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Abstract: With the process of urbanization, a large number of residential quarters, which is the
main dwelling form in the urban area of Beijing, have been developed in last three decades to
accommodate the rising population. In the context of intensification of urban heat island (UHI),
the potential degradation of the thermal environment of residential quarters can give rise to a variety
of problems affecting inhabitants’ health. This paper reports the results of a numerical study of
the thermal conditions of a residential quarter on a typical summertime day under four greening
modification scenarios, characterized by different leaf area density (LAD) profiles. The modelling
results demonstrated that vegetation could evidently reduce near-surface air temperature, with the
combination of grass and mature trees achieving as much as 1.5 ◦C of air temperature decrease
compared with the non-green scenario. Vegetation can also lead to smaller air temperature
fluctuations, which contribute to a more stable microclimate. The Universal Thermal Climate Index
(UTCI) was then calculated to represent the variation of thermal environment of the study area.
While grass is helpful in improving outdoor thermal comfort, trees are more effective in reducing the
duration and expansion of suffering from severe heat stress. The results of this study showed that
proper maintenance of vegetation, especially trees, is significant to improving the outdoor thermal
environment in the summer season. In consideration of the deficiency of the current code in the
management of greenspace in residential areas, we hope the results reported here will help promote
the improvement of the code and related regulations for greenspace management.

Keywords: urban heat island; residential quarter; LAD; cooling effects of vegetation; thermal stress;
ENVI-met; UTCI

1. Introduction

1.1. Micro-Scale Studies on the Urban Thermal Environment

Urbanization negatively affects the thermal environment, mainly due to the progressive
replacement of natural surfaces with artificial alternatives. Such surface transition plus massive
anthropogenic heat emitted from the cooling and heating of buildings, manufacturing, and
transportation, result in the atmospheric urban heat island (UHI) phenomenon [1]. The increased
urban air temperature seriously affects the energy consumption of buildings for cooling purposes,
intensifies pollutant concentration, and causes detrimental effects on human health [2].

The outdoor thermal comfort can be investigated by field measurements or numerical models.
In consideration of the large number of variables that exist in a typical urban block or neighborhood,
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field measurements have limited applicability and a growing number of numerical models have thus
been developed. Various micro-scale models such as CTTC [3], Hoyano [4], MUST [5], SOLENE [6],
RayMan [7], ENVI-met [8], etc. offer diverse opportunities to explore the microclimate variation
of outdoor space from multiple aspects. Shashua-Bar et al. studied the thermal effect of built-up
morphology and tree species with different canopy characteristics on microclimate formation [9].
Skelhorn et al. investigated the impact of vegetation types on air and surfaces temperature in
Manchester, UK and the results showed that a 5% increase in mature deciduous trees can reduce mean
hourly surface temperature by 1 ◦C over the course of a summer’s day [10]. Taleghani et al. studied
the difference in outdoor thermal comfort level within five urban forms in Netherlands and the results
showed that the courtyard provides the most comfortable microclimate in June compared to the other
urban forms [11]. Although a large number of numerical models are documented, we must note that
these models vary considerably depending on the scale, temporal and spatial resolution, and physical
processes [10], and each model has its own limitations. Appropriate selection of model is a necessary
fundamental step for accurate output.

The outdoor spaces in the residential area are one of the important public places for citizens to
participate in social and recreational activities and the quality of the outdoor environment directly
influences the livability of a residential quarter [12]. Given the growing interest in outdoor thermal
comfort and the well-being of urban residents, a number of studies have been conducted to investigate
the thermal comfort level of outdoor spaces of residential quarters in different climate regions [13–17].
Green vegetation has been proved to be a useful approach for improving the thermal environment
at the neighborhood scale by increasing latent heat fluxes through evapotranspiration and reducing
net heat storage though sheltering the direct solar radiation [18]. With the combination of building
sizes and layout in relation to different types and configuration of greenspace, a residential quarter
can develop diversified outdoor microenvironments [13,14]. Here, we conducted a study integrating
numerical modeling with in-situ measurements to explore the effects of greenspace on variation of
outdoor thermal environment of a typical high-rise residential quarter.

1.2. Context of Urban and Residential Development of Beijing

Beijing has undergone unprecedented urbanization over the last 30 years. The urban area of
Beijing expanded from 801 km2 in 1980 to 2452 km2 in 2010 with an average growth rate of 3.7% [19].
The population in Beijing increased sharply from 8.7 million in 1978 to 21.1 million in 2013 [20], and
the population is predicted to be well over 25 million by 2020. The ongoing urbanization in Beijing has
placed great pressure on the urban thermal environment [14]. Current UHI intensity in Beijing is as
high as 4 ◦C in summer [21].

In order to accommodate more people in the city, although controversy exists about the
environmental sustainability of high-rise buildings in terms of energy consumption and social
implication, this high-rise building development type has gradually become the mainstream for
residential construction in Beijing [22]. One of the major advantages of high-rise buildings is their
intensive use of urban land. High-rise buildings, especially high-rise tower buildings, have attracted
great attention from property developers due to their higher profits. With gradually relaxation of
housing policies since the Reform and Opening-up in 1978, especially after the abolition of the welfare
housing distribution policy in the mid-1990s, the real estate market experienced a rapid development
and a large number of high-rise buildings were built in Beijing [23]. A typical high-rise residential
quarter in Beijing accommodates 10,000–15,000 inhabitants. These residents, especially the children
and elderly, tend to spend a majority of their leisure time in the residential quarter. Some studies have
shown that the ageing population is among the most vulnerable group to heat waves and elevated
temperatures [24]. Thus, it is important to create a favorable microclimate for the sake of the residents’
health. However, the thermal conditions of a typical high-rise residential quarter in Beijing remain
largely untouched. A relevant study becomes imperative in the context of worsening of UHI effects
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and extreme climate events, which has been predicted to increase in number, duration, and frequency
with continuous global climate change [25].

To regulate the construction of high quality residential environments, related standards have
been released in recent years [26,27]. The current Chinese national norm specifies permitted minimum
greenspace ratios of 30% and 25% in newly constructed and reconstructed residential communities,
respectively. Furthermore, the norms also specify the general pattern of vegetation arrangement in the
form of public green areas or greenbelts mainly to satisfy the residents’ need for relaxing and social
activities [26].

The outdoor thermal environment is influenced by the building pattern that determines the
surface shadowed area and wind environment, and shading and evapotranspiration effects of
vegetation. After the construction completion, however, the improvement of microclimate is mainly
realized by greenspace management, such as tree canopy pruning and vegetation type selection.
For a particular residential quarter, greenspace management is a part of the services offered by the
property management company hired by the residents’ committee. Right management of greenspace
is beneficial to create and maintain favorable outdoor environment. In this study, with the help of
a microclimate model, we simulated the thermal environments in the selected residential quarter under
several greening modification scenarios to investigate how the greenspace management may impact
the surrounding microclimate.

1.3. Research Objectives

Considering the limited knowledge of integrated effects of vegetation on mitigating thermal
environment and the requirements on how to manage the greenspace to improve microclimatic
environment in the residential area, the objectives of this study were: (1) to compare the difference of
cooling potential among different greening modification strategies; (2) to understand the modification
of thermal environment and the variation of heat stress in summer season within a residential quarter
in Beijing associated with vegetation type and quantity. The modeling of the micro-environment of
a typical high-rise residential quarter would help evaluate quantitatively the general characteristic
of the thermal environment and provide suggestions on how to design more sustainable living
environment for urban residents.

2. The Study Area and Methodology

2.1. Selection of High-Rise Residential Quarter for Case Study

A typical high-rise residential quarter, known as Wangchunyuan (WCY) was selected for this
study. WCY consists of eight buildings with 26 stories (78 m) and five buildings with 14 stories (42 m)
(Figure 1). Inside the residential quarter, driveways were paved with asphalt, and sidewalks used
concrete and cobblestone as pavement materials. The green area ratio is approximately 40%, which
is above the average level of greenspace ratio for residential quarters in Beijing (Figure 2). There are
approximately 2760 households in this residential quarter. According to a random house survey,
the proportion of children (younger than 10 years old) and elderly (older than 60 years old) are 14%
and 16%, respectively.
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2.2. Microclimate Simulation Model

While empirical studies of the urban thermal environment have provided a growing
understanding of variation in microclimate due to urban development, their applicability is sometimes
limited because of the high complexity of urban environment. These limitations have then led to
the development of various numerical models [28], which greatly facilitate urban environmental
research [10].

In this study, the thermal environment of a residential quarter was studied with the help of
ENVI-met 3.1 [8,29]. ENVI-met 3.1 is a three-dimensional and non-hydrostatic prognostic numerical
model with computational fluid dynamics (CFD) as its core process. It can simulate the surface-plant-air
interactions with respect to shortwave radiation fluxes from the sun to artificial surfaces and vegetation,
longwave radiation from surfaces back to the sky and latent heat fluxes from vegetation into the
ambient air. ENVI-met has a spatial resolution of 0.5–10 m and a temporal resolution of 10 s, which is
suitable for microclimate studies on a neighborhood scale. ENVI-met has a large number of output
parameters, including meteorological parameters such as air temperature, surface temperature, relative
humidity, wind speed and direction, and thermal comfort indices such as mean radiant temperature
and predicted mean vote (PMV).

Although ENVI-met has been extensively employed to examine the thermal environment, it has
several limitations that must be noted: (1) the model does not take heat storage of building façades into
account in the energy balance, which could result in an underestimation of the surface temperature
of walls and ambient air temperature near the buildings; (2) it is not possible to create complicated
building geometries such as curved shapes and shading devices within the model [30]; (3) the model
does not incorporate the forcing of weather variables after initialization [10].

2.3. Simulation Preparation

The ENVI-met model requires two user-defined input files. The area input file is a 3-D representation
of the area of interest allowing the user to design the layout of buildings, vegetation, artificial surfaces
and soils. The configuration file contains meteorological parameters and surface properties for
initialization of the model and computation of energy exchange.

To represent the configuration of buildings and greenspace of WCY as precisely as possible,
we defined the area input file combining field measurements and high-resolution BaiduMap image.
We then produced 3-D area input files with 2 m and 5 m horizontal and vertical resolution, respectively,
with 235 × 235 × 25 grids for the whole modeled area. In addition to the WCY residential quarter area,
the surrounding buildings and vegetation were also included in the model to create a more realistic
environment. Furthermore, we added five nesting grids to each side of the model to increase the
stability of the simulation for elements close to the border of the study area.

To obtain WCY’s meteorological data, a HOBO U30 weather station (Onset Computer Corp.,
Bourne, MA, USA) was placed in an open space in the center of a pocket park in WCY with >10 m away
from surrounding trees and buildings. The HOBO U30 is an enhanced multi-sensor weather station.
It measured a wide range of weather parameters, including wind speed and direction, air temperature,
relative humidity, soil temperature and humidity at 2 m above ground level. These parameters are
required for the ENVI-met simulation.

UHI phenomenon should be viewed from a multi-scale perspective [31]. Scale is a fundamental
concept for understanding the ways by which urban surfaces interact with adjacent atmospheric
layers [32]. The meteorological conditions at any locality are controlled by large scale atmospheric
circulation and, at the same time, strongly influenced by the local environment, such as building
layout and vegetation arrangement. Interactions between the two scales are often present, and it
is difficult to distinguish which one is dominant [33]. Meteorological data collected on days with
high atmospheric stability is preferable because under this weather system, the local environment is
more likely to dominate the variation of meteorological conditions. Simulation results under stable
atmospheric conditions tend to be more accurate and reflect more details of characteristics of study area.
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11 August 2014 was selected for simulation because it has clear sky, weak winds and no precipitation
in 3 days, which favor the generation of UHI. Due to the intensive disturbance to near-surface air flow
caused by surrounding high-rise buildings and trees, the wind speed and direction observations at
2 m above ground were not actually representative of the local climate zone WCY is located in. We
therefore placed an anemograph on the top of a 26-story building (76 m) to collect wind data with little
disturbance from surrounding buildings and vegetation and then calculated the wind speed of the
10 m level according to the wind profile power law. We ran ENVI-met for a 24 h period, starting from
6:00, 11 August 2014. The main input parameters of the ENVI-met simulation are listed in Table 1.

Table 1. The main input parameters of the ENVI-met simulation.

Items User Input during Simulations

Simulation day 11 August 2014
Simulation time 24 h

Initial temperature 24.5 ◦C
Relative humidity 2 m aboveground 45%

Wind speed 1.5 m/s
Wind direction 220◦

Indoor temperature 19 ◦C
Heat transmission of walls/roofs 1.7/2.0 W/m2 respectively

Albedo of walls/roofs 0.3/0.4 respectively

In ENVI-met, the leaf area density (LAD) is an important variable related to multiple processes,
such as solar interception, evapotranspiration, wind dragging, and additional atmospheric turbulence
due to vegetation. LAD determines the size of the plant-atmospheric interfaces and thus plays a key
role in the exchange of energy and mass between vegetation and atmosphere [34]. The ENVI-met
model provided several inbuilt LAD profiles for different canopy structures. However, these LAD
profiles were based on only a few reference profiles and therefore are not applicable universally [29].
To obtain more accurate simulation results, we established our own LAD profiles of the biomass
of WCY.

Leaf area index (LAI) can be assessed directly by using harvesting methods or non-harvesting litter
traps during autumn’s leaf-fall period in deciduous forests. While the direct methods give the most
accurate results, they are destructive and time-consuming. Some indirect methods and instruments,
which are faster and amenable to automation, have been developed. After comparison of different
instruments used for LAI assessment, LAI-2000 and hemispherical cameras were proved to be the most
satisfactory methods [34]. The vegetation parameters required by ENVI-met for the WCY simulation
were collected on-site. We measured the LAI using a LAI-2000 plant canopy analyzer (LI-COR Inc.,
Lincoln, NE, USA) for major tree species. Then the LADs of specific tree species were calculated
according to the empirical LAD model provided by Lalic and Mihailovic [35]. Parameters required for
this model include tree height (h), the maximum value of LAD (Lm), and the corresponding height
with the maximum value of LAD (zm). Then, the calculated LADs were put in the ENVI-met plant
database for 3-D reconstruction of the tree canopy. Figure 3 represented a mono maple (Acer mono
Maxim) which is one of the most widespread deciduous trees planted in residential quarters in Beijing
and its LADs at different height levels.
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2.4. Development of Greening Modification Scenarios

Through the field survey in the selected residential quarters in Beijing, we found several reasons
caused the vegetation degradation. One of the main reasons is that the improper management of
the greenspace through communications and interactions with the residents or property manager
of these residential quarters. The improper management typically included irregular irrigation,
trampling without control, improper pruning, etc. The improper management problem is due to
many reasons such as poor operations of the property management company which is responsible for
the maintenance of greenspace, or the absence of greenspace management that often occurs in older
residential communities.

According to the current vegetation conditions of residential quarters of Beijing, we developed
four vegetation greening scenarios to understand the impacts of greening modifications on thermal
environment in WCY (Figure 2). Apart from the base case (CS—Current Situation scenario) based
on the existing greenspace configuration, the other three scenarios are: NV (No Vegetation scenario)
designed to represent the most extreme non-green case; OG (Only Grass scenario) replaced all existing
trees with grass; DL (Double LAD scenario) applied by doubling the LAD of existing trees to investigate
the transform of outdoor environment brought by proper vegetation management.

2.5. Model Validation

Variation of ambient air temperature (Ta) is controlled by different factors such as the thermal
properties of surrounding natural and artificial surfaces, ventilation conditions, and environmental
shading rate. It is reasonable to use Ta as a composite index to represent the thermal status of a specific
site. This study focused on the period in which people more likely to participate in outdoor activities.
We thus compared hourly Ta from 7:00 to 22:00 derived from meteorological station with mean
modeled Ta throughout the whole model environment. Both the observed and predicted temperature
peaked at 15:00 but with different rates of temperature change. The measured temperature increased
1.12 ◦C per hour during 6:00–15:00 and decreased 0.66 ◦C per hour after 15:00. Simulation results
showed a lower rate of change in both the warming-up (0.86 ◦C/h) and cooling-down periods
(−0.39 ◦C/h). Previous studies have reported that ENVI-met produced time-series temperatures
with lower variance [18,36], which could be explained by inaccuracies in simulation input for surface
thermos-physical properties and vegetation conditions.
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The root mean square error (RMSE), mean average error (MAE), mean bias error (MBE) and the
index of agreement (d) were calculated to evaluate the accuracy of the simulation results. According to
results (Figure 4), the RMSE is 1.05 ◦C and MAE, MBE are 0.95 ◦C and −0.49 ◦C respectively. The index
of agreement was 0.95, which indicates even with the lower variance and the underestimation of peak
daytime temperature, modeled Ta at 1.5 m above ground showed generally good agreement with
field measurements.
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2.6. Calculation of Universal Thermal Climate Index (UTCI)

After decades of development, thermal biometeorology has advanced considerably with the
development of heat budget models. Although these models are appropriate for use in any kind
of assessment of the thermal environment, none of them is accepted as a fundamental standard,
either by researchers or by end-users [37]. The International Society on Biometeorology recognized
the shortcomings in existing thermal indices and developed the Universal Thermal Climate Index
(UTCI) [38]. Blazejczyk et al. compared UTCI with several thermal indices including the heat index,
the wet-bulb globe temperature, the standard effective temperature, PMV and the physiological
equivalent temperature etc. based on datasets of global, regional and local scales. The results indicated
that UTCI represented specific climates, weather and locations much better, and depicted temporal
variability of thermal conditions better than the other indices [39].

According to the UTCI assessment scale provided by The Commission for Thermal Physiology of
the International Union of Physiological Sciences (Table 2), we analyzed the variations of area exposed
to different stress levels under four scenarios.

Table 2. UTCI range and corresponding thermal stress level.

UTCI (◦C) Range Stress Category Protective Measures

+9 to +26 No thermal stress Physiological thermoregulation is sufficient to maintain thermal comfort

+26 to +32 Moderate heat stress Drinking > 0.35 L/h of fluids is necessary

+32 to +38 Strong heat stress Drinking > 0.35 L/h of fluids is necessary. Staying in shaded places is
recommended. Periodically, a reduction in physical activity is recommended

+38 to +46 Very strong heat stress
Temporary use of air-conditioned rooms or staying or staying in shaded
places is periodically necessary. Drinking > 0.5 L/h is necessary.
Reduce physical activity

>46 Extreme heat stress Temporary body cooling is periodically necessary. Drinking > 0.5 L/h is
necessary. Avoid physical activity
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3. Results and Analysis

3.1. Effect of Vegetation on Air Temperature

We chose hourly averaged air temperature at 1.5 m above ground over the whole modeled area
to examine the thermal conditions under four greening modification scenarios. According to the
ENVI-met simulation results, the air temperatures of the base case were between 23.9 ◦C and 32.6 ◦C
during 8:00 to 20:00 with the peak temperature at 15:00. The base case was then compared with three
other scenarios over the same period of time. Figure 5 shows the variations of air temperatures at
1.5 m above ground of four scenarios (NV, OG, CS, and DL), which follow similar pattern of constantly
increasing from 8:00 to 15:00 and decreasing from 16:00 to 20:00. The scenario NV and scenario
OG showed higher temperatures over the whole course of the timeframe, and the air temperature
differences from the base case gradually increased from 8:00 onwards with the highest increasing of
temperature (1.49 ◦C and 0.72 ◦C, respectively) recorded at 20:00 (Figure 6). In term of the vegetation,
the results indicated that both grass and tree have the potential to reduce air temperature. Grass
lowers air temperature mainly through evapotranspiration, while tree lowers air temperature by
both evapotranspiration and sheltering solar irradiance from baking the area below the tree canopy.
The scenario DL displayed marginal decrease in air temperature (0.17 ◦C on average) compared with
the base case with the largest temperature decrease of 0.47 ◦C (Figure 6). When looking into particular
spatial positions, the scenario DL demonstrated noticeably different cooling rates, which can achieve
up to 2.4 ◦C right beneath the tree canopy, while the cooling power is negligible at positions outside
the canopy and exposed directly to solar radiation.

Standard deviation is a commonly used measure that quantifies the amount of variation or
dispersion of a set of data values. Higher standard deviation indicates that the data points are spread
out over a wider range. We used the spatial statistics tools in ArcGIS 9.3 (Esri Inc., Redlands, CA,
USA) to calculate the standard deviation of air temperature (SDT) of each grid in modeled area during
8:00–20:00 to understand the influences from vegetation on air temperature (Figure 7). Scenario NV
clearly showed higher SDT than other three scenarios. With the addition of vegetation, the area
with highest SDT (>3.5 ◦C) gradually decreased and disappeared in scenario CS and DL, while the
percentage of area with smallest SDT (<2.5 ◦C) expanded considerably from zero in scenario NV to
43%, 62% and 65% in scenario OG, CS and DL respectively. The results implied that in addition to
lower air temperature, vegetation could also lead to a more stable thermal environment with smaller
temperature variation.
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3.2. Effect of Vegetation on Thermal Sensation

We calculated UTCI using the outputs derived from ENVI-met to investigate the change of
outdoor thermal comfort status of whole WCY (Figure 8) from 8:00 to 20:00. The UTCI of the CS
(base case) varied from 19.87 ◦C to 45.58 ◦C, and scenario NV and OG showed 2.8 ◦C and 1.9 ◦C,
respectively higher on average than the base case (Figure 9). When compared the base case with
degradation scenarios on a grid level, the magnitude of cooling was notably larger than at the whole
modelled area scale due to the shading effects of trees, which can provide an approximately 10 ◦C
cooler thermal environment in contrast with the bare soil situation in scenario NV. Trees with denser
canopy can intercept more solar radiation and mitigate the thermal stress during summer daytime,
which is supported by our results that scenario DL was 0.67 ◦C cooler on average than the base case.
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From the base case, it is explicitly shown that almost the whole WCY was under thermal stress
of different levels from 9:00 to 19:00. Areas with no heat stress only exist at morning time in a small
proportion (19.2%) and after the sunset (approximately at 19:15). The results demonstrated that during
the summer day, people can only enjoy outdoor spaces of WCY before 9:00 and during the evening
hours after 19:00. Compared with the base case, the areas of scenario NV and OG that suffered from
strong thermal stress were reduced during 10:00 to 16:00, while the area exposed to more severe heat
stress level (very strong heat stress) showed a noticeable increase from 8:00 to 19:00, which indicated
that the outdoor thermal environment was deteriorating. For scenario NV, a small area of WCY even
experienced extreme thermal stress during the period of 14:00 to 16:00 (Figure 10). This illustrated
that the number of hours and area of the studied quarter that can be enjoyed by residents were
further reduced in the two degradation scenarios. Doubling trees LAD profiles resulted in a decrease
in area suffered from strong thermal stress and very strong thermal stress and an increase in area
under no thermal stress and moderate thermal stress, indicating tree played an important role in
mitigating thermal environment due to its denser canopy, which could shelter more solar radiation
from ground surfaces.
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4. Discussion

4.1. Issues about the Microclimate Modelling

Although there are still several limitations, such as underestimation of daytime air temperature,
ENVI-met produced accurate enough results to conduct an outdoor thermal environment evaluation.
The simulation process indicates that more attention needs to be paid to LAD, which is an important
parameter of vegetation for characterizing different vegetation types. The LAD profiles provided by
ENVI-met are, according to the developer of the model, “rather handmade and based on only a few
reference profiles”. Hence, the default vegetation information is not universally practical, especially
for regions with different climatic characteristics. A specific vegetation database should be built to
represent local vegetation by a vegetation survey rather than simply utilizing the data provided by
the model.

Even though ENVI-met has already considerably simplified the procedure of the simulation
of thermal environment compared with CFD, it is still time consuming and impractical for urban
planning. Simpler models or indices with reliable predictions of the thermal environment or wind
environment of interest area are required. Future work should pay more attention to the development
of the model and indices.
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4.2. Implications of Vegetation on Mitigating Microclimate

Previous studies have indicated that synoptic conditions have significant impact on the
development and characteristics of urban heat island, which is better developed under clear, calm
conditions [40,41]. One major adverse impact of urban heat island phenomenon is the increase of
human discomfort. In the current study, we selected a typical summer day to study the regulation
effect of greenspace on outdoor thermal environment. Four greening modification scenarios were
developed to investigate the cooling effect of the types and amounts of greenspaces. The average air
temperature of the four scenarios during the period of 8:00 to 20:00 were 31.2 ◦C, 30.4 ◦C, 30.0 ◦C
and 29.8 ◦C, respectively, with the maximum cooling power of 1.92 ◦C comparing scenario DL with
scenario NV. The results were consistent with many previous studies that indicated vegetation is
an important consideration for improving the outdoor thermal environment. Meanwhile, with the
increase of vegetation, the air temperature variation became smaller. The effects of vegetation on the
microclimate are mainly due to its shading effects that help ground surfaces absorb less radiation and
its evapotranspiration process that cools the ambient air [42]. In summary, increasing vegetation not
only led to a cooler environment but also helped to form a more stable meteorological condition that is
potentially beneficial to susceptible populations such as the elderly and children.

Trees are essential not only in reducing near-surface air temperatures in residential communities
but also in improving outdoor thermal comfort through providing shade for pedestrians. Trees with
dense canopy act as an umbrella that intercepts a large amount of solar energy from heating the ground
surface and keeping the space relatively comfortable in term of thermal perception. According to
the results, scenarios with trees (scenarios CS and DL) significantly reduced the area suffering from
very strong heat stress comparing with scenarios without trees (scenarios NV and OG). This implies
that trees behaved in a more advantageous way in contrast to bare soil and grass in mitigating local
thermal environment and providing relatively comfortable outdoor spaces. To offset the high cost of
planting and maintenance of trees, some constructors of residential quarters chose to plant more grass
to achieve the specified greening standards. However, the grass, apparently cannot replace the role
trees playing in improving the thermal environment.

It was found that more vegetation could result in a cooler environment and smaller air temperature
variations. However, it might not be the best choice to replace all greenspace with trees in term of
mitigating thermal environment. Open spaces covered with grass or sparse trees are also advisable
for recreational activities after sunset due to their higher cooling rate. The vegetation arrangement
deserve further investigation at the neighborhood scale.

Many previous studies focused on particular times of the day to analyze the thermal performance
of vegetation on studied area, while looking at the whole picture of thermal status from a continuous
period of time would be more meaningful to help residents to reasonably plan their time for outdoor
activities. As our results showed, though vegetation, especially trees, improved the thermal comfort
level in WCY, almost all the daytime experienced heat stress of various levels. Only some areas
experienced no heat stress before 9:00 and after 19:00. Actually, by appropriate protective measures,
moderate heat stress would cause no harm to people’s health, which provided residents more time
and spaces engaging in outdoor activities. It should be noted that 13:00–17:00 was the worst period
when more than 80% of outdoor spaces of WCY suffered from strong heat stress and very strong heat
for all four scenarios, and a reduction of physical activity is strongly suggested to lower risk of thermal
disorder. It is clear that only vegetation is not enough to obtain thermally comfortable conditions,
especially on summer days. Multiple mitigating strategies such as sheltering devices, water pools,
would be more helpful in beating the heat.

The present study focused on high-rise residential quarter due to this development type is the
mainstream for residential construction. Meanwhile, a large number of middle-rise and low-rise
neighborhoods exist in Beijing. Stewart and Oke developed a classification system named “Local
Climate Zones-LCZs” to address the inconsistency of methods and communications in heat island
studies [43]. The classification divides urban and rural landscapes into 17 standard classes, with each
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characterized by unique surface structure (building/tree height and spacing), land cover characteristics
(impervious fraction, pavement albedo and thermal admittance) [44]. Several studies have analyzed
the microclimate of different LCZs by green modification and confirmed the vegetation, especially
trees, could moderate microclimate and improve thermal comfort level [10,17,45–47]. For example,
Middel et al. simulated nine combined tree planting and landscaping scenarios at a low-rise
neighborhood using ENVI-met and the results showed that the relationship between percent canopy
cover and air temperature reduction was linear, with an increase in tree canopy cover from 10% to 25%
resulting in an average daytime cooling rate of 2.0 ◦C [46]. With the increase of height and density,
buildings have a strong influence on the near surface thermal environment by casting shadows and
surface roughness modification [48]. This cooling rate is apparently higher than our results, which
might partly due to the local climatic characteristics, and the other reason might be stronger control
effect of higher buildings over the microclimate. That means the same amount of greenspace might
exert different cooling effect in different LCZs. More studies should be conducted to explore the
cooling power of greenspace under various building environment.

The code for planning and design on urban residential areas was initially implemented in February
1994 and undergone partial modification in 2002. With the rapid development of the economy
and the considerable the improvement of living standards in China, residents’ requirements for
the residential environment are raising. The amelioration of the outdoor thermal environment is
one aspect of environment improvement. However, the code only sets out several rules on greenspace
type and greening rate. There is no items involving vegetation type and vegetation configuration.
Some residential quarters which are up to the greening rate standard of this code have only scattered
trees and the major part of the land was planted with grass. Our research demonstrated the importance
of trees and their maintenance on the mitigation of thermal environment, which should be paid more
attention in greenspace management in residential area.

5. Conclusions

This paper reports the results of microclimatic modelling of the effects of different greening
modification scenarios on ambient air temperature and outdoor thermal comfort level in a typical
residential quarter of a typical summertime day in Beijing, China. The results displayed that the
combination of grass and tree can lead to a maximum reduction of approximately 2 ◦C in air
temperature compared with scenarios of no vegetation. Trees play an important role in improving the
outdoor comfort level due to their shading effects protecting people from being directly exposed in solar
radiation. In consideration of the deficiencies of the current code for urban residential areas planning
and design, we hope the results reported here will help to promote the improvement of greenspace
management regulations. Also, it has implications for greenspace maintenance, highlighting the
potential benefits provided by vegetation in good condition. Moreover, though high-rise buildings are
considered as environmentally sustainable due to their intensive usage of land, vegetation is proved to
be an indispensable part in mitigating the near-surface thermal environment, especially during heat
wave periods.
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