-3 (B) and TS-4 (C).

3.3. External Validations

Most of the chemicals in TS-2 were not included in TS-1. Those chemicals were used as an external
data set to validate the DF classification model that was built from TS-1. The DF classification
model M-1 was first trained using TS-1. After filtering, 81 Mold2 molecular descriptors were used to
develop M-1. M-1 was then used to classify the chemicals from TS-2. The classification model M-1
yielded accuracy 0.770, sensitivity 0.803, specificity 0.754, MCC 0.527, and balanced accuracy 0.779.
Compared with the performance of 5-fold cross validations shown in Table 3, the external validations
had similar performance to the cross validations, further indicating that reliable classifications could
be achieved with the DF classification models trained on TS-1 and TS-2.
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Most of the chemicals in TS-4 were not included in TS-3. Those chemicals were used as an external
data set to validate the DF regression model that was built from TS-3. The DF regression model M-3
was first constructed using TS-3. After filtering, 105 Mold2 molecular descriptors were used to develop
M-3. M-3 was then used to quantitatively estimate ER binding affinity for the chemicals from TS-4.
The predicted logRBA values from regression model M-3 were plotted against with the actual logRBA
values for the external testing chemicals in Figure 6.
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Compared with the performance of 5-fold cross validations shown in Figure 5A, the external
validations had similar performance to the cross validations, Q2 = 0.744. Therefore, TS-3 and TS-4
could be used to develop reliable regression models.

3.4. Consensus Modeling

We used a consensus modeling strategy to qualitatively and quantitatively predict the estrogenic
activity (classify sunscreen ingredients into ER binder or non-binder and estimate ER binding affinity
of predicted ER binders) for the 19 sunscreen ingredients for which experimental estrogenic activity
data were not found in EADB. As shown in Figure 2, DF classification models, M-1 and M-2,
were first generated using TS-1 and TS-2, respectively. The classification models were then used to
calculate the probabilities of the 19 sunscreen ingredients to classify them as ER binders or non-binders.
The two probabilities for a sunscreen ingredient were averaged to make a consensus classification of
the compound as an ER binder or non-binder. The results of the consensus classification modeling
of the 19 sunscreen ingredients are shown in Table 1. Of the 19 sunscreen ingredients, only two were
classified as ER binders, while the remaining 17 were classified as ER non-binders by the consensus
classification model.

The probability for a sunscreen ingredient to be classified as ER binder from the consensus
classification modeling was converted to provide confidence for classification of the compound using
Formula (7). The confidence values of the 19 sunscreen ingredients are listed in Table 1.
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For the two sunscreen ingredients that were classified as ER binders, their ER binding affinity
values were further estimated using the DF regression models M-3 and M-4 that were developed based
on TS-3 and TS-4, respectively. The regression models were then used to estimate ER binding affinity
(logRBA) values for the 2 sunscreen ingredients. The two estimated logRBA values for a sunscreen
ingredient were averaged to make a consensus estimation of logRBA for the compound. The logRBA
values of the consensus classification modeling for the two sunscreen ingredients are listed in Table 1.
Both sunscreen ingredients had low logRBA values.

Ketoconazole (24), another reference compound known to lack estrogen activity and butyloctyl
salicylate (26), a sunscreen product excipient with unknown estrogen activity were also included in
the analysis. The latter was predicted to be an ER binder and both are listed in Table 1.

Interestingly, the prediction for sulisobenzone (6) was not consistent with that of other
benzophenone derivatives, i.e., oxybenzone (3) and dioxybenzone (4). This led to the predictions
being extended to include other benzophenone derivatives and in turn, to look for a potential
explanation based on chemical structure. In addition to their use as UV filters in sunscreen products,
benzophenones are typically used as light stabilizers (or photostabilizers) in personal care products
and fragrances. Light stabilizers are added to protect these products from chemical or physical
deterioration induced by light. This function has also made benzophenones suitable for other products,
such as plastic surface coatings for food packaging.

Table 2 shows the predictions by the consensus DF classification model of ER binder activity
for benzophenone derivatives known to be used in consumer products. In addition to compound 6,
compounds 28, 29, 30 and 31 were predicted to be ER binders.

From a structural point of view, the results obtained can be explained by the presence of
a 4-hydroxyl and phenolic groups (i.e., compounds 28, 29) [7]. Chemicals with suitable molecular
weight are expected to fit the binding pocket of ER and an electronegative atom or group increases
binding interaction with ER (i.e., compounds 6, 30 and 31) [29].

4. Discussion

Timely go/no-go decisions on ingredients to add to a formulation is key for consumer products
such as sunscreens that generally contain multiple UV filters and excipient ingredients, both influenced
by a fast pace of innovations. Computational tools using structure-activity relationships can be
used by stakeholders to screen out and abandon prospective ingredients after they are predicted to
possess an undesirable activity, such as estrogen receptor binding. This will help direct resources for
more definitive but expensive data-driven testing only to those ingredients not predicted to have the
undesirable activity, in addition to help reduce unnecessary animal testing.

In our previous study, we developed a tree-based model using the same training data set (TS-1)
for predicting ER binding activity of more than 50,000 environmental chemicals [7]. Compared to our
previous model that had 87.9% accuracy in the training and 0.526 of MCC value from validation on
the 463 chemicals experimentally tested by Nishihara et al. [26], the DF model trained in this study
had an improved training accuracy of 97%. The model was validated using a larger data set with
1086 chemicals and yielded a slightly better MCC value of 0.527.

Of the 32 chemicals with unknown ER binding activity in EDKB that were evaluated in this work,
seven were predicted to be active estrogenic compounds and the remaining 25 were predicted to be
inactive ones. It should be noted that the predictions made are devoid of consideration of possible
metabolic activation/deactivation of the compounds but, on the positive side, there are no (trace)
impurities/contaminants that may influence the results. Recognizing its advantages and limitations,
the following seven potentially active estrogenic compounds were identified: benzophenone-4 (6)
benzophenone-5 (30), 4-methylbenzylidene camphor (7), benzophenone-1 (28), benzophenone-2 (29)
and benzophenone-7 (31). Post-prediction literature surveying estrogenic experiment data of the
compounds supported our model predictions. The estrogenic activity data have been reported for
benzophenone-4 (6) [30–32], 4-methylbenzylidene camphor (7) [33], benzophenone-1 (28) [30,31] and
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benzophenone-2 (29) [30,31,34–36]. As a result, all of these ingredients pose a concern that they may
be potential endocrine-mediated health hazards. If stakeholders find these ingredients to be essential
for the product formulations, priority should be given to the gathering of scientific evidence in support
of the safe use of these ingredients at levels experienced by human populations and that is consistent
with cumulative exposures to products containing any of these compounds.

The training data sets used in this study contain the data obtained from an assay that used mixture
of two subtypes of ER (ERα and ERβ). The ER used in the assay was extracted from uterine cytosol of
non-pregnant Sprague-Dawley rats. Briefly, after rats were sacrificed by CO2 asphyxiation, uteri were
excised, trimmed of excess fat and mesentery. Uterine tissue was homogenized and transferred to
pre-cooled ultracentrifuge tubes and centrifuged. After centrifugation, the ER-rich supernatant was
used in the competitive assay. This assay was used to measure binding activity to ER, but not specific
to ERα or ERβ or both. Therefore, the model developed in this study is unable to predict binding
activity to specific subtypes of ER.

Plans for future work include widening the reported approach to a much larger number of
sunscreen product excipients and extending the model to also make predictions on the androgen
receptor activity of all these ingredients. The value of these predictions may be enhanced as
basic research continues to elaborate on the understanding of hormonal signaling pathways and
related disorders.

5. Conclusions

To conclude, in the absence of relevant scientific data, the application of predictive computational
models as reported here represents a step forward in characterizing the level of concern with estrogen
receptor activity among ingredients in widely used consumer products such as sunscreens. The model
presented is essentially a risk assessment tool and its predictions do not pre-empt the regulatory
conclusions that may eventually be made on the basis of experimental data as it becomes available.
Taken together, the intent is for this model to lead to safer drugs in order to protect and promote
public health.
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