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Abstract: Background: Although studies from many countries have estimated the impact of ambient
temperature on mortality, few have compared the relative impacts of heat and cold on health,
especially in basin climate cities. We aimed to quantify the impact of ambient temperature on
mortality, and to compare the contributions of heat and cold in a large basin climate city, i.e., Chengdu
(Sichuan Province, China); Methods: We estimated the temperature-mortality association with a
distributed lag non-linear model (DLNM) with a maximum lag-time of 21 days while controlling
for long time trends and day of week. We calculated the mortality risk attributable to heat and cold,
which were defined as temperatures above and below an “optimum temperature” that corresponded
to the point of minimum mortality. In addition, we explored effects of individual characteristics;
Results: The analysis provides estimates of the overall mortality burden attributable to temperature,
and then computes the components attributable to heat and cold. Overall, the total fraction of
deaths caused by both heat and cold was 10.93% (95%CI: 7.99%–13.65%). Taken separately, cold
was responsible for most of the burden (estimate 9.96%, 95%CI: 6.90%–12.81%), while the fraction
attributable to heat was relatively small (estimate 0.97%, 95%CI: 0.46%–2.35%). The attributable risk
(AR) of respiratory diseases was higher (19.69%, 95%CI: 14.45%–24.24%) than that of cardiovascular
diseases (11.40%, 95%CI: 6.29%–16.01%); Conclusions: In Chengdu, temperature was responsible
for a substantial fraction of deaths, with cold responsible for a higher proportion of deaths than
heat. Respiratory diseases exert a larger effect on death than other diseases especially on cold days.
There is potential to reduce respiratory-associated mortality especially among the aged population
in basin climate cities when the temperature deviates beneath the optimum. The result may help to
comprehensively assess the impact of ambient temperature in basin cities, and further facilitate an
appropriate estimate of the health consequences of various climate-change scenarios.
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1. Introduction

The association between ambient temperature and mortality has been demonstrated in many
parts of the world [1]. Due to global climate change, the characteristics of extreme weather events have
changed substantially during the past several decades, with an increase in the frequency, duration,
and intensity of heat waves but a decrease in the frequency, duration, and intensity of cold waves [2,3].
Given this trend, there is much concern about the health impact of heat. Many previous studies have
investigated the associations between heat and mortality in the United States, Europe, and China.
For example, a study of 15 European cities found that an increase of 3.12% in the Mediterranean
region and 1.84% in the north-continental region in all-cause mortality was associated with a 1 ◦C
increase in the maximum temperature above the city-specific thresholds [4]. Heat-related mortality,
however, may be contingent upon designated characteristics. For example, some studies have found
that the cities with lower annual mean temperatures have greater heat-related mortality [5,6]. Such
a finding suggests geographic variability in excess mortality attributable to high temperature [7].
For the most part, however, studies on the relationship between climate and mortality have been
conducted in affluent western countries, and the question is whether findings from them extend to
China, the most populous country in the world. The recent literature suggests that such findings often
are not applicable to China [8].

Concerning the effect of extremes in whether events on mortality, this relationship has also been
examined in a large number of studies [9]. Consistent with the upsurge in scholarly and media
attention, they mainly have focused on heat waves to demonstrate the effect of global warming [10].
Fewer studies have examined the health effect of cold spells [11], and, accordingly, cold has drawn
less attention than heat as a health hazard [12]. A study on the global association of cold spells and
adverse health effects, however, has indicated that cold spells are associated with increased mortality
from all or all non-accidental causes, cardiovascular diseases and respiratory diseases [13]. Another
study reported that there is an association between cold temperatures and mortality from cancer,
which is most marked among the elderly [14]. Fewer studies have been conducted on the effects of
cold than the effects of heat, but those studies that have been conducted indicate that cold exerts
the greater effect on mortality [15]. Recent epidemiological studies show that mortality caused by
cold temperature is comparable to that caused by the severest heat temperature [16]. Although a
few studies conducted in China reported the effect of the 2008 cold spell on health [17], the effects of
cold in China afterward constitutes an issue that, in relation to its possible impact on the population,
remains under-investigated.

Existing studies have provided estimates of mortality attributable to either heat or cold, but a
question that remains largely unexplored is the simultaneous assessment of the effects of both heat and
cold and the relative effects of each one on human health, especially in basin climate cities. Previous
studies found that some people susceptible to heat effects are those with advanced forms of illness
who may be expected to die anyway within a short period [18,19], while cold effects were mostly
positively sustained and more evenly distributed across the several weeks [18]. The relationship
between temperature and mortality has been viewed as U-shaped [20], with increased risks for extreme
heat and cold temperatures. When heat or cold temperature last for a few days or more there may
be additional risks because of the extra impact on body’s systems [1]. In view of the evidence that
extremes in both cold and heat affect health, the issue becomes more generally to characterize with
some exactitude the relationship between temperature and mortality.

Chengdu, as the largest city with a very large population in Southwest China, may greatly benefit
from a comprehensive understanding of health effect of temperatures. Chengdu is located in the
Sichuan basin, and the overall topography of the region is complicated, with particular and various
microclimates. There are sharp downslope winds from the mountain summits to the basin beneath,
with vortex type wind fields in the middle of basin, and the overall pattern produces an accumulation
of moisture in the basin [21]. On cloudy days, atmospheric stratification of the Sichuan basin mainly is
neutral, with an annual average ratio of about 60% and little change with the seasons. There is primarily
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radiation inversion in each season in the basin. The temperature inversion frequency is highest in
winter (above 40%) [22,23]. This may lead a different impact of ambient temperature on health. New
evidence is needed to implement accurate interventions in vulnerable regions and populations.

Our aim in this paper was thus to investigate the contributions of ambient temperature, specifically
cold as well as heat, on mortality and to sort out the effects of each specifically in a large basin area
of China. The result may help to comprehensively assess the impact of ambient temperature in
the basin city, and further facilitate an appropriate estimate of the health consequences of various
climate-change scenarios.

2. Materials and Methods

The study population comprised all residents in Chengdu, which is in a basin area and, with
a population of 14.65 million, is the largest city in the southwestern province of Sichuan (see
Figures 1 and 2). The surface area of Chengdu is 14,605 square kilometers. The study region consisted
of ten districts, four county-level cities and five counties.
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2.1. Data

We obtained daily records of deaths for Chengdu City in China between 1 January 2011 and
31 December 2014. The death surveillance stations from Sichuan Center for Disease Control and
Prevention provide coverage of all 19 districts. Death records indicated the date of death, the cause
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of death coded by the International Classification of Diseases 10th (ICD10) revision. Among the
276,024 non-accidental deaths (NAD) in Chengdu (2011–2014), 85,087 (30.8%) died of cardiovascular
diseases and 70,960 (25.7%) died of respiratory diseases.

The two meteorological monitoring stations in the suburban areas belong to China Meteorological
Data Sharing Service System and provided daily meteorological data, including mean temperature,
relative humidity, pressure, and wind speed for this project.

To adjust potential confounding effects of air pollutants, we obtained daily air pollution data
for 2011–2014 from the 12 monitoring stations of the Sichuan Environment Monitoring Center.
The air pollution data included 24-h average values of ambient PM10, NO2, and SO2. The complete
daily average value alignment was obtained through imputation of missing data on the basis of
linear interpolation.

2.2. Analysis of Temperature-Mortality Relationship

2.2.1. DLNM

We estimated the relationship between daily mortality and ambient temperature. As daily
mortality counts generally follow an overdispersed Poisson distribution, we used a distribution lag
model with a quasi-Poisson regression to evaluate the health effect of heat and cold while adjusting for
the temperature at different lag days. We controlled for long time trends and day of week. The model
used the following formula:

Ln[E(Yt|X )] = α + cb(Temperature, lag) + ns(Timet, 7) + DOWt (1)

where t refers to the day of the observation; E(Yt|X) denotes estimated daily NAD on day t; α is
the intercept; ns() denotes the cubic smoothing spline; cb(Temperature, lag) is a matrix obtained by
applying to temperature; lag refers to the maximum lag days; Timet is the day of calendar time on day
t, with 7 degrees of freedom (DF) per year; DOWt is the day of the week on day t. The model was
fitted using a quadratic spline with two equally spaced knots for temperature and a natural spline with
an intercept and three internal knots placed at equally spaced values in the log scale. We extended
the lag period to 21 days [24] to include the long delay of effects of cold and to exclude deaths that
were advanced by only a few days (harvesting effect). The relationship between temperature and
mortality was summarized as the exposure-response curve of relative risk (RR) accumulated across all
lags. The Akaike Information Criterion for quasi-Poisson (Q-AIC) values was used for choice of the
DF. We tested these modelling choices in sensitivity analysis.

2.2.2. Attributable Risk from DLNMs

Attributable fraction (AF), which takes into account cold-risk but also the number of days on
which that risk is observed, is the most useful indicator of cold-related health burdens. The number of
deaths on each day of the series attributable to ambient temperature was computed, using as reference
and cut-off the Minimum Mortality Temperature [24], which is the value of temperature at which
mortality risk is the lowest. We used a backward perspective, assuming the risk at time t as attributable
to a series of exposure events in the past [25].

We conducted a stratified analysis by sex and age and tested for statistically important differences
between effect estimates of the strata of a potential effect modifier by calculating the 95% confidence
interval as shown below:

(Q̂1 − Q̂2)± 1.96
√

ŜE
2
1 + ŜE

2
2 (2)

where Q̂1 and Q̂2 are the estimates for the two categories, and ŜE1 and ŜE2 are their respective stand
errors. Regardless of significance, we considered modification of effect by a factor or two to be
important and worthy of attention [26].



Int. J. Environ. Res. Public Health 2016, 13, 1225 5 of 12

2.2.3. Separating Attributable Components

The minimum mortality temperature (MMT), which corresponds to a minimum mortality
percentile across the entire temperature spectrum, was derived from the prediction of the overall
cumulative exposure-response association. We referred to this value as the optimum temperature,
and deemed it the reference for calculating the attributable risk. For each day of series, we used the
overall cumulative RR corresponding to each day′s temperature to calculate the attributable deaths
and fraction of attributable deaths in the next 21 days, using the method described previously in
Gasparrini’s study [25]. According to the range r1 = (tempmin, tempoptimum), we derived the attributable
risk of cold. Also, the attributable risk of heat could be derived from the range r2 = (tempoptimum,
tempmax). We further separated the temperature range into moderate and extreme contributions
by defining extreme cold and heat as temperatures lower than the 2.5th location specific percentile
(extreme cold) and higher than the 97.5th location-specific percentile (extreme heat). Temperatures from
the 2.5th percentile to the MMT and temperatures from the MMT to the 97.5th percentile are defined
as the moderate cold and heat. And then we calculated the attribution fractions of every component.

2.2.4. Computing Uncertainty Intervals

An analytical formula for confidence intervals of attributable risk measures is not easily produced.
Although approximated estimators have been proposed, the most straightforward approach is to rely
on the interval estimation obtained empirically through Monte Carlo simulations [27]. We obtained
50,000 random samples from the assumed normal distribution, and interpreted the related 2.5th and
97.5th percentiles of such distributions as 95% confidence intervals (CI).

2.3. Sensitivity Analysis

A series of sensitivity analysis was performed to test the robustness of our results. We changed
different degrees of freedom for each year and adjusted the main pollutants and meteorological data
in the model. All analyses were conducted with R software (version 3.2.5; R Foundation for Statistical
Computing, Vienna, Austria, 2016) using the package “dlnm”.

3. Results

Data of weather conditions, death counts and individual characteristics in Chengdu from 1 January
2011 to 31 December 2014 are summarized in Table 1.

Table 1. Statistics of weather conditions and count of deaths in Chengdu, 2011–2014. NAD =
non-accidental deaths.

Variables Mean ± SD Min P25 P50 P75 Max

Meteorological Factors
Temperature (◦C) 16.2 ± 7.6 −0.3 9.3 17.3 22.8 29.4
Relative humidity (%) 74.8 ± 8.9 33.5 69.0 76.0 81.1 92.5
Pressure (hpa) 942.5 ± 7.2 925.2 936.4 942.7 948.2 963.8
Wind speed (m/s) 1.1 ± 0.4 0.2 0.8 1.0 1.3 3.0

NAD 188.9 ± 34.8 110.0 165.0 183.0 209.0 318.0
Cardiovascular 58.24 ± 13.7 21.0 49.0 56.0 67.0 118.0
Respiratory 48.6 ± 16.2 16.0 37.0 44.0 58.0 109.0

Sex
Male 110.7 ± 21.1 61.0 96.0 107.0 123.0 191.0
Female 78.23 ± 16.8 36.0 66.0 76.0 88.0 150.0

Age
Age (0–64) 89.9 ± 14.3 51.0 80.0 89.0 98.0 139.0
Age (65+) 99.0 ± 24.1 47.0 82.0 95.0 113.0 198.0
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From 2011 to 2014, a total of 276,024 NAD were recorded. The two main causes of NAD,
cardiovascular disease and respiratory disease, accounted for 85,087 and 70,960, respectively.
On average, there were 188.9 daily NAD, 58.6% of which were male and 52.4% of which were older
people. The average temperature was 16.2 ◦C, with ranges of from −0.3 ◦C to 29.4 ◦C. Figure 3 shows
the overall distribution of temperatures and the cumulative association between temperature and
mortality in our data. The overall cumulative association traced a fall J-shape curve. RR on cold days
were relatively high, while RR were close to 1 on hot days. Moreover, most of the RR on hot days
are not statistically significant. The temperature distributions show that the cold temperature range,
although characterized by a high RR, consisted of only a small proportion of days. The minimum
mortality percentile ranges were at about the 62nd percentile and the minimum mortality temperature
was 20 ◦C. Risk increased slowly and linearly for cold temperatures between the minimum mortality
temperature and the 5th percentile of the temperature. Below the 5th percentile of the temperature,
which we called extreme cold days, risk increased exponentially.
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Figure 3. Overall cumulative exposure-response association in Chengdu City. The blue part of the
curve is the exposure-response association (with 95% empirical confidence interval, shaded grey) of
cold, and the red one presents the heat. The dotted line is minimum mortality temperature and the
dashed lines are the 2.5th and 97.5th percentile. RR represents as the relative risk.

Table 2 shows the estimated attribution fraction calculated as total and as separated components
caused by heat and cold temperatures. Overall, the total fraction of deaths caused by both heat and
cold was 10.93% (95%CI: 7.99%–13.65%). Taken separately, the effect of cold was significant and was
responsible for most of the burden (estimate 9.96%, 95%CI: 6.90%–12.81%) and, in contrast, the effect
of heat was small and non-significant (estimate 0.97%, 95%CI: 0.46%–2.35%).
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Table 2. Attributable mortality by disease causes, sex and age.

Group Minimum Mortality Percentile Total Cold Heat

NAD 62nd 10.93%
(7.99%–13.65%)

9.96%
(6.90%–12.81%)

0.97%
(−0.45%–2.35%)

Cir. 72nd 12.09%
(7.12%–16.48%)

11.40%
(6.29%–16.01%)

0.69%
(−1.69%–2.89%)

Res. 58th 19.69%
(14.45%–24.24%)

16.17%
(10.65%–21.02%)

3.53%
(1.29%–5.59%)

Male 72nd 10.29%
(6.56%–13.70%)

10.07%
(6.22%–13.65%)

0.22%
(−1.65%–1.99%)

Female 58th 11.78%
(7.45%–15.69%)

9.77%
(5.25%–13.80%)

2.02%
(−0.01%–3.92%)

Age 0–64 100th 8.21%
(4.14%–11.89%)

7.66%
(3.45%–11.52%)

0.56%
(−1.48%–2.47%)

Age 65+ 68th 13.50%
(9.69%–16.99%)

12.13%
(8.10%–15.82%)

1.37%
(−0.43%–3.09%)

Attributable mortality was computed as total and as separate components for heat and cold. The minimum
mortality percentile, which corresponds to a minimum mortality temperature among the whole temperatures,
was derived from the prediction of the overall cumulative exposure-response association. Age 0–64 group has a
100th minimum mortality percentile, because the tail of the curve towards to low which is different from others.

Figure 4 shows the attributable fraction of cold in different groups. Respiratory diseases have
a higher AF (19.69%, 95%CI: 14.45%–24.24%) than that of cardiovascular diseases (11.40%, 95%CI:
6.29%–16.01%). People aged above 65 have a higher AF (12.13%, 95%CI: 8.10%–15.82%) than that of
people aged 0–64 (7.66%, 95%CI: 3.45%–11.52%). Male and female showed no significant difference
(95%CI: −5.35, 5.96).

Int. J. Environ. Res. Public Health 2016, 13, 1225 7 of 12 

 

Res. 58th 
19.69% 

(14.45%–24.24%) 
16.17% 

(10.65%–21.02%) 
3.53% 

(1.29%–5.59%) 

Male 72nd 
10.29% 

(6.56%–13.70%) 
10.07% 

(6.22%–13.65%) 
0.22% 

(−1.65%–1.99%) 

Female 58th 
11.78% 

(7.45%–15.69%) 
9.77% 

(5.25%–13.80%) 
2.02% 

(−0.01%–3.92%) 

Age 0–64 100th 
8.21% 

(4.14%–11.89%) 
7.66% 

(3.45%–11.52%) 
0.56% 

(−1.48%–2.47%) 

Age 65+ 68th 
13.50% 

(9.69%–16.99%) 
12.13% 

(8.10%–15.82%) 
1.37% 

(−0.43%–3.09%) 
Attributable mortality was computed as total and as separate components for heat and cold. The 
minimum mortality percentile, which corresponds to a minimum mortality temperature among the 
whole temperatures, was derived from the prediction of the overall cumulative exposure-response 
association. Age 0–64 group has a 100th minimum mortality percentile, because the tail of the curve 
towards to low which is different from others. 

Figure 4 shows the attributable fraction of cold in different groups. Respiratory diseases have a 
higher AF (19.69%, 95%CI: 14.45%–24.24%) than that of cardiovascular diseases (11.40%, 95%CI: 
6.29%–16.01%). People aged above 65 have a higher AF (12.13%, 95%CI: 8.10%–15.82%) than that of 
people aged 0–64 (7.66%, 95%CI: 3.45%–11.52%). Male and female showed no significant difference 
(95%CI: −5.35, 5.96). 

 

Figure 4. Attributable fraction of cold for different disease causes, sex and age group.  
NAD = non-accidental disease, cir. = cardiovascular disease, res. = respiratory disease. 

Changing the degrees of freedom for time trends yielded similar results. Also, we obtained 
similar results before and after adding the pollutants and meteorological data to the model (see 
Appendix A). 

The attributable risk can be separated into components related to moderate and extreme 
temperatures (Figure 5). Extreme temperatures were responsible for a small fraction (2.39%, 95%CI: 
0.35%–4.13%), while the moderate temperatures were responsible for most of the temperature-related 
deaths (8.54%, 95%CI: 5.87%–11.32%). 
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disease, cir. = cardiovascular disease, res. = respiratory disease.

Changing the degrees of freedom for time trends yielded similar results. Also, we obtained similar
results before and after adding the pollutants and meteorological data to the model (see Appendix A).
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The attributable risk can be separated into components related to moderate and extreme
temperatures (Figure 5). Extreme temperatures were responsible for a small fraction (2.39%, 95%CI:
0.35%–4.13%), while the moderate temperatures were responsible for most of the temperature-related
deaths (8.54%, 95%CI: 5.87%–11.32%).Int. J. Environ. Res. Public Health 2016, 13, 1225 8 of 12 
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4. Discussion

Both high and low temperatures affect health in the large Chinese basin city of Chengdu.
Although associations between ambient temperature and mortality have been documented in many
countries [28], the comparison of heat and cold impact on human health remains limited, particularly in
basin climate cities. To our knowledge, this is the first study comparing the mortality risk attributable
to cold and heat temperature in China. Also, Chengdu is in a well-defined basin surrounded by
mountains (Figure 2), which leads to the stalling of weather and its localization. It is a strategic for the
study of effects of weather on health in basin cities.

Our findings show that far more of the mortality burden was caused by days colder than the
optimum temperature (9.96%) compared with days warmer than the optimum temperature (0.98%).
Furthermore, most deaths were caused by exposure to moderately hot and cold temperatures, which
may result from the predominately high proportion of moderately hot and cold temperatures. This
reflects other findings in the literature. Keatinge and Donaldson found that cold-related deaths are far
more numerous than heat-related deaths in the United States, Europe, and almost all countries outside
the tropics, and almost all of them are due to common illnesses that are aggravated by cold weather [29].
There is a mortality attributable to cold days which has been reported by many studies [13]; a finding
in studies conducted in different places around the world [24] showed that temperature-attributable
deaths caused by cold is 7.29% and by heat is 0.42%, i.e., twenty times higher. Similarly, a study
conducted in Spain reported the effect of cold is five times greater than that of heat [30]. Though some
families use the heating system in winter, the temperature difference between indoor and outdoor is
large enough to threaten human health. Studies have evaluated mortality deviations from a base level
as temperatures rose and fell by 0.1 ◦C increments in north Finland, south Finland, southwest Germany,
The Netherlands, Greater London, north Italy, Athens and Greece, in people aged 65–74, finding that all
regions showed more annual cold-related mortality than heat-related mortality [5]. Still another study
found cold effects for the association of air temperature with cardiovascular and respiratory mortality.
Regarding cold spell effects, a 5 ◦C decrease of the 15-day average temperature was associated with an
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RR of 1.036 (95% CI: 1.001–1.071) for cardiovascular mortality [31]. Evidence of this nature indicates
that especially moderate low temperatures may impose more risk than high temperatures.

Figure 4 shows the attributable risk of cold. Why may cold exert a greater effect on respiratory
mortality than cardiovascular mortality? Cold weather may serve to stimulate the respiratory system,
which in turn may deplete and weaken the body’s resistance [32]. Other factors attributable to cold
weather may be implicated as well. A previous study in Spain reported that, in contrast to heat, cold
was indeed observed to have an effect on mortality associated with low temperatures in the youngest
age groups [30]. However, we found a different result in our study area, that old people took more
mortality burden in cold days. Especially when cold weather is extreme, the difference between indoor
and outdoor temperatures becomes more pronounced, and people shut windows and thereby close
off ventilation. Consistent with the sharp increase in mortality among the elderly in cold weather,
thermoregulatory capacity decreases with age, and consequently increases the capacity of the upper
respiratory tract to cool and mucosal membrane to dry [33]. In sensitive individuals, drying of the
mucosa may lead to epithelial damage [34].

The correlation between cold conditions and smog is not as strong in Chengdu as cities further
north. Some countries had highest effect estimates in moderate seasons, while others had highest effect
estimates in cold seasons or hot seasons. While due to climate change, the balance of heat and cold
related ill-health is likely to change over time [35]. On the one hand, the winter excess mortality is
changing over time but, on the other, indoor heating can relieve the threat of cold in a certain degree.
A recent study suggests that, although unstable weather is a continuous process, impacts on health
may be better captured by considering the temperature variability when assessing the associations
between temperature and human health [36]. Only time will reveal exactly how climate change-related
shifts in temperature distributions will affect mortality trends.

Several limitations of this study should be mentioned. Firstly, we only focused on a single city.
Further study using data from other basin cities is necessary to ascertain this study’s generalizability.
Secondly, influenza and other morbidity conditions may fluctuate seasonally and independently of
ambient temperature. Data on these conditions, however, were not available for this study. Thirdly,
as with similar time-series studies, we used ambient temperature from meteorological stations to
represent personal temperature exposure, which may lead exposure measurement errors. However,
these errors are likely to be random and may result in an underestimation of the cold effect [37].
Fourthly, further research is needed to clarify how much of the excess mortality related to each
component is preventable. Additionally, the estimated effects of temperature in the cold season can
still be confounded by season if long lags are assumed [38].

5. Conclusions

We identified a substantial effect of ambient temperature on mortality in Chengdu. Cold was
responsible for a higher proportion of deaths than heat, although a growing trend in public health
research is to focus on heat waves, and, correspondingly, recent policies and interventions that have
been aimed to reduce the impact of heat waves. We do not argue with this allocation of resources, but,
rather, suggest that, in accordance with our results, they should be extended and readjusted to the
whole range of temperature dependent effects, especially cold days in basin areas. The result may help
to comprehensively assess the impact of ambient temperature in basin cities, and further facilitate an
appropriate estimate of the health consequences of various climate-change scenarios.
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Appendix A

Data of air pollution from 1 January 2011 to 31 December 2014 in Chengdu is summarized in
Table A1.

Table A1. Statistics of air pollution in Chengdu, 2011–2014.

Air Pollutant Mean ± SD Min P25 P50 P75 Max

PM10 122.7 ± 76.3 16.0 72.0 104.0 150.0 862.0
SO2 28.4 ± 14.6 5.0 18.0 25.0 35.0 96.0
NO2 55.7 ± 19.2 15.0 42.0 52.0 66.0 144.0

To test the robustness of the models, we performed a sensitivity analyses by varying DF for time
trends per year. Furthermore, pollutants and meteorological data were added to the model. Changing
the degrees of freedom for time trends yielded similar results. Also, we obtained similar results before
and after adding the pollutants and meteorological data to the model (Figure A1).
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