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Abstract: Severe fever with thrombocytopenia syndrome (SFTS) is caused by severe fever with
thrombocytopenia syndrome virus (SFTSV), which has had a serious impact on public health in parts
of Asia. There is no specific antiviral drug or vaccine for SFTSV and, therefore, it is important
to determine the factors that influence the occurrence of SFTSV infections. This study aimed
to explore the spatial associations between SFTSV infections and several potential determinants,
and to predict the high-risk areas in mainland China. The analysis was carried out at the level of
provinces in mainland China. The potential explanatory variables that were investigated consisted
of meteorological factors (average temperature, average monthly precipitation and average relative
humidity), the average proportion of rural population and the average proportion of primary
industries over three years (2010–2012). We constructed a geographically weighted logistic regression
(GWLR) model in order to explore the associations between the selected variables and confirmed
cases of SFTSV. The study showed that: (1) meteorological factors have a strong influence on the
SFTSV cover; (2) a GWLR model is suitable for exploring SFTSV cover in mainland China; (3) our
findings can be used for predicting high-risk areas and highlighting when meteorological factors
pose a risk in order to aid in the implementation of public health strategies.
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1. Introduction

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease with
a fatality rate of 12%. It was first reported in 2009 in the rural regions of the provinces of Hubei
and Henan in central China. The clinical symptoms of SFTS are non-specific and include high
fever (temperature of ≥38 ◦C), thrombocytopenia (platelet count of <100,000/mm3), leukocytopenia,
multi-organ dysfunction and hemorrhagic tendency [1–3]. SFTS has been reported not only in at least
13 provinces in the central, eastern and northern regions of China [4], but also in North Korea [5],
South Korea [6] and Japan [7]. SFTSV has spread wider and wider, posing an increasingly significant
threat to the global health.

The majority of cases have been reported to occur in rural areas from April to July [8]. A novel
phlebovirus of the family Bunyaviridae was identified as the causative agent of SFTS in 2010, and it
was named severe fever with thrombocytopenia syndrome virus (SFTSV) or Huaiyangshan virus [1,9].
At the end of 2012, it was confirmed that SFTSV has been associated with SFTS in seven provinces in
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the central, eastern and northern regions of China, including the provinces of Hubei [10], Henan [11],
Jiangsu [12,13], Liaoning [14], Anhui [15], Shandong [16] and Zhejiang [17].

The epidemiology, clinical signs and pathogenesis of SFTS have been widely studied [18–22],
and over 200 individual nucleotide sequences of SFTSV have been submitted to GenBank. However,
the transmission of SFTSV remains an important and yet unexplained process. A previous study
suggested that SFTSV is an arbovirus that can be transmitted by Haemaphysalis longicornis, a species
of tick [1]. Humans can become infected through tick bites or by contact with infected blood or
bloody secretions from humans or livestock [23,24]. Moreover, many studies showed that tick-borne
diseases like Lyme disease, rickettsiosis and tick-borne encephalitis have a strong association with
environmental factors [25–27]. Considering that the majority of patients of confirmed SFTS cases lived
in rural areas and were employed in agriculture [8,18], we hypothesize SFTS might be influenced by
environmental factors and anthropogenic factors. Our study has two major objectives: (1) to identify
the factors of SFTSV based on data from seven provinces with SFTSV cover and other provinces that
had no reported cases; (2) to predict high-risk areas in China.

SFTSV cover means positive provinces or confirmed areas. The provinces experienced cases
of SFTS that tested positive for SFTSV in patients were defined as SFTSV cover or confirmed
areas of SFTSV. Furthermore, it might be difficult to distinguish SFTSV cover from reported SFTSV.
Some provinces have even reported some cases with symptoms similar to SFTS, but the medics were
unable to extract the SFTS virus from the patients. Therefore, these provinces were defined as SFTSV
reported but not so-called SFTSV cover.

In this study, we estimated a geographically weighted logistic regression (GWLR) model and
explore the spatial associations of SFTSV with the following potential determinants: meteorological
factors (average temperature (AT), average monthly precipitation (AMP) and average relative humidity
(ARH)), the average proportion of rural population (APRP) and the average proportion of primary
industries (APPI).

2. Materials and Methods

2.1. Data Collection

SFTSV is a negative-sense RNA virus that contains three single-stranded RNA genome segments
designated as large (L), medium (M) and small (S). All the available SFTSV data, including sequences
and location information, from 2010 to 2012 were obtained from the database of the National
Center for Biotechnology Information (NCBI) in the USA, which provides access to biomedical and
genomic information.

The meteorological data were obtained from the weather website Reliable Prognosis 5 (rp5)
(http://rp5.ru). This website, authorized by the Russian Federal Service for Hydrometeorology and
Environmental Monitoring, allows creating and maintaining databases in the field of hydrometeorology
and related fields. The meteorological data included the provincial capitals’ weather data from April
to July of 2010, 2011 and 2012 concerning 31 provinces in the whole of China. We collected the weather
data of provincial capitals representing the weather of corresponding provinces. The average values of
three years of the weather data of provincial capitals were employed for analysis. The AT, AMP and
ARH were assessed.

Anthropogenic factors were also considered. SFTS case was first reported in rural regions, and the
lifecycle and transmission characteristics of ticks related to agricultural works of human beings.
Therefore, we obtained data on the proportion of rural population and of primary industries in each of
the provinces. The rural population data and industrial data from 2010 to 2012 were obtained from
the National Bureau of Statistics of the People’s Republic of China [28–30]. The APRP and APPI were
assessed. The units of five variables are presented in Table 1.

http://rp5.ru
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The mapping data from China were obtained from DIVA-GIS. GCS-WGS-1984 and a Lambert
conformal conic projection for Asia were used to determine the geographic coordinate system and
projection coordinate system, respectively.

Table 1. Units of the variables.

AT AMP ARH APRP APPI

Unit ◦C mm % % %

AT = average temperature; AMP = average monthly precipitation; ARH = average relative humidity;
APRP = average proportion of rural population; APPI = average proportion of primary industries.

We obtained information on 263 SFTSV sequences of viruses that had been isolated from patients
from 2010 to 2012 and registered in the NCBI database; each sequence came with location information
(i.e., information on the province where the virus was isolated). Therefore, we could easily determine
whether SFTSV had been isolated in each province in China (except for the province of Taiwan,
for which there was no data). Each province was assigned a value of 1 if SFTSV had been isolated from
patients or 0 if SFTSV had not been isolated (Figure 1).
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Figure 1. Geographical distribution of SFTSV in mainland China from 2010 to 2012. SFTSV = severe
fever with thrombocytopenia syndrome virus.

2.2. Modeling Methods

A GWLR model [31] (a spatial model) was estimated in order to explore the associations between
various explanatory variables and SFTSV cover (Figure 2).

2.2.1. Geographically Weighted Logistic Regression Model

In geographical spatial analysis, n sets of data represent the sampled data acquired from n different
locations. The orthodox global regression model (e.g., ordinary least squares, OLS model) assumes
that coefficients of regression model are not relevant to the geographical locations of sampled data, i.e.,
coefficients keep consistent in the whole study area [32]. But in practical applications, coefficients of
regression model are always mutative in varying locations. If we still adopted the above model, the
calculated coefficients would be the average value of the whole study area, which would not reflect
the true spatial or distributed features. Aiming at the spatial heterogeneity, i.e., when the nature and
significance of relationships between variables differs from location to location [33], a specifically
designed technique, geographically weighted regression (GWR), is commonly used [34–36].
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The logistic regression (LR) model is also a kind of global regression model, but different from the
OLS model [37]. Unlike the continuous variable in the OLS model, the dependent variable in the LR
model is discrete. For example, the relationship between the binomial dependent variable (the value of
the variable is binomial, like 0 or 1, meaning yes or no respectively) and explanatory variables (discrete
or continuous) would be fitted easily using the LR model, but the wrong results would be obtained if
we took binomial variables in the OLS model.
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Figure 2. Study flow chart. AMP = average monthly precipitation; APPI = average proportion
of primary industries; SFTS = severe fever with thrombocytopenia syndrome; APRP = average
proportion of rural population; ARH = average relative humidity; AT = average temperature;
GWLR = geographically weighted logistic regression; LR = logistic regression; SFTSV = severe fever
with thrombocytopenia syndrome virus.

The GWLR model combined a logistic regression model and a geographically weighted regression
model and thereby extended the LR model by taking into account spatial heterogeneity [31]. In this
type of model, the structure is considered non-stationary, meaning that the relationship between
the binomial dependent variable (the value of the variable is 0 or 1 only) and the continuous
explanatory variables (AT, AMP, ARH, APRP and APPI) varies across different locations. Continuous
explanatory variables are the mean value of AT, AMP, ARH, APRP and APPI in three different years.
Each location has its own specific estimated regression coefficients. The GWLR model is expressed as
(Equation (1) [31]:

logit (pi) = log
(

pi
1−pi

)
= β0i (ui, vi) + β1i (ui, vi)×ATi + β2i (ui, vi)×AMPi + β3i (ui, vi)

×ARHi + β4i (ui, vi)×APPi + β5i (ui, vi)×APIi

(1)

where i represents the location i, (ui, vi) are the coordinates of region i (which represents the provincial
capital of province i), pi is the probability of SFTSV cover at region i, β0i (ui, vi) represents the GWLR
intercept coefficients associated with (ui, vi), while βji (ui, vi) (j ∈ {1, 2, 3, 4, 5}) represents the GWLR
coefficients for AT, AMP, ARH, APRP and APPI at region i. We first drew a circle of a given radius
called the kernel bandwidth at location i, and we then computed a set of spatial weights between
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location i and its neighbors within the circle according to distance. Finally, the model coefficients were
estimated using weighted least-squares regression [38]. In this study, the bandwidth was determined
using the minimum Akaike information criterion (AIC) value [39].

2.2.2. Model Evaluation

When two or more variables convey the same information, these variables are said to exhibit
multicollinearity (or collinearity), and the results are usually unreliable [40,41]. Multicollinearity can
result in an over-counting type of bias and an unstable model. Therefore, multicollinearity should
be assessed in order to reduce errors. Generally, multicollinearity between variables is explored by
calculating a matrix of correlation coefficients or by computing relevant indictors, such as the tolerance
coefficient or the variance inflation factor (VIF) [42,43] (and a variable is excluded if its score is larger
than that experienced) [32]. In this study, the VIF of each explanatory variable and AUC values was
calculated using Stata 14 software (StataCorp LP, College Station, TX, USA). Subsequently, we used
the GWR 4.0 software (Tomoki Nakaya, Ritsumeikan University, Kyoto, Japan) [31,44] for fitting the
GWLR model and compared the GWLR models based on the AIC. The model with the minimum AIC
value was determined to be the most suitable model for the data.

We determined the probability of SFTSV cover at each location. The area under the relative
operating characteristic curve (AUC) [45,46] was assessed in order to explore the model fit. The AUC
represents how well the model distinguishes between the presence and absence of SFTSV. A larger
AUC indicates a more suitable model. The value of the AUC ranges from 0 to 1.0, with 0 indicating
perfect misclassification, 0.5 indicating complete randomness and 1.0 indicating perfect classification.
Models with AUC values of 0.5–0.7 are considered to be poor, those with AUC values of 0.7–0.9 are
considered to show moderate discrimination, and those with AUC values of 0.9–1.0 are considered to
be good [38,45]. The AUC values were computed using a post-estimation function.

3. Results

3.1. Spatial Distribution of Potential Determinants of SFTSV in Mainland China

Descriptive statistics for the meteorological data, the rural population data and the industrial data
are presented in Figure 3. With regard to climate, the AT, AMP and ARH were higher in southeast
China than in northwest China. With regard to the APRP, the proportion gradually increased from
the east coast to inland areas. With regard to the APPI, there was no clear pattern across the country,
and the province of Hainan had the highest proportion.Int. J. Environ. Res. Public Health 2016, 13, 1125 6 of 15 
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Figure 3. Spatial distribution of the five potential determinants of SFTSV cover: (a) Average temperature
(AT) from 2010 to 2012; (b) Average monthly precipitation (AMP) from 2010 to 2012; (c) Average relative
humidity (ARH) from 2010 to 2012; (d) Average proportion of rural population (APRP) from 2010 to
2012; and (e) Average proportion of primary industries (APPI) from 2010 to 2012.

3.2. Frequency Analysis of Confirmed Cases of SFTSV

A total of 263 confirmed cases of SFTSV (82 in 2010, 50 in 2011 and 131 in 2012) were categorized.
From 2010 to 2012, the number of each province showed variable changes (Figure 4). Henan province
varied with a wide range from 15 in 2010 to 90 in 2012. Hubei contained a high number of 22 in 2010
and Henan of 90 in 2012. It is worth mentioning that the frequency analysis was based on GenBank
available data until 13 March in 2016 and the numbers of confirmed cased of SFTSV were not the actual
total numbers of cases confirmed by the Ministry of Health in China.
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3.3. Multicollinearity of Variables

Multicollinearity was detected using VIF scores. The findings are presented in Table 2. According
to the literature, a VIF score of >10 indicates strong multicollinearity, a VIF score of between
5 and 10 indicates moderate multicollinearity and a VIF score of between 2 and 5 indicates mild
multicollinearity [47,48]. In our study, the highest VIF score was 3.33 (for ARH), indicating mild
multicollinearity. Therefore, we did not exclude any variables from the model.

Table 2. VIF scores of the variables.

AT AMP ARH APRP APPI

VIF score 1.50 3.25 3.33 2.71 2.74

VIF = variance inflation factor; AT = average temperature; AMP = average monthly precipitation;
ARH = average relative humidity; APRP = average proportion of rural population; APPI = average proportion
of primary industries.

3.4. Construction of Models and Measures of Model Fit

In GWR 4.0, all the explanatory variables were standardized using a z-transformation to ensure
easier interpretation of the estimated coefficients. Additionally, a fixed bi-square kernel type was
employed. The model was fitted using a golden section search to find the optimal bandwidth size,
and the minimum AIC value was used as the indictor.

Multiple GWLR models and corresponding LR models (which were used for model comparisons)
were constructed by multiple tests. We compared the models using the AIC and AUC values, and the
most appropriate model with good distinguishing capacity between the presence and absence of
SFTSV was selected. We carried out three tests for optimization. In test A, β4 (ui, vi) and β5 (ui, vi)

were set at zero in order to consider the relationships between the meteorological factors and SFTSV.
In test B, no coefficients were set at zero. In test C, only non-meteorological factors were considered,
with β1 (ui, vi), β2 (ui, vi) and β3 (ui, vi) set at zero. The GWLR model in test A had the smallest
AIC value and had a moderate capacity to distinguish between the presence and absence of SFTSV
(AUC = 0.77). The GWLR model in test B had the largest AIC value and had a moderate capacity to
distinguish between the presence and absence of SFTSV (AUC = 0.78). The GWLR model in test C
had a large AIC value and a poor capacity to distinguish between the presence and absence of SFTSV
(AUC = 0.68) (Table 3).
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Table 3. Measures of model fit.

Test A B C

Model Type LR GWLR LR GWLR LR GWLR

AIC 37.586 37.242 39.738 39.651 38.796 38.545
AUC 0.70 0.77 0.75 0.78 0.54 0.68

AIC = Akaike information criterion; AUC = area under the relative operating characteristic curve;
GWLR = geographically weighted logistic regression; LR = logistic regression.

3.5. Estimation of Regression Coefficients of the GWLR Models

The GWLR model with β4 (ui, vi) and β5 (ui, vi) set at zero had the smallest AIC value and
a moderate capacity to distinguish between the presence and absence of SFTSV and it was therefore
the most appropriate model. The estimated coefficients of this model were used in the analysis of
high- and low-risk areas in mainland China. The summary statistics of the varying (local) coefficients
are presented in Table 4.

Table 4. Summary statistics of the varying (local) coefficients.

Coefficient Label Minimum Maximum Mean Range Standard Error

Intercept −3.324 −1.218 −1.506 2.106 0.426
AT 0.912 2.792 1.133 1.880 0.363

AMP −1.419 −0.315 −0.710 1.104 0.227
ARH 0.002 1.786 0.571 1.789 0.382

AMP = average monthly precipitation; ARH = average relative humidity; AT = average temperature.

In the GWLR model, the sign of the estimated coefficient for each explanatory variable indicates
each variable’s direction of effect on the probability of SFTSV cover. All of the explanatory variables
were standardized, and the absolute values of the estimated coefficients reflect the strength of the
associations between the explanatory variables and the probability of SFTSV cover (Figure 5). In order
to simplify the analysis, the intensity of each variable was categorized into three groups (slight,
moderate and strong) according to the Jenks natural breaks classification method (Table 5). To be
specific, this classification is based on natural groupings inherent in the data. Class breaks are identified
that best group similar values and that maximize the differences between classes [49].

Table 5. Categories of Estimated coefficients.

Coefficient Label Slight Moderate Strong

AT 0.912–1.126 1.126–1.444 1.444–2.792
AMP −1.419–−0.902 −0.902–−0.625 −0.625–−0.315
ARH 0.003–0.300 0.300–0.772 0.772–1.786

AMP = average monthly precipitation; ARH = average relative humidity; AT = average temperature.

We put the values of the variables in each location into an estimation model to determine the
probability of SFTSV cover. The probability of SFTSV cover was found to range from 0.001 to 0.494
(Figure 6). The eastern, central and south-central regions of mainland China had higher probabilities
of SFTSV cover, while the western and mid-western regions had low probabilities of SFTSV cover.
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Meteorological Factors

We overlaid the maps of the coefficients and divided the mainland into nine areas (Figure 7).
We found that among the seven provinces with SFTSV cover, six provinces (Henan, Hubei,
Shandong, Anhui, Jiangsu and Zhejiang) demonstrated that temperature had a slight association
and precipitation and relative humidity had moderate associations, while the other province (Liaoning)
demonstrated that temperature had a slight association and precipitation and relative humidity had
strong associations.
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In addition, 13 provinces in central China, which had warm climates and were mostly in the
northern subtropical zone, were classified as having high probabilities of SFTSV cover. The values of
the meteorological variables in these areas from May to July were stable from 2010 to 2012 (Table 6).

Table 6. AT, AMP and ARH from 2010 to 2012 in the 13 provinces in China with high probabilities of
SFTSV cover.

Year Coefficient Label Mean Minimum Maximum

2010
AT (◦C) 25.2 23.3 26.8

AMP (mm) 430.4 81.0 686.2
ARH (%) 69.2 49.1 78.3

2011
AT (◦C) 25.5 22.0 27.2

AMP (mm) 415.3 113.5 681.2
ARH (%) 66.5 51.7 81.0

2012
AT (◦C) 25.9 22.8 27.7

AMP (mm) 415.3 113.5 681.2
ARH (%) 68.2 52.7 81.0

AMP = average monthly precipitation; ARH = average relative humidity; AT = average temperature.

4. Discussion

This study found that meteorological factors (temperature, precipitation and relative humidity)
were associated with SFTSV cover and that the influence of meteorological factors on SFTSV cover
varies in different areas.

Numerous previous studies have explored the potential factors that influence the incidence
of SFTS in various regions. One such study used a Poisson regression analysis to show that the
spatial variations in the incidence of SFTS were significantly associated with shrub, forest and rain-fed
cropland areas in the Xinyang region of the Henan province in China [18]. Another study conducted
spatial scan statistics and multivariate model of SFTS in China using the surveillance data from
2010 to 2013, and they detected three hot spots of SFTS in China and identified independent risk
factors of the distribution of SFTS [50]. Additional studies have assessed the potential factors that
influence the incidence of other infectious but not vector-borne diseases, and these studies have used
a variety of different methodologies. A relationship between climatic factors and local transmission
was found for the 2009 pandemic influenza A virus (H1N1) in mainland China in a study that used
a multilevel Poisson regression model [51]. Another study developed a logistic regression model to
assess the relationships between known populations of Ixodes scapularis (a tick that is the main vector
for Lyme disease in the USA) and environmental factors (the minimum, maximum and mean monthly
temperature and vapor pressure) in order to investigate Lyme disease in the USA [25]. A third study
used GWR models to explore the association of the incidence of hand, foot and mouth disease (HFMD)
with child population density and climatic factors at the county level in China [52], and the authors
found that child population density had a stronger influence than climatic factors on the incidence
of HFMD.

In these previous studies, statistical methodologies were used to explore the factors that are
associated with various infectious diseases, including climatic factors. However, they used different
types of models (e.g., an OLS model, a Poisson regression model and a GWR model). An OLS model
was not included in our study since SFTSV cover is binomial variable. Insignificant results would be
gained if we joined binomial variable into OLS model. Another global regression model, LR model,
was utilized for comparison analysis. A previous study compared a GWLR model with an orthodox
LR model of the spatial variations of urban growth patterns in the Chinese city of Nanjing [35] showed
that the GWLR model significantly improves on the global LR model in terms of goodness-of-fit. In the
present study, we firstly estimated each GWLR model, and compared their performance with that of
corresponding LR models. To be specific, three non-spatial LR models were constructed and compared
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with three GWLR models. The three LR models were consistent with the respective GWLR models,
and the LR models had the same explanatory variables as those in the GWLR models. Our results
support a growing body of recent literature [38,53,54] underlining the superiority of spatially explicit
regression models relative to orthodox global models.

Our study underlined the fact that the effect sizes of each explanatory variable in each province are
potentially heterogeneous and utilized a GWLR model which is a sort of spatially explicit regression
model. Additionally, this study explored both meteorological and anthropogenic factors and found
that meteorological factors were associated with SFTSV cover by using GWLR models. Compared
with traditional regression analysis, spatially explicit models could cover local variations and indicate
spatial heterogeneity, thus underlining the notion that specific places within the same study area might
differ from each other with regard to the nature and extent of meteorological injustice.

GWLR indicated that many of the observed statistical associations between SFTSV risk and specific
explanatory variables are not uniform across China. More specifically, the local estimates of parameters
of variables enabled us to investigate variations in the influences of the explanatory variables on SFTSV
cover. From the maps of the estimated coefficients, the differences between locations regarding the
strength of the associations between the explanatory variables and the probability of SFTSV cover were
clear. Regarding temperature, the strength of the association decreased from east to west across China,
and there was only a slight association in large areas of the mainland. Additionally, the estimated
coefficients for relative humidity increased from southwest to northeast across China. The pattern
for precipitation was similar to that for relative humidity; however, the coefficients increased in the
opposite direction across China.

Based on our findings, we speculate that the high-risk areas are yellow areas in Figure 6, with slight
temperature influence (25.5–27 ◦C) and moderate precipitation (442.4–644.8 mm) and moderate relative
humidity (72%–80%). To be more specific in location, the areas where SFTSV has been isolated, and the
provinces of Shanxi, Shaanxi, Guizhou, Hunan, Jiangxi, Fujian and Shanghai which surround the
former, should be carefully monitored. Furthermore, there are several improvements that could be
made to this analysis in the future. Firstly, although SFTS is a tick-borne disease, tick density was not
included in the models because of the lack of data on the vector populations. We attempted to acquire
data on tick density in China, but this information proved difficult to obtain. However, the model
could be further improved if tick density was taken into account.

In addition, the sample size used in the analysis was small. As SFTS is a new epidemic disease,
we could not obtain data on SFTS at a more granular level than province-level data. In this analysis,
SFTSV data from 2010 to 2012 were obtained from the NCBI database, and province data were often
included but more precise location data were rarely included. Although we only obtained approximate
location data, strong factors that are associated with SFTSV cover between SFTSV and meteorological
factors was found. Despite this, we recognize that this analysis is only a preliminary analysis of spatial
associations and it has its limitations. The results of our study highlight the need for researchers to
recognize the usefulness of GWLR as an exploratory data analysis tool for SFTSV risk assessment.
More local-level research is necessary, however, to determine why statistical relationships between
SFTSV cover and specific explanatory factors vary in certain parts of China. Meanwhile, we appeal to
researchers to provide more precise location data when they upload SFTSV data to the NCBI database
in order to aid scientific progress.

5. Conclusions

The study showed that a GWLR model is appropriate to assess the SFTSV cover in mainland
China. Meteorological factors (temperature, precipitation and relative humidity) are associated with
the SFTSV cover, and the influence of these meteorological factors on the SFTSV cover varies across
different areas. Meanwhile, the provinces of Shanxi, Shaanxi, Guizhou, Hunan, Jiangxi, Fujian and
Shanghai should be carefully monitored, as they surround the areas where SFTSV has been isolated
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and they have suitable conditions for SFTSV transmission compared with the other provinces where
SFTSV has not yet been isolated.

There is currently no vaccine for SFTSV and SFTS often has fatal consequences. Our findings
provide evidence to support public health policy and decision-making in allocating resources locally,
which will enable better identification and detection of high risk areas, a reduction of the risk of
infection and strengthened population resilience. We suggest that the efforts put into control strategies
and prevention should be greater in areas where environmental factors are known to pose a significant
risk. For instance, medical professionals could give extra attention to suspicious cases in high-risk
areas and verify whether these cases involve SFTSV infections. Additionally, in these cases, attempts
should be made to isolate the virus and to confirm the diagnosis. Further accumulation of data on
cases of SFTSV infection will aid in the control of SFTSV and the prevention of SFTS.

Acknowledgments: This project was supported by the National Science Foundation of China (grant number
41401443, 41671400) and was supported by the Natural Science Foundation of Hubei Province (grant number
2015CFA012). We would like to thank China’s National Engineering Research Center for Geographic Information
Systems (NERCGIS) for providing hardware support.

Author Contributions: Conceived and designed the experiments: Liang Wu, Dan Liu, Fei Deng and Zhong Xie;
Performed the experiments: Liang Wu, Sheng Hu, Shu Shen and Junming Shi; Analyzed the data: Liang Wu,
Fei Deng, Zhong Xie and Dan Liu; Contributed reagents/materials/analysis tools: Sheng Hu, Shu Shen and
Junming Shi; Wrote the paper: Liang Wu, Fei Deng, Sheng Hu and Dan Liu.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Yu, X.J.; Liang, M.F.; Zhang, S.Y.; Liu, Y.; Li, J.D.; Sun, Y.L.; Zhang, L.H.; Zhang, Q.F.; Popov, V.L.; Li, C.; et al.
Fever with Thrombocytopenia Associated with a Novel Bunyavirus in China. N. Engl. J. Med. 2011, 364,
1523–1532. [CrossRef] [PubMed]

2. Deng, B.; Zhang, S.; Geng, Y.; Zhang, Y.; Wang, Y.; Yao, W.; Wen, Y.; Cui, W.; Zhou, Y.; Gu, Q.; et al.
Cytokine and chemokine levels in patients with severe fever with thrombocytopenia syndrome virus.
PLoS ONE 2012, 7, e41365. [CrossRef] [PubMed]

3. Niu, G.Y.; Li, J.D.; Liang, M.F.; Jiang, X.L.; Jiang, M.; Yin, H.Y.; Wang, Z.D.; Li, C.; Zhang, Q.F.;
Jin, C.; et al. Severe Fever with Thrombocytopenia Syndrome Virus among Domesticated Animals, China.
Emerg. Infect. Dis. 2013, 19, 756–763. [CrossRef] [PubMed]

4. Yun, Y.; Heo, S.T.; Kim, G.; Hewson, R.; Kim, H.; Park, D.; Cho, N.H.; Oh, W.S.; Ryu, S.Y.; Kwon, K.T.; et al.
Phylogenetic Analysis of Severe Fever with Thrombocytopenia Syndrome Virus in South Korea and
Migratory Bird Routes between China, South Korea, and Japan. Am. J. Trop. Med. Hyg. 2015, 93, 468–474.
[CrossRef] [PubMed]

5. Denic, S.; Janbeih, J.; Nair, S.; Conca, W.; Tariq, W.U.; Al-Salam, S. Acute Thrombocytopenia, Leucopenia,
and Multiorgan Dysfunction: The First Case of SFTS Bunyavirus outside China? Case Rep. Infect. Dis. 2011,
2011, 204056. [CrossRef] [PubMed]

6. Kim, K.H.; Yi, J.; Kim, G.; Choi, S.J.; Jun, K.I.; Kim, N.H.; Choe, P.G.; Kim, N.J.; Lee, J.K.; Oh, M.D. Severe Fever
with Thrombocytopenia Syndrome, South Korea, 2012. Emerg. Infect. Dis. 2013, 19, 1892–1894. [CrossRef]
[PubMed]

7. Takahashi, T.; Maeda, K.; Suzuki, T.; Ishido, A.; Shigeoka, T.; Tominaga, T.; Kamei, T.; Honda, M.;
Ninomiya, D.; Sakai, T.; et al. The First Identification and Retrospective Study of Severe Fever with
Thrombocytopenia Syndrome in Japan. J. Infect. Dis. 2014, 209, 816–827. [CrossRef] [PubMed]

8. Zhang, Y.Z.; Zhou, D.J.; Xiong, Y.; Chen, X.P.; He, Y.W.; Sun, Q.; Yu, B.; Li, J.; Dai, Y.A.; Tian, J.H.; et al.
Hemorrhagic fever caused by a novel tick-borne Bunyavirus in Huaiyangshan, China. Zhonghua Liu Xing
Bing Xue Za Zhi 2011, 32, 209–220. [PubMed]

9. Zhang, Y.Z.; Zhou, D.J.; Qin, X.C.; Tian, J.H.; Xiong, Y.W.; Wang, J.B.; Chen, X.P.; Gao, D.Y.; He, Y.W.;
Jin, D.; et al. The Ecology, Genetic Diversity, and Phylogeny of Huaiyangshan Virus in China. J. Virol. 2012,
86, 2864–2868. [CrossRef] [PubMed]

http://dx.doi.org/10.1056/NEJMoa1010095
http://www.ncbi.nlm.nih.gov/pubmed/21410387
http://dx.doi.org/10.1371/journal.pone.0041365
http://www.ncbi.nlm.nih.gov/pubmed/22911786
http://dx.doi.org/10.3201/eid1905.120245
http://www.ncbi.nlm.nih.gov/pubmed/23648209
http://dx.doi.org/10.4269/ajtmh.15-0047
http://www.ncbi.nlm.nih.gov/pubmed/26033016
http://dx.doi.org/10.1155/2011/204056
http://www.ncbi.nlm.nih.gov/pubmed/22567462
http://dx.doi.org/10.3201/eid1911.130792
http://www.ncbi.nlm.nih.gov/pubmed/24206586
http://dx.doi.org/10.1093/infdis/jit603
http://www.ncbi.nlm.nih.gov/pubmed/24231186
http://www.ncbi.nlm.nih.gov/pubmed/21457654
http://dx.doi.org/10.1128/JVI.06192-11
http://www.ncbi.nlm.nih.gov/pubmed/22190717


Int. J. Environ. Res. Public Health 2016, 13, 1125 14 of 16

10. Liu, L.; Guan, X.H.; Xing, X.S.; Shen, X.F.; Xu, J.Q.; Yue, J.L.; Huo, X.X.; Sha, S.; Wu, H.X.; Huang, J.; et al.
Epidemiologic analysis on severe fever with thrombocytopenia syndrome in Hubei province, 2010.
Chin. J. Epidemiol. 2012, 33, 168–172.

11. Tang, X.; Wu, W.; Wang, H.; Du, Y.; Liu, L.; Kang, K.; Huang, X.; Ma, H.; Mu, F.; Zhang, S.; et al.
Human-to-human transmission of severe fever with thrombocytopenia syndrome bunyavirus through
contact with infectious blood. J. Infect. Dis. 2013, 207, 736–739. [CrossRef] [PubMed]

12. Li, Z.F.; Hu, J.L.; Bao, C.J.; Li, P.F.; Qi, X.; Qin, Y.F.; Wang, S.J.; Tan, Z.M.; Zhu, Y.F.; Tang, F.Y.; et al.
Seroprevalence of antibodies against SFTS virus infection in farmers and animals, Jiangsu, China.
J. Clin. Virol. 2014, 60, 185–189. [CrossRef] [PubMed]

13. Liang, S.Y.; Bao, C.J.; Zhou, M.H.; Hu, J.L.; Tang, F.Y.; Guo, X.L.; Jiao, Y.J.; Zhang, W.S.; Luo, P.L.; Li, L.X.; et al.
Seroprevalence and Risk Factors for Severe Fever with Thrombocytopenia Syndrome Virus Infection in
Jiangsu Province, China, 2011. Am. J. Trop. Med. Hyg. 2014, 90, 256–259. [CrossRef] [PubMed]

14. Deng, B.C.; Zhou, B.; Zhang, S.J.; Zhu, Y.; Han, L.Q.; Geng, Y.Z.; Jin, Z.N.; Liu, H.B.; Wang, D.L.;
Zhao, Y.T.; et al. Clinical Features and Factors Associated with Severity and Fatality among Patients with
Severe Fever with Thrombocytopenia Syndrome Bunyavirus Infection in Northeast China. PLoS ONE 2013,
8, e80802. [CrossRef] [PubMed]

15. Lü, Y.; Wu, J.B.; Xu, P.P. Human-to-human transmission epidemic of sever fever with thrombocytopenia
syndrome in western Anhui province. Chin. J. Public Health 2014. [CrossRef]

16. Zhao, L.; Zhai, S.; Wen, H.; Cui, F.; Chi, Y.; Wang, L.; Xue, F.; Wang, Q.; Wang, Z.; Zhang, S.; et al. Severe fever
with thrombocytopenia syndrome virus, Shandong Province, China. Emerg. Infect. Dis. 2012, 18, 963–965.
[CrossRef] [PubMed]

17. Sun, J.; Chai, C.; Lv, H.; Lin, J.; Wang, C.; Chen, E.; Zhang, Y.; Chen, Z.; Liu, S.; Gong, Z.; et al. Epidemiological
characteristics of severe fever with thrombocytopenia syndrome in Zhejiang Province, China. Int. J. Infect. Dis.
2014, 25, 180–185. [CrossRef] [PubMed]

18. Liu, K.; Cui, N.; Fang, L.Q.; Wang, B.J.; Lu, Q.B.; Peng, W.; Li, H.; Wang, L.Y.; Liang, S.; Wang, H.Y.; et al.
Epidemiologic Features and Environmental Risk Factors of Severe Fever with Thrombocytopenia Syndrome,
Xinyang, China. PLoS Negl. Trop. Dis. 2014, 8. [CrossRef] [PubMed]

19. Jiang, X.L.; Wang, X.J.; Li, J.D.; Ding, S.J.; Zhang, Q.F.; Qu, J.; Zhang, S.; Li, C.; Wu, W.; Jiang, M.; et al.
Isolation, identification and characterization of SFTS bunyavirus from ticks collected on the surface of
domestic animals. Chin. J. Virol. 2012, 28, 252–257.

20. Hu, C.; Guo, C.; Yang, Z.; Wang, L.; Hu, J.; Qin, S.; Cui, N.; Peng, W.; Liu, K.; Liu, W.; et al. The severe fever
with thrombocytopenia syndrome bunyavirus (SFTSV) antibody in a highly endemic region from 2011 to
2013: A comparative serological study. Am. J. Trop. Med. Hyg. 2015, 92, 479–481. [CrossRef] [PubMed]

21. Sun, J.M.; Tang, Y.M.; Ling, F.; Chang, Y.; Ye, X.H.; Shi, W.; Zhang, L.; Chen, Z.P.; Lin, H.J.; Qiu, Z.P.; et al.
Genetic Susceptibility Is One of the Determinants for Severe Fever with Thrombocytopenia Syndrome Virus
Infection and Fatal Outcome: An Epidemiological Investigation. PLoS ONE 2015, 10, e0132968. [CrossRef]
[PubMed]

22. Lam, T.T.Y.; Liu, W.; Bowden, T.A.; Cui, N.; Zhuang, L.; Liu, K.; Zhang, Y.Y.; Cao, W.C.; Pybus, O.G.
Evolutionary and molecular analysis of the emergent severe fever with thrombocytopenia syndrome virus.
Epidemics 2013, 5, 1–10. [CrossRef] [PubMed]

23. Bao, C.J.; Guo, X.L.; Qi, X.; Hu, J.L.; Zhou, M.H.; Varma, J.K.; Cui, L.B.; Yang, H.T.; Jiao, Y.J.; Klena, J.D.; et al.
A Family Cluster of Infections by a Newly Recognized Bunyavirus in Eastern China, 2007: Further Evidence
of Person-to-Person Transmission. Clin. Infect. Dis. 2011, 53, 1208–1214. [CrossRef] [PubMed]

24. Liu, Y.; Li, Q.; Hu, W.F.; Wu, J.B.; Wang, Y.B.; Mei, L.; Walker, D.H.; Ren, J.; Wang, Y.; Yu, X.J. Person-to-Person
Transmission of Severe Fever with Thrombocytopenia Syndrome Virus. Vector-Borne Zoonotic Dis. 2012, 12,
156–160. [CrossRef] [PubMed]

25. Brownstein, J.S.; Holford, T.R.; Fish, D. A climate-based model predicts the spatial distribution of the
Lyme disease vector Ixodes scapularis in the United States. Environ. Health Perspect. 2003, 111, 1152–1157.
[CrossRef] [PubMed]

26. Ellison, D.W.; Clark, T.R.; Sturdevant, D.E.; Virtaneva, K.; Hackstadt, T. Limited Transcriptional Responses
of Rickettsia rickettsii Exposed to Environmental Stimuli. PLoS ONE 2009, 4, e5612. [CrossRef] [PubMed]

http://dx.doi.org/10.1093/infdis/jis748
http://www.ncbi.nlm.nih.gov/pubmed/23225899
http://dx.doi.org/10.1016/j.jcv.2014.03.020
http://www.ncbi.nlm.nih.gov/pubmed/24793967
http://dx.doi.org/10.4269/ajtmh.13-0423
http://www.ncbi.nlm.nih.gov/pubmed/24343883
http://dx.doi.org/10.1371/journal.pone.0080802
http://www.ncbi.nlm.nih.gov/pubmed/24236203
http://dx.doi.org/10.11847/zgggws2014-30-09-07
http://dx.doi.org/10.3201/eid1806.111345
http://www.ncbi.nlm.nih.gov/pubmed/22608264
http://dx.doi.org/10.1016/j.ijid.2014.02.022
http://www.ncbi.nlm.nih.gov/pubmed/24947422
http://dx.doi.org/10.1371/journal.pntd.0002820
http://www.ncbi.nlm.nih.gov/pubmed/24810269
http://dx.doi.org/10.4269/ajtmh.14-0447
http://www.ncbi.nlm.nih.gov/pubmed/25624404
http://dx.doi.org/10.1371/journal.pone.0132968
http://www.ncbi.nlm.nih.gov/pubmed/26207638
http://dx.doi.org/10.1016/j.epidem.2012.09.002
http://www.ncbi.nlm.nih.gov/pubmed/23438426
http://dx.doi.org/10.1093/cid/cir732
http://www.ncbi.nlm.nih.gov/pubmed/22028437
http://dx.doi.org/10.1089/vbz.2011.0758
http://www.ncbi.nlm.nih.gov/pubmed/21955213
http://dx.doi.org/10.1289/ehp.6052
http://www.ncbi.nlm.nih.gov/pubmed/12842766
http://dx.doi.org/10.1371/journal.pone.0005612
http://www.ncbi.nlm.nih.gov/pubmed/19440298


Int. J. Environ. Res. Public Health 2016, 13, 1125 15 of 16

27. Vanwambeke, S.O.; Sumilo, D.; Bormane, A.; Lambin, E.F.; Randolph, S.E. Landscape Predictors of Tick-Borne
Encephalitis in Latvia: Land Cover, Land Use, and Land Ownership. Vector-Borne Zoonotic Dis. 2010, 10,
497–506. [CrossRef] [PubMed]

28. National Bureau of Statistics. China Statistical Yearbook 2010; China Statistical Press: Beijing, China, 2010.
29. National Bureau of Statistics. China Statistical Yearbook 2011; China Statistical Press: Beijing, China, 2011.
30. National Bureau of Statistics. China Statistical Yearbook 2012; China Statistical Press: Beijing, China, 2012.
31. Fotheringham, A.S.; Brunsdon, C.; Charlton, M. Geographically Weighted Regression: The Analysis of Spatially

Varying Relationships; John Wiley & Sons: Hoboken, NJ, USA, 2002.
32. Fotheringham, A.S.; Brunsdon, C. Local Forms of Spatial Analysis. Geogr. Anal. 2010, 31, 340–358. [CrossRef]
33. Chris, B.; Stewart, F.A.; Charlton, M.E. Geographically Weighted Regression: A Method for Exploring Spatial

Nonstationarity. Geogr. Anal. 1996, 28, 281–298.
34. Wang, Q.; Ni, J.; Tenhunen, J. Application of a geographically-weighted regression analysis to estimate net

primary production of Chinese forest ecosystems. Glob. Ecol. Biogeogr. 2005, 14, 379–393. [CrossRef]
35. Luo, J.; Wei, Y.H.D. Modeling spatial variations of urban growth patterns in Chinese cities: The case of

Nanjing. Landsc. Urban Plan. 2009, 91, 51–64. [CrossRef]
36. Rodrigues, M.; de la Riva, J.; Fotheringham, S. Modeling the spatial variation of the explanatory factors of

human-caused wildfires in Spain using geographically weighted logistic regression. Appl. Geogr. 2014, 48,
52–63. [CrossRef]

37. Cucchiara, A. Applied Logistic Regression. Technometrics 1992, 34, 358–359. [CrossRef]
38. Wu, W.; Zhang, L.J. Comparison of spatial and non-spatial logistic regression models for modeling the

occurrence of cloud cover in north-eastern Puerto Rico. Appl. Geogr. 2013, 37, 52–62. [CrossRef]
39. Akaike, H. Information theory and an extension of the maximum likelihood principle. In Selected Papers of

Hirotugu Akaike; Parzen, E., Tanabe, K., Kitagawa, G., Eds.; Springer: New York, NY, USA, 1998; pp. 199–213.
40. Wheeler, D.C. Diagnostic tools and a remedial method for collinearity in geographically weighted regression.

Environ. Plan. A 2007, 39, 2464–2481. [CrossRef]
41. Wheeler, D.; Tiefelsdorf, M. Multicollinearity and correlation among local regression coefficients in

geographically weighted regression. J. Geogr. Syst. 2005, 7, 161–187. [CrossRef]
42. Hsieh, F.Y.; Lavori, P.W.; Cohen, H.; Feussner, J.R. An overview of variance inflation factors for sample-size

calculation. Eval. Health Prof. 2003, 26, 239–257. [CrossRef] [PubMed]
43. O’Brien, R.M. A caution regarding rules of thumb for variance inflation factors. Qual. Quant. 2007, 41,

673–690. [CrossRef]
44. Nakaya, T.; Fotheringham, A.; Charlton, M.; Brunsdon, C. Semiparametric geographically weighted

generalised linear modelling in GWR 4.0. In Proceedings of the 10th International Conference on
GeoComputation, Sydney, Australia, 30 November–2 December 2009.

45. Swets, J.A. Measuring the Accuracy of Diagnostic Systems. Science 1988, 240, 1285–1293. [CrossRef]
[PubMed]

46. Hanley, J.A.; Mcneil, B.J. The Meaning and Use of the Area under a Receiver Operating Characteristic (Roc)
Curve. Radiology 1982, 143, 29–36. [CrossRef] [PubMed]

47. Field, A. Discovering Statistics Using SPSS; SAGE Publications Ltd.: London, UK, 2005.
48. Krebs, P.; Koutsias, N.; Conedera, M. Modelling the eco-cultural niche of giant chestnut trees: New insights

into land use history in southern Switzerland through distribution analysis of a living heritage. J. Hist. Geogr.
2012, 38, 372–386. [CrossRef]

49. De Smith, M.J.; Goodchild, M.F.; Longley, P. Geospatial Analysis: A Comprehensive Guide to Principles, Techniques
and Software Tools; Troubador Publishing Ltd.: Leicester, UK, 2007.

50. Liu, K.; Zhou, H.; Sun, R.X.; Yao, H.W.; Li, Y.; Wang, L.P.; Mu, D.; Li, X.L.; Yang, Y.; Gray, G.C. A National
Assessment of the Epidemiology of Severe Fever with Thrombocytopenia Syndrome, China. Sci. Rep. 2015,
5, 9679. [CrossRef] [PubMed]

51. Fang, L.Q.; Wang, L.P.; de Vlas, S.J.; Liang, S.; Tong, S.L.; Li, Y.L.; Li, Y.P.; Qian, Q.; Yang, H.; Zhou, M.G.; et al.
Distribution and Risk Factors of 2009 Pandemic Influenza A (H1N1) in Mainland China. Am. J. Epidemiol.
2012, 175, 890–897. [CrossRef] [PubMed]

52. Hu, M.G.; Li, Z.J.; Wang, J.F.; Jia, L.; Liao, Y.L.; Lai, S.J.; Guo, Y.S.; Zhao, D.; Yang, W.Z. Determinants of the
Incidence of Hand, Foot and Mouth Disease in China Using Geographically Weighted Regression Models.
PLoS ONE 2012, 7. [CrossRef] [PubMed]

http://dx.doi.org/10.1089/vbz.2009.0116
http://www.ncbi.nlm.nih.gov/pubmed/19877818
http://dx.doi.org/10.1111/j.1538-4632.1999.tb00989.x
http://dx.doi.org/10.1111/j.1466-822X.2005.00153.x
http://dx.doi.org/10.1016/j.landurbplan.2008.11.010
http://dx.doi.org/10.1016/j.apgeog.2014.01.011
http://dx.doi.org/10.2307/1270048
http://dx.doi.org/10.1016/j.apgeog.2012.10.012
http://dx.doi.org/10.1068/a38325
http://dx.doi.org/10.1007/s10109-005-0155-6
http://dx.doi.org/10.1177/0163278703255230
http://www.ncbi.nlm.nih.gov/pubmed/12971199
http://dx.doi.org/10.1007/s11135-006-9018-6
http://dx.doi.org/10.1126/science.3287615
http://www.ncbi.nlm.nih.gov/pubmed/3287615
http://dx.doi.org/10.1148/radiology.143.1.7063747
http://www.ncbi.nlm.nih.gov/pubmed/7063747
http://dx.doi.org/10.1016/j.jhg.2012.01.018
http://dx.doi.org/10.1038/srep09679
http://www.ncbi.nlm.nih.gov/pubmed/25902910
http://dx.doi.org/10.1093/aje/kwr411
http://www.ncbi.nlm.nih.gov/pubmed/22491083
http://dx.doi.org/10.1371/journal.pone.0038978
http://www.ncbi.nlm.nih.gov/pubmed/22723913


Int. J. Environ. Res. Public Health 2016, 13, 1125 16 of 16

53. Delmelle, E.; Hagenlocher, M.; Kienberger, S.; Casas, I. A spatial model of socioeconomic and environmental
determinants of dengue fever in Cali, Colombia. Acta Trop. 2016, 164, 169–176. [CrossRef] [PubMed]

54. Saefuddin, A.; Setiabudi, N.A.; Fitrianto, A. On comparison between logistic regression and geographically
weighted logistic regression: With application to Indonesian poverty data. World Appl. Sci. J. 2012, 19,
205–210.

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.actatropica.2016.08.028
http://www.ncbi.nlm.nih.gov/pubmed/27619189
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Data Collection 
	Modeling Methods 
	Geographically Weighted Logistic Regression Model 
	Model Evaluation 


	Results 
	Spatial Distribution of Potential Determinants of SFTSV in Mainland China 
	Frequency Analysis of Confirmed Cases of SFTSV 
	Multicollinearity of Variables 
	Construction of Models and Measures of Model Fit 
	Estimation of Regression Coefficients of the GWLR Models 
	Classification of Areas in Mainland China According to the Risk of SFTSV Cover Indicated by Meteorological Factors 

	Discussion 
	Conclusions 

