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Interpolation of missing values for daily PM2.5 data 

For the present study, data of the daily concentrations of PM2.5 between 1 January 2008 and 31 
December 2015 was retrieved from the U.S. embassy air pollution monitoring station (data available 
from the official website: http://www.stateair.net/web/post/1/1.html), which is located in the 
Chaoyang District of Beijing. Figure S1 shows the location of the China national air quality 
monitoring stations and the U.S. embassy monitoring station during the study period. 

 

Figure S1. Location of the U.S. embassy and the 12 national air quality monitoring (AQM) stations 
(this map was created with ArcGIS Desktop version 9.3, ESRI, Redlands, California, USA, 
URL:http://www.esri.com/). 
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However, there were missing values for the obtained air pollution data, see Table S1. Therefore, 
we established a series of air pollutant predictive models to interpolate the missing values for the 
specific days rather than simply excluding them, which could reduce the statistical power of our 
present study. If the dataset with missing daily air pollutant values is less than 5% of the total, we 
regard the dataset as a complete dataset which will not introduce any bias in the estimation of the 
effects of air pollutants [1]. 

Table S1. Missing proportion of the collected PM2.5 data in the present study a. 

Year 
(Full Days) 

PM2.5

Missing Days Missing Percent (%)
2008 (366) 154 42.08 
2009 (365) 64 17.53 
2010 (365) 14 3.83 
2011 (365) 11 3.01 
2012 (366) 11 3.01 
2013 (365) 0 0 
2014 (365) 0 0 
2015 (365) 0 0 

a Daily concentrations of PM2.5 were retrieved from station in U.S embassy in Beijing. 

In brief, we divided the whole dataset into three parts. Two of the three parts were the complete 
dataset that will be used to build the predictive models and to perform the validation evaluation of 
those models. The rest was the dataset with missing values (more than 5%), and missing values were 
interpolated using the proposed predictive models. The details of this process are as follows: 

Based on the potential relationship between air pollutants with meteorological factors, a series of 
generalized additive models (GAM) [2] were constructed with the logarithm of air pollutants as the 
dependent variables and the meteorological factors as independent variables. The associations between 
air pollutants and meteorological factors were modelled with penalized smoothing splines. In order to 
remove the temporal trends in the daily air pollutant and meteorological factors series when we built a 
predictive model, we included the dummy indicators of month and dow rather than simply modelling 
the time term with penalized smoothing function, which could result in overestimation and extreme 
values for the interpolated values. The general formula of GAM is given as  E(y୧) = β଴ + factor(month) + factor(dow) + fଵ(temp୧) + fଶ(humd୧) + fଷ(suntime୧) + fସ(wind୧) + fହ(pressure୧) (1) 

Here, yi is the ith day air pollutant (logarithm); month is the dummy variable for the month of year; f() 
are the penalized smoothing function; dow is the dummy variable for the day of week; the tempi 
represents the ith day temperature metrics includes mean temperature, maximum temperature and 
minimum temperature, measured as °C; the humdi represents the ith day relative humidity, measured as %; 
the suntimei is the ith day sun time measured as hour; the windi represent the ith day wind metrics 
includes the mean wind, maximum wind and minimum wind, all measured as m/s and the link function 
is identity. For the temperature or wind metrics, only one of the three metrics was added to the model at 
one time. An automatic choice was adopted to determine the dimension of the penalized smoothing spline 
based on generalized cross validation (GCV). The best predictive models were selected according to the 
magnitude of R-square during the validation of the predictive models. 

For the PM2.5, the dataset for 1 January 2013 through 31 December 2014 was used to create the 
predictive model. The dataset from 1 January 2011 to 31 December 2012 was used to test the validation 
of the created predictive models. The model with the best goodness of fit and highest R-square value 
was chosen as the best candidate predictive model, which will be used to interpolate the missing 
value for the dataset from 1 January 2008 to 31 December 2010. In addition, we also used the selected 
model to interpolate the missing values for 2011, because 3.01% of daily values of PM2.5 in this year 
were missing. For this section, the R-square of the final selected model was 0.5367 with Pearson 
correlation coefficient of 0.7331, and the scatterplots of observed values against predicted values in 
2011–2012 were displayed in the Figure S2. In summary, the predicted values from the final predictive 
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models matched well with the observed values for the PM2.5. 

 
Figure S2. Scatterplot of model fitting and validation for the imputation of PM2.5 (2011–2012). 

 

Figure S3. Lagging pattern of associations between PM2.5 and cardiovascular (CVD), cerebrovascular 
(CBD) and ischemic heart disease (IHD) mortality for whole population. Specifically, a third-degree 
polynomial constraint was applied for distributed lag models for lags from 0 to 5 days. 



Int. J. Environ. Res. Public Health 2016, 13, 1082; doi:10.3390/ijerph13111082 S4 of S12 

 

Figure S4. Lagging pattern of associations between PM2.5 and cardiovascular (CVD), cerebrovascular 
(CBD) and ischemic heart disease (IHD) mortality by gender. Specifically, a third-degree polynomial 
constraint was applied in distributed lag models for lags from 0 to 5 days. 

 

Figure S5. Lagging pattern of associations between PM2.5 and cardiovascular (CVD), cerebrovascular 
(CBD) and ischemic heart disease (IHD) mortality by age group. Specifically, a third-degree 
polynomial constraint was applied in distributed lag models for lags from 0 to 5 days. 
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Figure S6. Exposure-response relationships for PM2.5 (lag 0–1) with cardiovascular (CVD), 
cerebrovascular (CBD), and ischemic heart disease (IHD) mortality from extensively adjusted models 
for the whole population, according to different window lengths of the fixed-disjoint strata that used 
to control the long-term trend and seasonality. “Strata-21 days” and “strata-30 days” represent fixed 
and disjoined strata of 21 and 30 days in the same year were used to select the control days, while the 
stratum present the control days were selected as the same day of the week in the same month and 
year as the case period. Values are estimated relative risk of mortality associated with PM2.5 relatives 
to lowest value (5.83 μg/m3). Base model (blue lines) adjusted effects of temperature and humidity 
only for two days, whereas the green, red, pink, black and yellow lines represent relationships from 
models with extensively adjusted cumulative effects of temperature and humidity for 7, 14, 21, 28 and 
40 days, respectively. 
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Figure S7. Exposure-response relationships for PM2.5 (lag 0–1) with cardiovascular (CVD), 
cerebrovascular (CBD), and ischemic heart disease (IHD) mortality from extensively adjusted models 
for the whole population, according different modelling strategies. “Urban” represent the analysis 
was restricted to the districts within the radius of USA embassy monitoring station. “Wind” represent 
the effect of wind was additionally controlled for two days using natural cubic splines. “No-humidity” 
represent the humidity was not extensively controlled in models but with smoothed terms of two 
days mean using natural cubic splines. Values are estimated relative risk of mortality associated with 
PM2.5 relatives to lowest value (5.83 μg/m3). Base model (blue lines) adjusted effects of temperature 
and humidity only for two days, whereas the green, red, pink, black and yellow lines represent 
relationships from models with extensively adjusted cumulative effects of temperature and humidity 
for 7, 14, 21, 28 and 40 days, respectively, except for the “No humidity” row of picture, where the 
model only had extensive adjustments for temperature. 
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Figure S8. Cumulative exposure-response relationship between PM2.5 and cardiovascular (CVD), 
cerebrovascular (CBD) and ischemic heart disease (IHD) mortality from the base model with different 
DF for a natural cubic spline in the PM2.5 exposures space. The QAIC is the quasi-AIC for the quasi-
Poisson regression. The reference level of PM2.5 was 5.83 μg/m3.  
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Table S2. Comparison of the mortality effect of PM2.5 on cardiovascular events in studies in developed countries and China (estimates of PM2.5 were 
showed as percent increase in risk and corresponded 95%CI per 10 μg/m3 increase in concentration). 

Authors Location Design Lag 
Temperature/Humidity Control

CVD IHD (MI) 
CBD 

(Stroke) Lag Terms

Kan et al., [3] Shanghai, China Time series Lag 01 Lag 0 
ps (temperature, 3)  

ps (humidity, 3) 
0.41 (0.01, 0.82) - -- 

Ma et al., [4] Shenyang, China 
Time-stratified 
Case-crossover 

Lag 01 Lag 0 
ns (temperature, 3)  

ns (humidity, 3) 
0.53 (0.09, 0.97) - - 

Yang et al., [5] Guangzhou, China Time-stratified 
Case-crossover 

Lag 01 Lag 0 ns (temperature, 3)  
ns (humidity, 3) 

1.22 (0.63, 1.80) - - 

Geng et al., [6]  Shanghai, China Time series  
Maximum lag of 3 days: based 
on polynomial distributed lag 

model 

Maximum lag 
of 3 days 

Tow dimension natural 
cubic spline with for 

temperature/humidity 
and lag days 

0.78 (0.1, 1.43) - - 

Huang et al., [7] Xi’an, China Time series Lag 1–2 Lag 0 
ns (temperature, 3)  

ns (humidity, 3) 
0.27 (0.08, 0.46) - - 

Xie et al., [8] Beijing, China Time series 
Lag 0 Lag 0 ps (temperature, 6) - 0.25 (0.10, 0.40) - 
Lag 02 Lag 02 ps (temperature, 6) - 0.34 (0.14, 0.53) - 
Lag 04 Lag 04 ps (temperature, 6) - 0.26 (0.03, 0.49) - 

Zanobetti and 
Schwartz [9] 

112 cities, USA Time series Lag 01 Lag 01 ns (temperature, 3) 0.85 (0.46, 1.24) 
1.18 (0.48, 1.89)-

MI 
1.78 (0.96, 

2.62)-stroke 
Franklin et al., 

[10] 
27 communities, 

USA 
Time-stratified 
case-crossover 

Lag 1 Lag 01 
Bs (apparent 

temperature, 3) 
0.94 (−0.14, 2.02) -- 

1.03 (0.02, 
2.04)-stroke 

Ostro et al., [11] 
9 counties, 

California, USA 
Time series Lag 01 Lag 1 

ns (temperature, 3)  
ns (humidity, 3) 

0.60 (0.0, 1.1) - - 

Samoli et al., [12] 12 cities, Europe Time series Lag 0–5 Lag 01 ns (temperature, 3) 0.86 (0.15, 1.57) - - 
Note: Disease: CVD (cardiovascular disease), CBD (cerebrovascular disease), MI (myocardial infarction), IHD (ischemic heart disease). Single lag: lag 0 (current day), the rest lags 
were defined in the similar way; Multi-lags (moving average): lag 01 (two day means), the rest lags were defined in the similar way; Multi-lags (cumulative): lag 0–5 (current and 
previous five days), the rest lags were defined in the similar way; Splines: ns (natural cubic spline), ps (penalized spline), bs (quadratic spline). 
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Table S3. Spearman correlation coefficients between ambient pollutants and meteorological factors #. 

 Temperature Relative Humidity Barometric Pressure Wind
PM2.5 0.17 * 0.58 * −0.27 * −0.47 * 

Temperature  0.39 * −0.87 * 0.00 
Relative humidity   −0.38 * −0.46 * 

Barometric pressure    −0.03 
# PM2.5 was measured as 10 ug/m3, temperature was measured as °C, relative humidity was 
measured as %, barometric pressure was measured as kPa and wind was measured as m/s. 
* p-value < 0.05. 
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Table S4. Sensitivity analysis for the associations between three type of cardiovascular disease mortality and PM2.5 according to different model choices *. 

Outcomes 
Adjusted 

Days a 
Primary Results 

Choices of the Selected Strata b Adjusted for 
Windc 

Restricted 
Districtsd 

Only for 
Temperature e Strata-21days Strata-30days Stratum

CVD  2 0.42 (0.28, 0.56) 0.31 (0.17, 0.46) 0.46 (0.32, 0.60) 0.44 (0.29, 0.59) 0.36 (0.21, 0.51) 0.37 (0.22, 0.53) 0.36 (0.21, 0.51) 
 7 0.25 (0.11, 0.40) 0.21 (0.06, 0.36) 0.27 (0.13, 0.42) 0.28 (0.12, 0.44) 0.22 (0.07, 0.37) 0.21 (0.05, 0.38) 0.23 (0.08, 0.38) 
 14 0.22 (0.07, 0.37) 0.18 (0.03, 0.33) 0.22 (0.06, 0.37) 0.26 (0.10, 0.42) 0.19 (0.04, 0.35) 0.16 (0.00, 0.33) 0.21 (0.06, 0.36) 
 21 0.24 (0.09, 0.38) 0.18 (0.03, 0.33) 0.20 (0.05, 0.35) 0.28 (0.12, 0.44) 0.22 (0.07, 0.38) 0.18 (0.02, 0.35) 0.20 (0.05, 0.35) 
 28 0.27 (0.13, 0.42) 0.24 (0.09, 0.39) 0.25 (0.11, 0.40) 0.31 (0.16, 0.47) 0.25 (0.10, 0.40) 0.22 (0.05, 0.38) 0.25 (0.10, 0.40) 
 40 0.25 (0.11, 0.39) 0.21 (0.07, 0.35) 0.24 (0.10, 0.38) 0.29 (0.14, 0.44) 0.24 (0.10, 0.40) 0.19 (0.04, 0.35) 0.22 (0.08, 0.38) 

CBD 2 0.42 (0.23, 0.62) 0.27 (0.07, 0.47) 0.41 (0.22, 0.60) 0.43 (0.23, 0.64) 0.38 (0.18, 0.58) 0.36 (0.14, 0.58) 0.38 (0.18, 0.58) 
 7 0.26 (0.05, 0.47) 0.17 (−0.04, 0.39) 0.25 (0.04, 0.46) 0.27 (0.05, 0.50) 0.24 (0.03, 0.46) 0.21 (−0.03, 0.45) 0.26 (0.03, 0.46) 
 14 0.22 (0.01, 0.43) 0.15 (−0.07, 0.36) 0.19 (−0.02, 0.40) 0.24 (0.02, 0.47) 0.21 (−0.01, 0.42) 0.17 (−0.07, 0.41) 0.23 (0.03, 0.44) 
 21 0.21 (0.00, 0.42) 0.15 (−0.06, 0.37) 0.18 (−0.04, 0.39) 0.23 (0.00, 0.45) 0.20 (−0.01, 0.42) 0.15 (−0.08, 0.40) 0.21 (−0.01, 0.42) 
 28 0.27 (0.06, 0.47) 0.23 (0.02, 0.44) 0.23 (0.02, 0.44) 0.28 (0.06, 0.49) 0.25 (0.04, 0.47) 0.20 (−0.04, 0.44) 0.28 (0.07, 0.49) 
 40 0.23 (0.03, 0.42) 0.18 (−0.02, 0.39) 0.20 (0.00, 0.40) 0.25 (0.04, 0.45) 0.21 (0.00, 0.42) 0.17 (−0.06, 0.40) 0.25 (0.05, 0.46) 

IHD 2 0.47 (0.26, 0.67) 0.38 (0.17, 0.59) 0.54 (0.34, 0.74) 0.50 (0.28, 0.73) 0.38 (0.16, 0.59) 0.44 (0.22, 0.66) 0.38 (0.16, 0.59) 
 7 0.27 (0.05, 0.49) 0.23 (0.01, 0.45) 0.30 (0.08, 0.52) 0.30 (0.07, 0.54) 0.20 (−0.02, 0.43) 0.24 (0.00, 0.47) 0.23 (0.02, 0.45) 
 14 0.25 (0.03, 0.47) 0.22 (0.00, 0.45) 0.27 (0.04, 0.49) 0.31 (0.07, 0.56) 0.21 (−0.02, 0.44) 0.20 (−0.04, 0.44) 0.23 (0.01, 0.45) 
 21 0.30 (0.08, 0.53) 0.24 (0.01, 0.46) 0.26 (0.03, 0.49) 0.36 (0.12, 0.60) 0.28 (0.05, 0.51) 0.26 (0.01, 0.50) 0.25 (0.02, 0.47) 
 28 0.33 (0.11, 0.54) 0.28 (0.06, 0.51) 0.31 (0.09, 0.53) 0.38 (0.14, 0.61) 0.29 (0.07, 0.52) 0.28 (0.04, 0.51) 0.26 (0.04, 0.48) 
 40 0.33 (0.12, 0.54) 0.30 (0.08, 0.51) 0.34 (0.13, 0.55) 0.37 (0.14, 0.59) 0.31 (0.09, 0.53) 0.26 (0.04, 0.49) 0.24 (0.02, 0.47) 

* Estimates were measured as percent increase (95% CI) in risk of mortality per 10 μg/m3 increase in PM2.5 concentration for the whole population. a The 2 days represent 
the effects of temperature and humidity were adjusted with smoothed terms for two days using natural cubic splines in base models, whereas the 7, 14, 21, 28 and 40days 
represent the extensively adjusted exposure days (lags) for temperature and humidity by introducing cross-basis terms in extensively adjusted models; b “Strata-21days” 
and “strata-30days” represent fixed and disjoined strata of 21 and 30days in the same year were used to select the control days, while the stratum present the control days 
were selected as the same day of the week in the same month and year as the case period. c Adjusted for two days mean of wind using natural cubic splines; d Districts 
within the radius of US embassy; e Only extensively adjusting for temperature based on extensively adjusted models.  
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Table S5. Sensitivity analysis of associations between PM2.5 and mortality after controlling for temperature /humidity for 21days with different DF for 
temperature/humidity (from 3 to 6) space and lag-space (from 3 to 6) selected in the cross-basis function. 

Temperature 
DF 

Lag 
DF 

CVD CBD IHD
Percent Increase

(95% CI) 
QAIC  Percent Increase

(95% CI) 
QAIC  Percent Increase

(95% CI) 
QAIC 

3 3 0.28 (0.15, 0.40) 11,119.62  0.26 (0.09, 0.44) 9820.693  0.35 (0.17, 0.53) 9945.625 
3 4 0.24 (0.09, 0.38) 11,097.70  0.21 (0.00, 0.42) 9812.629  0.31 (0.09, 0.53) 9948.058 
3 5 0.22 (0.07, 0.37) 11,104.29  0.20 (−0.02, 0.41) 9821.728  0.28 (0.05, 0.50) 9952.617 
3 6 0.20 (0.05, 0.35) 11,101.59  0.19 (−0.02, 0.40) 9828.724  0.26 (0.03, 0.48) 9954.099 
4 3 0.28 (0.16, 0.40) 11,051.26  0.27 (0.10, 0.44) 9792.616  0.34 (0.16, 0.52) 9906.615 
4 4 0.24 (0.09, 0.38) 11,026.27 0.21 (0.00, 0.42) 9784.822 0.30 (0.08, 0.53) 9912.469 
4 5 0.22 (0.07, 0.37) 11,036.21  0.20 (−0.01, 0.41) 9797.179  0.27 (0.05, 0.50) 9920.629 
4 6 0.20 (0.05, 0.35) 11,036.29  0.19 (−0.02, 0.41) 9808.397  0.25 (0.02, 0.47) 9924.297 
5 3 0.27 (0.15, 0.39) 11,048.40  0.26 (0.09, 0.43) 9793.110  0.33 (0.15, 0.51) 9910.304 
5 4 0.22 (0.08, 0.37) 11,027.05  0.21 (0.00, 0.42) 9787.866  0.28 (0.06, 0.50) 9921.519 
5 5 0.21 (0.06, 0.36) 11,039.79  0.19 (−0.02, 0.41) 9804.825  0.25 (0.02, 0.47) 9932.496 
5 6 0.20 (0.04, 0.35) 11,037.83  0.20 (−0.02, 0.41) 9816.247  0.23 (0.00, 0.45) 9937.068 
6 3 0.28 (0.16, 0.41) 11,052.95  0.27 (0.10, 0.44) 9803.815  0.35 (0.17, 0.53) 9914.233 
6 4 0.24 (0.08, 0.39) 11,037.55  0.21 (0.00, 0.43) 9802.293  0.29 (0.07, 0.52) 9932.013 
6 5 0.22 (0.07, 0.37) 11,055.52  0.20 (−0.01, 0.42) 9822.154  0.26 (0.03, 0.48) 9948.286 
6 6 0.20 (0.05, 0.35) 11,054.75  0.20 (−0.02, 0.42) 9835.935  0.23 (0.00, 0.46) 9956.010 

Note: Estimates were percent increase in risk of mortality of cardiovascular (CVD), cerebrovascular (CBD) and ischemic heart disease (IHD) for 10 μg/m3 increase in PM2.5. 
QAIC is the Quasi-AIC, which always used to assess the modeling fitting of Quasi-Poisson regression model. Results of present study with DF of 4 for both 
temperature/humidity space and lag-space were labeled as black bold. 

 



Int. J. Environ. Res. Public Health 2016, 13, 0000; doi: S12 of S12 

References 

1. Junger, W.L.; de Leon, A.P. Imputation of missing data in time series for air pollutants. Atmos. Environ. 2015, 
102, 96–104. 

2. Hastie, T.; Tibshirani, R. Generalized Additive Model; Chapman and Hall: London, UK, 1990; pp. 297–310. 
3. Kan, H.D.; London, S.J.; Chen, G.H.; Zhang, Y.H.; Song, G.X.; Zhao, N.Q.; Jiang, L.L.; Chen, B.H. 

Differentiating the effects of fine and coarse particles on daily mortality in shanghai, china. Environ. Int. 
2007, 33, 376–384. 

4. Ma, Y.J.; Chen, R.J.; Pan, G.W.; Xu, X.H.; Song, W.M.; Chen, B.H.; Kan, H.D. Fine particulate air pollution 
and daily mortality in Shenyang, China. Sci. Total Environ. 2011, 409, 2473–2477. 

5. Yang, C.X.; Peng, X.W.; Huang, W.; Chen, R.J.; Xu, Z.C.; Chen, B.H.; Kan, H.D. A time-stratified case-
crossover study of fine particulate matter air pollution and mortality in Guangzhou, China. Int. Arch. Occup. 
Environ. Health 2012, 85, 579–585. 

6. Geng, F.H.; Hua, J.; Mu, Z.; Peng, L.; Xu, X.H.; Chen, R.J.; Kan, H.D. Differentiating the associations of black 
carbon and fine particle with daily mortality in a Chinese city. Environ. Res. 2013, 120, 27–32. 

7. Huang, W.; Cao, J.J.; Tao, Y.B.; Dai, L.Z.; Lu, S.E.; Hou, B.; Wang, Z.; Zhu, T. Seasonal variation of chemical 
species associated with short-term mortality effects of PM2.5 in Xi'an, a central city in China. Am. J. Epidemiol. 
2012, 175, 556–566. 

8. Xie, W.X.; Li, G.; Zhao, D.; Xie, X.Q.; Wei, Z.H.; Wang, W.; Wang, M.; Li, G.X.; Liu, W.R.; Sun, J.Y.; et al. 
Relationship between fine particulate air pollution and ischaemic heart disease morbidity and mortality. 
Heart 2015, 101, 257–263. 

9. Zanobetti, A.; Schwartz, J. The effect of fine and coarse particulate air pollution on mortality: A national 
analysis. Environ. Health Perspect. 2009, 117, 898–903. 

10. Franklin, M.; Zeka, A.; Schwartz, J. Association between PM2.5 and all-cause and specific-cause mortality in 
27 US communities. J. Expo. Sci. Env. Epidemiol. 2007, 17, 279–287. 

11. Ostro, B.; Broadwin, R.; Green, S.; Feng, W.Y.; Lipsett, M. Fine particulate air pollution and mortality in 
nine california counties: Results from calfine. Environ. Health Perspect. 2006, 114, 29–33. 

12. Samoli, E.; Stafoggia, M.; Rodopoulou, S.; Ostro, B.; Declercq, C.; Alessandrini, E.; Diaz, J.; Karanasiou, A.; 
Kelessis, A.G.; Le Tertre, A.; et al. Associations between fine and coarse particles and mortality in 
mediterranean cities: Results from the med-particles project. Environ. Health Perspect. 2013, 121, 932–938. 

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access 
article distributed under the terms and conditions of the Creative Commons by 
Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/). 

 


