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Abstract: Outbreaks of infectious diseases or multi-casualty incidents have the potential to generate a
large number of patients. It is a challenge for the healthcare system when demand for care suddenly
surges. Traditionally, valuation of heath care spatial accessibility was based on static supply and
demand information. In this study, we proposed an optimal model with the three-step floating
catchment area (3SFCA) to account for the supply to minimize variability in spatial accessibility. We
used empirical dengue fever outbreak data in Tainan City, Taiwan in 2015 to demonstrate the dynamic
change in spatial accessibility based on the epidemic trend. The x and y coordinates of dengue-infected
patients with precision loss were provided publicly by the Tainan City government, and were used
as our model’s demand. The spatial accessibility of heath care during the dengue outbreak from
August to October 2015 was analyzed spatially and temporally by producing accessibility maps, and
conducting capacity change analysis. This study also utilized the particle swarm optimization (PSO)
model to decrease the spatial variation in accessibility and shortage areas of healthcare resources
as the epidemic went on. The proposed method in this study can help decision makers reallocate
healthcare resources spatially when the ratios of demand and supply surge too quickly and form
clusters in some locations.

Keywords: floating catchment area; particle swarm optimization

1. Introduction

Dengue fever is the most serious arboviral disease, and has become a major health problem
in most tropical countries in recent decades [1]. A recent estimate indicates that 390 million people
annually have dengue infections, in which 96 million cases have clinical manifestations [2]. In Taiwan,
the number of confirmed cases in 2015 reached a record high of 43,784 as reported by the Taiwan
Centers for Disease Control (CDC) [3]. Among these cases, there were 22,777 cases in Tainan city,
which is located in southern Taiwan. The demand for resources during the dengue outbreak in Tainan
exceeded the capacity of individual health facilities. Thus, the management of hospital resources,
including beds, equipment, and clinical manpower, and so on [4], in the existing hospital networks has
become a significant issue [5].

For dengue infection, health facilities, such as clinics and hospitals, provide appropriate clinical
management to avert patients’ severe outcomes and also provide either isolation wards or mosquito
nets to reduce the chance of subsequent transmission [6]. Therefore, the effective use of health facilities
will be critical for dengue prevention and treatment. To ensure adequate access to healthcare, policy
makers of health departments need an accurate and reliable measure of accessibility so that areas
with limited resources can be identified. Accessibility of healthcare can be classified according to
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two dimensions (potential versus revealed, and spatial versus aspatial) into four categories: potential
spatial accessibility, potential aspatial accessibility, revealed spatial accessibility, and revealed aspatial
accessibility [7].

Traditionally, hospital resources are modeled according to non-spatial factors, such as patient flow,
patient needs, patient length of stay, and so on [4,8]. However, the pattern of locations of infection
cases shows spatial clustering. To further improve the effective use of hospital resources from a spatial
perspective, the potential spatial accessibility is considered in this research. Potential accessibility
focuses on estimating the probability of entering the healthcare system, while spatial accessibility
emphasizes the importance of the fact that spatial distance can influence the probability of entering the
healthcare system.

Spatial accessibility is determined by the spatial distribution between supply and demand.
The two-step floating catchment area (2SFCA) is a popular method [9] for measuring the spatial
accessibility of health facilities [10–12]. It is a two-step process to compute the supply-to-demand ratio
within a catchment area around each demand location. To improve the equal access within a catchment
in the 2SFCA, a stepwise decaying of accessibility within each catchment is introduced in the enhanced
2SFCA (E2SFCA) method [13]. Furthermore, the stepwise decay is improved to a continuous function
by involving a kernel density [14] or a Gaussian function [15]. However, the limitation of the 2SFCA is
the overestimation effect when there are more supply locations within a catchment area. The three-step
floating catchment area (3SFCA) method is proposed to introduce competition among supply locations.
It assumes that probable demand is influenced by the availability of other nearby supply locations [16].

Many simulation methods and tools for hospital resources management are evaluated at the
level of the individual health facility [8–11]. However, a challenge may be posed to the provision of
healthcare when there is a sudden surge in demand, such as in the case of a multi-casualty incident or
the outbreak of an infectious disease. The integration and allocation of hospitals’ resources in a region
is thus important. In this study, the modeling of resource management among the health facilities
network is conducted in order to find out the bed requirement of each hospital during an epidemic
event. This work aims to develop a dynamic spatial accessibility model through the simulation of the
healthcare resources. For the optimal spatial accessibility distribution, this study integrates particle
swarm optimization (PSO) and 3SFCA to minimize the spatial variability of accessibility for preventing
the shortage problem in local areas.

2. Materials and Methods

2.1. 3SFCA

The 2SFCA method evaluates the spatial access to healthcare in two steps. First, for each supply
location j, it searches for all demand locations k that are within a threshold travel distance (d0).
The supply-to-demand ratio for a service site (Rj) is calculated as:

Rj =
Sj

∑k∈{dkj≤d0} Dk
(1)

where Sj is the supply at service site j and Dk is the patient size/demand at location k which is within
the catchment of service site j. The threshold distance (d0) is used to define the catchment size. d0 within
the catchment area are 4.5 km and 3.5 km for academic and regional hospitals. This is determined
based on coverage of over 90% of patient points during the outbreak period.

The accessibility of a location is the summation of the supply-to-demand ratios of all the service
sites within the catchment. For each demand location i, search all supply locations j that are within a
threshold travel distance (d0) in location i. Ai is the spatial accessibility at location i:

Ai = ∑
j∈{dij≤d0}

Rj (2)
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In this study, the supply is the number of beds and the demand is the number of patients with
dengue infection. In the 3SFCA, this equation integrates the capacity and distance effect with the FCA
method to articulate patient selection of services [17].

Rj =
Sj

∑k∈{dkj≤d0} ProbkjDkWkj
(3)

Probkj =
CjWkj

∑j∈{dkj≤d0} CjWkj
(4)

where Probkj is the probability of patient at location k visiting service site j. Wkj is the inverse distance
weight between patient’s location k and service site j. The accessibility of a location (Ai) is the
summation of the supply-to-demand ratios considering the capacity effect.

Ai = ∑
j∈{dij≤d0}

ProbijRjWij (5)

Probij =
CjWij

∑j∈{dij≤d0} CjWij
(6)

where Probij is the probability of service site j in catchment location i; Cj is the capacity of service site j.
Wij is the inverse distance weight between catchment location i and service site j.

The Wij is calculated from a Gaussian function, which means that the access to a physician
diminishes with distance. The function is calculated as follows [18]:

Wij = e−dij2/β (7)

dij is the travel distance between patient or catchment i and hospital j, while β is the weighting
parameter.

In this study, spatial accessibility with the period t, Ai(t) can be defined as the following.

Rj(t) =
Sj(t)

∑k∈{dkj≤d0} ProbkjDk(t)Wkj
(8)

Ai(t) = ∑
j∈{dij≤d0}

ProbijRj(t)Wij (9)

2.2. Optimal Resource Allocation

To decrease the spatial variation in accessibility, the objective function is to minimize the standard
deviation (SD) and maximize the average (AV) of the spatial accessibility distribution during the
periods. The decision variables are the supply in hospitals’ resources (bed capacity for each hospital),
but they are constrained by upper and lower limits, Su and Sl , and are summed to obtain the
original supply.

min ∑
t

SD(A(t)) (10)

max ∑
t

AV(A(t)) (11)

s.t. Sl(t) ≤ S(t) ≤ Su(t) (12)

∑
t

S(t) = ∑
t

S0(t) (13)

Wang and Tang (2011) [19] used quadratic programming to minimize the variance of accessibility
by readjusting the amounts of service supplies. In this study, the optimization search method is the
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PSO, which is a derivative-free global optimization technique developed by Kennedy and Eberhart [20].
The PSO is inspired by the social behavior of bird flocking or fish schooling. The PSO provides a
population-based search procedure in which individuals called particles change their position with
time. In this study, 100 particles were used. In the PSO, each particle adjusts its position according to
its own experience, and according to the experience of a neighboring particle, making use of the best
position encountered by itself and its neighbor.

2.3. Data and Material

Empirical dengue fever outbreak data for Tainan City, Taiwan in 2015 were publicly downloaded
from Department of Health, Tainan City Government [3]. The numbers of patients with dengue
infections from week 36 to week 39 in 2015, referred to as weeks 1 to 4 in the result section, are shown
in Figure 1; the number of cases is over 2400 per week. This study considers the data for these four peak
weeks as a case study. The demand is the number of patients with dengue infection. Seven hospitals
provided the supply. The hospitals and health network in Tainan City and the location of patient cases
during the four weeks are shown in Figure 2. The health facilities in Taiwan are classified into three
levels: level 3 is physician clinics, level 2 means regional hospitals, and level 1 indicates academic
hospitals. In Figure 2, two hospitals are at level 1 (hospitals #4 and #5) but five hospitals are at level 2
(hospitals #1, #2, #3, #6, and #7). Based on hospital vacancy rates, the original supply in seven hospitals
is 74, 79, 160, 106, 65, 87, and 152 beds per week. Before the modeling, the regional supply and demand
ratios are 0.26, 0.27, 0.23, and 0.38 during the four weeks.
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3. Results

Generally, highest accessibility is found in urban areas with service sites, while suburban areas
have low accessibility. Figure 3 shows the spatial accessibility in terms of supply-to-demand ratio
without and with considering the capacity. The accessibility value is high in the north without the
capacity effect. After considering the capacity effect, the spatial accessibility decreases during the
outbreak period near the academic hospital that is in the northern part, but increases near a regional
hospital in the eastern part. Therefore, the spatial variability in accessibility increases after considering
the capacity effect.
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Figure 3. Accessibility without (left) and with (right) capacity at week 1.

Optimal design for access relies upon understanding the hospitals and epidemic processes
involved. To minimize spatial variability in accessibility, the optimal model is applied. Figures 4
and 5 show the spatial accessibility before and after the optimal design during the four weeks.
Originally, the spatial accessibility concentrates in the southern and eastern parts but is scarce in
the northern part. After the optimal design, the area of the scarce accessibility is reduced and the
uniform spatial accessibility distribution is determined. The hotspots of the accessibility are around
the hospital clusters.
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In Table 1, the average SD of spatial accessibility during the four weeks is 0.20 before optimal
design, but the average SD decreases to 0.13 after the optimal design. The variation in the accessibility
can be improved after the optimal design. The results also show that the spatial accessibility is sufficient
near the hospitals, but the boundary area is not enough. Prior to the optimal design, 45% of areas have
lower potential spatial accessibility of health services than 0.2, but only 39% of the areas are lower
than 0.2 after the optimal design. The area with low accessibility can be reduced after the optimal
design. Table 2 shows the original and optimal supply (bed capacity) of each hospital after the design.
The results show that the optimal supply in two big hospitals should be increased, but the optimal
supply of small ones should be decreased.

Table 1. Regional standard deviation (SD) of accessibility before and after the optimal design.

Week Accessibility SD before Design Accessibility SD after Design Differences

1 0.22 0.13 −0.09
2 0.21 0.13 −0.08
3 0.16 0.11 −0.05
4 0.22 0.16 −0.06

Average 0.20 0.13 −0.07

Table 2. Supply before and after the optimal design.

No. Hospital
Level

Original
Supply

Optimal Supply
at Week 1

Optimal Supply
at Week 2

Optimal Supply
at Week 3

Optimal Supply
at Week 4

1 2 74 45.5 48.8 48.8 51.6
2 2 79 44.5 49.4 48.4 66.2
3 2 160 90.0 126.0 73.9 111.9
4 1 106 148.5 136.4 141.8 142.2
5 1 65 160.0 159.5 160.0 160.0
6 2 87 104.5 73.1 121.5 61.0
7 2 152 130.0 129.8 128.6 130.0

4. Discussion

Spatial accessibility is recognized as important information for the management of regional
hospital resources [9]. The disparity in spatial distribution of health facilities can be evaluated and
considered in the process of resource allocation [14]. In this study, the 3SFCA method was adopted
to measure spatial accessibility. Theoretically, the spatial accessibility in 3SFCA includes regional
availability and regional accessibility [21]. The regional availability focuses on the relationship between
supply (hospital resources) and demand (population or patients) in a specific area. However, regional
accessibility focuses on the spatial resistance, such as the distance between a hospital and patients.
The 3SFCA method can integrate these two aspects, considering the complex interaction among the
supply, demand, and the location of hospitals and patients in different regions to estimate the spatial
accessibility of healthcare in a definite area.

The dengue epidemic varied over time so that a dynamic model is needed. This study
demonstrated the dynamic 3SFCA method for healthcare resources. In the 3SFCA, the three main
factors, the hospital catchment area, the hospital capacity, and the weighting parameter in a decay
function, have to be identified. These parameters are always experimental values, depending on the
regional conditions in previous studies [13,16,18]. It is difficult to perform evaluations in a dynamic
situation, such as an outbreak of dengue infection. To determine the optimal parameters, the supervised
method is adapted to evaluate the appropriate value according to the weekly number of dengue cases.
The evaluation of spatial accessibility can be adapted to the region during the period by applying these
optimal parameters.

World Health Organization (WHO) guidelines on clinical management of dengue fever [22]
classify dengue infected patients into three groups, including Group A (to be sent home), Group B
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(to be referred for in-hospital management), and Group C (requiring emergency treatment and urgent
referral). Therefore, only Group B and Group C will need hospital resources. In this study, we focused
on moderate to severe cases which need hospitalization. During the studied period, Tainan City
suffered the worst dengue outbreak. One of the academia hospitals in Tainan City reported that
4787 patients needed intensive care unit (ICU) beds from 31 July to 31 November 2015 [23]. This is
a very high demand for the hospital. From the viewpoint of hospital management and the health
insurance system in Taiwan, the number of doctors will be determined by the number of beds or
patients you have. Thus, the most direct indicator for measuring the supply is the capacity of the beds
in each hospital. In general, the hospitals will not use all this capacity during their daily operation.
Once an emergency situation arises, they may call for doctors and nurses from other hospitals or
retired volunteers to help them care for the extra patients. However, the ceiling of the serving capacity
is that maximum constraint number.

Considering hospitals’ capacity and accessibility, which is the ratio of supply to demand,
accessibility decreases because demand increases dramatically in academic hospitals. The supply
capacity of a service site affects patients’ selection. Patients seek more services in the big hospitals.
The large supply capacity increases probability for attracting large numbers of patients. Therefore,
Figure 3 shows that the accessibility in the northern part decreases, considering the hospitals’ capacity.
After the optimal design (compare Figures 4 and 5), the medical referral system should play an active
role in adjusting the supply of hospitals, such as beds and doctors. Under this design, there will be
more balanced accessibility among all hospitals. The accessibility in the northern academic hospitals
can be improved.

In fact, people do not necessarily go to the closest facility. Because Taiwan has 99% national
health insurance coverage, everyone can choose the hospital they would like to go to. The price
is different when you go to different level hospitals, but the same within the same level hospitals.
Patients in different age groups or with different social economic status (SES) might have different
medical seeking behaviors. However, we did not have detailed demographic information here. Thus,
we cannot explore these patterns. Another study found that patients are willing to travel farther to
distant medical facilities to get treatment [24]. However, in our study, we think those demographic
effects might be more obvious for mild dengue cases than for moderate to severe cases. Because we do
not have a good referral system [25], patients will normally choose the nearest hospital for emergency
care or intensive care. The type of healthcare system is not the major concern for the patients because
they charge the same price if they are at the same level.

To determine the capacity of the hospital resources is difficult, because of the complex relationship
between resources, utilization, and patient flow of different groups of patients. These complex factors
are considered in many models to evaluate the capacity, such as discrete event simulation [26,27].
Furthermore, the outbreak of infectious disease or a natural disaster is considered when designing the
surge capacity [28,29]. However, the hospital resources in these outbreaks cannot be evaluated only
based on a large number of patient admissions. The spatial distribution of the patients in the region is
also an important factor. In the spatial domain, the immediate measuring of spatial accessibility and
the optimal analysis are more effective for allocation of hospital resources.

The outbreak of infectious disease has the potential to generate a large number of patients in
an area [30,31]. The increase in patients will lead to overcrowding in an individual hospital during
the period of the outbreak, such that the quality of care will be reduced [32]. For the treatment of
mild dengue, temporary facilities for early screening or diagnosis are possible. However, moderate to
severe dengue cases (such as those which are the focus of this study) need more intensive care and
support, in which case temporary facilities might not be a good solution. Therefore, the management
of resources in a regional hospital network becomes more and more critical for hospitals [5], such as the
Regional Emergency Operation Center (EOC) in Tainan, which contains nine regional hospitals [33].
To detect the uniform distribution of spatial accessibility, the PSO is used to find the optimal hospital
resources from each solution of hospital resources in the network. Although the overall resources
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do not experience an increase, the resources could be allocated in such a manner as to decrease
the variation in spatial accessibility. After the optimal design, the areas of low accessibility might
decrease dramatically, with a more balanced relationship between supply and demand in the whole
Tainan city area. In fact, the reallocation of beds among different hospitals is not feasible in the real
world. Every hospital has its maximum capacity due to limitations of both space and medical staff.
Therefore, we considered each hospital’s number of beds as their supply constraint. If information on
the number of specialized medical staff can be known, the model can also consider multiple variables
to represent supply.

Limitations

This study had some limitations. First, we did not consider the surge capacity of each hospital
because of limited availability of the data, so the bed requirements of a hospital could not be increased.
Second, the dengue fever cases and the static bed occupancy rate of each hospital do not correspond to
the same period. The ideal situation is to integrate the daily occupancy rate to dynamically re-evaluate
the spatial accessibility every day. Third, we did not have the number of dengue infections with
different severity every week. Thus, we could only use the total number of dengue infections as our
demand, which might over-estimate our demand. However, it can also be treated as the worst scenario
of the dengue outbreak.

5. Conclusions

The purpose of this study was to understand how to minimize variability among hospitals in
terms of their accessibility. The spatial and temporal patterns of healthcare accessibility were evaluated
and the impact of healthcare resources was simulated during a dengue outbreak. The capacity effect
based on the fact that people do not necessarily go to the closest facility was also considered. The PSO
model was used to decrease the spatial variation in accessibility and areas with shortage of healthcare
resources by readjusting the amounts of service supplies. In this case, the distribution of spatial
accessibility in the Tainan city area was non-uniform because the relationship between supply and
demand is unbalanced in the north boundary area. To decrease the spatial variation in accessibility
and areas with healthcare resource shortages, PSO model was used to readjust the amounts of service
supplies. The optimal distribution of spatial accessibility can be estimated by the optimal allocation of
hospital resources, so that policymakers can implement appropriate healthcare policies to cope with
serious epidemics, raise the quality of healthcare, and decrease casualties.
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