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Abstract: Biological information is obtained from the interaction between the series detection
electrode and the organism or the physical field of biological cultures in the non-mass responsive
piezoelectric biosensor. Therefore, electric parameter of the electrode will affect the biosensor
signal. The electric field distribution of the microelectrode used in this study was simulated
using the COMSOL Multiphysics analytical tool. This process showed that the electric field spatial
distribution is affected by the width of the electrode finger or the space between the electrodes.
In addition, the characteristic response of the piezoelectric sensor constructed serially with an annular
microelectrode was tested and applied for the continuous detection of Escherichia coli culture or HeLa
cell culture. Results indicated that the piezoelectric biosensor with an annular microelectrode meets
the requirements for the real-time detection of E. coli or HeLa cells in culture. Moreover, this kind of
piezoelectric biosensor is more sensitive than the sensor with an interdigital microelectrode. Thus,
the piezoelectric biosensor acts as an effective analysis tool for acquiring online cell or microbial
culture information.
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1. Introduction

In recent years, piezoelectric biosensors [1,2] have been applied in numerous fields, including
microbiological culture assays or cell biology research. The signal module of the sensor is composed
of two main parts, namely, the biological information recognition component (receptor) and the
signal-converting component (transducer). The receptor is used to identify the physical or chemical
information of cultured biological objects. With the development of microelectronic manufacturing
technology and microsensors, many array microelectrodes have been used as the piezoelectric
biosensor receptor. Among these, the interdigital microelectrode (IDME) exhibits more advantages
than conventional electrodes, such as a micro-scale structure, a high steady-state current density, a low
ohm/voltage drop, and a rapid response time and mass transfer between the electrodes [3–5]. Thus,
an IDME can be used in the electrolyte solution system with a high impedance background to detect
cell or microbial culture [6].

However, the IDME structure is composed of two parallel groups of tiny finger electrodes inserted
with each other. Two main electrodes, which connect the fingers of the IDME, exist at the outer
edge. Therefore, the electric field spatial distribution on the surface of the IDME is asymmetric
upon operation [7–10]. This asymmetry causes the heterogeneity of the mass transfer and results
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in the increasing electrode impedance of the electrolyte solution under a high frequency oscillation
circuit. The symmetry of the electric field spatial distribution should be improved to enable the
mass transfer between only the adjacent and polar opposite microelectrodes during the detection
process [11,12]. In this study, the electric field distribution of a microelectrode was simulated using
the COMSOL Multiphysics analytical tool. In addition, the piezoelectric response characteristic of
the sensor, which was connected serially with a microelectrode, was measured to investigate its effect
on the sensor’s signal. Result showed that the response characteristic of the piezoelectric sensor
with an annular microelectrode was more sensitive than that with the IDME. Furthermore, a novel
piezoelectric biosensor connected serially with an annular microelectrode was constructed successfully
for the continuous detection of E. coli culture or HeLa cell culture. The new piezoelectric biosensor
acted as an effective analysis tool for acquiring online cell or microbial culture information.

2. Materials and Methods

2.1. Apparatus

The experimental instruments used in this work include an AT-cut 9 MHz piezoelectric quartz
crystal (QCM, Beijing Jingyuxing Technology Co., Ltd., Beijing, China), a piezoelectric biosensor
connected serially with a microelectrode (self-developed), whose structure is shown in Figure 1,
an HP-4192A LF Impedance Analyzer (Hewlett-Packard, Palo Alto, CA, USA), an HHV Auto 500
magnetron sputtering apparatus (HHV, Bangalore, UK), a YM800 grinding polisher (Nanjiang Lisheng
Co., Ltd., Nanjing, China), a KQ-500DV ultrasonic clearer (Kunshan Ultrasonic Instruments Co., Ltd.,
Kunshan, China), an SC-1B spin coater (Beijing Jinshengweina Technology Co., Ltd., Beijing, China),
a hot plate (Beijing Jinshengweina Technology Co., Ltd., Beijing, China), an MA6 Mask aligner (SUSS
MicroTec Group, Coventry, UK), a biological safety cabinet (Heal Force, Hongkong, China), a carbon
dioxide incubator (Hunan Xianyi Instruments Co., Ltd., Changsha, China), and a CKX41 biological
phase contrast microscope (Olympus, Takachiho, Japan).
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Figure 1. Schematic diagram of the piezoelectric biosensor connected serially with microelectrode.
I: (a) culture-detection well; (b) a detection plate containing 8 detection wells; II: frequency meter and
data processing system; III: PC interface; PQC: 9 MHz AT-cut piezoelectric quartz crystal.

2.2. Materials and Reagents

Yeast extract culture detection of microorganism culture medium used with an series piezoelectric
quartz crystal (SPQC) instrument was proposed in our laboratory. BP 212-37 positive UV Photoresist
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(Kempur Microelectronics Inc., Beijing, China), potassium chloride (KCl, Sinopharm Chemical Reagent
Co., Ltd., Shanghai, China). Escherichia coli O157:H7, and HeLa cells were taken from the College of
Biology, Hunan University, China. LB medium, DMEM medium, fetal bovine serum (FBS), trypsin,
penicillin-streptomycin, and EDTA were purchased from Gibco, USA. The PBS buffer solution was
composed of 8.1 mM Na2HPO4 + 136.7 mM NaCl + 2.7 mM KCl + 1.5 mM KH2PO4 (pH = 7.4).
All other chemicals were of reagent grade. Ultrapure water (RN 18.2 MΩ/cm) was used throughout
the experiment.

2.3. Design and Manufacture of the Annular Microelectrode

The process of the annular microelectrode is shown in Figure 2A. SiO2 glass (with a thickness of
1.5 mm, and an area of 8 mm× 5 mm) was used as substrate of the annular microelectrode. We optically
polished the glass surface and cleaned it with a piranha solution (1:3 (v/v) 30% H2O2/H2SO4) for
5 min. Then, the glass surface was sonicated in acetone and double-distilled water (each for 3–5 min)
individually and dried under a nitrogen flow [13–15]. A 20-nm-thick Cr adhesion layer was first
sputtered directly onto the glass surface via radio frequency magnetron sputtering, followed by a
200 nm gold layer as the microelectrode material on the Cr layer to enhance the adhesion of the Au
layer on the glass substrate. Then, positive UV photoresist was evenly coated on the gold layer with
a micro-annular shape [16]. After exposing the object to UV, we removed the unwanted photoresist
and dissolved the corresponding Cr and Au films using wet chemical etching. The specially designed
microelectrode with a lead line and bonding pad was obtained, and it was then sterilized with 75%
ethanol and UV irradiated for 15 min for the experiment. The microelectrode shape is shown in
Figure 2B.
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Figure 2. (A) Schematic diagram for the manufacture of the annular microelectrode; (B) Optical
micrograph of the annular microelectrode. Black represents the Au microelectrode and yellow
represents gaps or spaces. (a) Microelectrode with a 100 µm finger width and a 100 µm finger gap;
(b) Microelectrode with a 100 µm finger width and a 50 µm finger gap.

2.4. Response Characteristics of the Piezoelectric Sensor with Microelectrode

The annular microelectrode was connected to the piezoelectric quartz crystal sensor in series.
The frequency shift of the sensor was measured at different concentrations of a standard KCl solution.
The detailed procedure is as follows: When the sensor’s microelectrode was immerged in purified
water (i.e., the concentration of KCl is 0), the piezoelectric resonance frequency was recorded as



Int. J. Environ. Res. Public Health 2016, 13, 1254 4 of 10

F(water) = F0. While replacing the water with KCl standard solution at different concentrations, the
piezoelectric resonance frequency was recorded as F(KCl) = Fi (i = 1, 2, 3 . . . ). Thus, the sensor’s
response frequency shift could be obtained as follows: ∆F = Fi − F0.

2.5. Detection of E. coli or HeLa Cells Using the Annular Microelectrode Series Piezoelectric Biosensor

For the detection of E. coli culture, 5 mL of LB medium was added to the culture-detection cell,
and 1 mL of suspension containing 105 cfu/mL of E. coli was mixed gently with the medium. Then, the
annular microelectrode was inserted into the culture-detection cell. After connecting serially with the
piezoelectric sensor detecting system, the E. coli suspension was incubated at 37 ± 0.2 ◦C. The response
frequency shift was recorded automatically by the piezoelectric biosensor.

For the monitoring of HeLa cell growth, the annular microelectrode was assembled at the bottom
of the culture-detection cell, which was used as the culture substrate. An amount of 1.5 mL of HeLa cell
suspension at a concentration of 1× 104 cell/mL was seeded in the culture-detection cell and incubated
in a carbon dioxide incubator under 5% CO2 at 37 ◦C and saturated humidity. The response frequency
shifts, which indicated HeLa cell growth in real time, were recorded automatically by the sensor.

3. Result and Discussion

3.1. Multiphysics Simulation of the Microelectrode

The electric field spatial distributions of microelectrodes with different finger or gap widths in
the medium were separately simulated under static conditions in three-dimensional (3D) space using
COMSOL Multiphysics coupling analysis software [17]. The terminal voltage was set at 1 V. Voltage
distribution was calculated using the following Poisson equation:

−∇·(εrε0∇V) = 0 (1)

where ε0 is the dielectric constant in vacuum (8.86 × 10−12 F/m), and εr is the relative dielectric
constant of the electrolyte solution.

The strength of the electric field spatial distribution in the simulation domain was described using
the electric potential (E):

E = −∇V (2)

where ∇ is the Laplasse operator.
Equation (2) was used to calculate the charge conservation equation for the electric potential

using the given spatial distribution of the electric charge. The equation is used primarily to model
charge conservation in dielectrics under static conditions. The 3D simulation of the microelectrode
was performed using these equations and the COMSOL program.

Simulation results are showed in Figure 3. The arrow represents the electric line of force.
In Figure 3, the large arrow indicates a greater density of the electric line of force and a stronger
electric field.

In the simulation of the microelectrode, on the upper spatial domain of the annular microelectrode,
a closer distance between the microelectrode and the electrode surface, represents a greater change in
the electric potential. Near the surface of the microelectrode, the electric line of force field intensity
was very dense and displayed an annular shape, while the electric field weakened with increasing
height of the electrode. Based on the simulation of the IDME, the electric field concentrated under the
upper spatial domain of the interdigital electrode. However, the electric field intensity of the main
electrode was stronger on the two sides and two terminals than those of the interdigital electrode, as
influenced by the interdigital geometric structure. It is possible that, in the static field, the skin effect of
the charge distribution resulted in the uneven distribution pattern of the electric field on the entire
electrode surface. The mass transfer of electrolytes in the solution was then carried out in a large range.
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This phenomenon resulted in the poor transfer efficiency and electrochemical reaction sensitivity of
the IDME sensor compared with the annular microelectrode sensor.Int. J. Environ. Res. Public Health 2016, 13, 1254 5 of 10 
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microelectrodes; (C) Electric field spatial distribution of the IDME; (D) Cross-sectional view of
the IDME.

3.2. Influence of Annular Microelectrode Geometric Parameters on the Equivalent Circuit

The geometric parameters of the annular microelectrode are the band width, the gap size, and the
number of annuluses of the electrode. We employed the simulation software to simulate the variation
in the equivalent capacitance and equivalent resistance with those of the geometric parameters of
the microelectrode.

The annular microelectrode (shown in Figure 2A) was chosen as the electrode model.
The influence of the electrode size on the equivalent capacitance and equivalent resistance was
calculated using the simulation software. We set the electrode band width to 100 µm, and the electrode
gap was changed from 5 µm to 150 µm with a step size of 5 µm. The electrode was applied with a 1 V
AC voltage, and the frequency was 9 MHz. Results are shown in Figure 4. Results also suggested that
the gap between the microelectrode bands had a direct impact on the equivalent capacitance. When
the gap size increased from 5 µm to 55 µm, the equivalent capacitance decreased sharply. When the
gap size was increased to 150 µm, the equivalent capacitance continued decreasing. However, the drop
was reduced, as shown in Figure 4A. The equivalent resistance exhibited an upward trend as gap size
increased, as shown in Figure 4C. Similarly, the influence of the electrode band width on the equivalent
parameters is shown in Figure 4B,D. The increase in the annular microelectrode band width resulted in
the increased linearity of the equivalent capacitance. However, the linearity of the equivalent resistance
decreased, and the change in magnitude was smaller than the influence attributed to the changes in
gap size caused by the increasing band width. Simulation results suggested that the influences of the
microelectrode gap changes were greater than those of the microelectrode band width changes.

In addition, the real capacitance and impedance of the annular microelectrode were measured
using a 4192 impedance Analyzer at 9 MHz. As shown in Figure 4, the simulation results coincided
with the measurement results.

In order to investigate the influence of the number of annuluses on the electric parameters, we
designed the annular microelectrode with two, three, four, and five pairs of annuluses (every electrode
pair with a 50 µm of electrode band width and 50 µm gap). The capacitance and resistance of the
annular microelectrode were measured using the 4192A at 9 MHz. Results are shown in Figure 5.
The changing curve of the electrode capacitance with the different number of annuluses is shown in
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Figure 5A. It suggests that the increase in annuluses of the annular microelectrode also increases the
capacitance and resistance. This phenomenon might indicate that the increase in annuluses was due to
the significant increase in the area of the microelectrode plate. Thus, the capacitance also significantly
increased. On the contrary, as shown in Figure 5B, the electrode resistance significantly decreased
with the increasing numbers of annuluses. Therefore, the increasing number of annuluses significantly
increased the sensitivity of the biosensor, which was composed of the annular microelectrode and the
piezoelectric quartz crystal. However, the substrate of the annular microelectrode was relatively small,
and the number of annuluses was limited by the substrate area. Thus, the microelectrode with three
pairs of annuluses was preferred for use in the piezoelectric biosensor.
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3.3. Frequency Response of the Annular Microelectrode Piezoelectric Biosensor

Annular microelectrode piezoelectric biosensors were constructed using two, three, four, and five
pairs of annulus microelectrodes. Their piezoelectric frequency characteristics were studied at different
concentrations of KCl solution. Results are shown in Figure 6. Findings indicated that both the absolute
value of the piezoelectric frequency shift and the shift amplitude increased with increasing number
of microelectrode annuluses. Thus, the increasing number of annuluses can improve the response
sensitivity of the piezoelectric biosensor. However, the increased number of annuluses was not in
accordance with the requirement or the microminiaturization and integration of the biosensor. Thus,
three pairs or four pairs of annuluses were proposed for the construction of the annular microelectrode
piezoelectric biosensor considering the two aspects mentioned.
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Figure 6. Response frequency of the annular microelectrode piezoelectric biosensor in KCl solution and
the equivalent circuit model for the sensor. (A) Response frequency (curve 2: with 2 pairs annuluses;
curve 3: with 3 pairs annuluses; curve 4: with 4 pairs annuluses; curve 5: with 5 pairs annuluses);
(B) Equivalent circuit model of the sensor.

The response frequency shift of the annular microelectrode piezoelectric biosensor was
theoretically deduced as follows. For the convenient calculation, the equivalent circuit of the
microelectrode and the piezoelectric crystal in series were simplified as shown in Figure 6B, where
square 1 is the equivalent circuit of a piezoelectric resonance, and square 2 is the annular microelectrode.
C0, Lq, Cq, and Rq represent the piezoelectric crystal static capacitance, the motional inductance, the
motional capacitance, and the motional resistance, respectively. Cs is the equivalent capacitance of the
annular microelectrode. Rs is the equivalent resistance of the solution. The equivalence circuit model
showed the total complex impedance, Z, using the following equation:

Z1+2 = j

(
ωLq − 1

ω Cq

)
1 + C0

Cq
− ω2C0Lq

+
Rs

1 + ω2C2
s R2

s
− j

ωCsR2
s

1 + ω2C2
s R2

s
(3)

where j is the imaginary unit; ω is the angular frequency.

Z1+2 = R + J X (4)
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where R is the real part of Z; X is the imaginary part of Z; J is the imaginary unit. According to the
oscillation theory of the piezoelectric resonant phase shift condition, the phase shift of the feedback
must be –θ and –θ = tan−1(X/R).

A is defined by the equation = tan θ = X
R . Therefore, the following equation can be obtained:

A + tan(−θ) = 0. (5)

By substituting the real and the imaginary parts of Equation (3) in Equation (5), Equation (5) can
be transformed into Equation (6), as follows:

ARS + ωCsR2
s

1 + (ωCsRs)
2 −

ωLq − 1
ωCq

1 + C0
Cq
−ωLqC0

= 0. (6)

Because ω = 2πF and F0 = 1
2π
√

LqCq
, Equation (6) can be rewritten as Equation (7):

F = F0

1 +
πF0Cq

(
2πF0R2

sCs −ARs

)
1− 2πF0C0RsA + 4π2F2

0RsCs(C0 + Cs)

. (7)

For the annular microelectrode piezoelectric biosensor under the oscillating condition, Equation (7)
must be differentiated as follows:

dF =
∂F

∂RS
dRs +

∂F
∂CS

dCs. (8)

P1 and P2 are defined by Equations (9) and (10):

P1 =
∂F
∂Rs

= πF2
0 Cq

{
A− 4π2F2

0 C2
s R2

s A− 4πF0CsRs[
1− 2πF0C0Rs A + 4π2F2

0 R2
s Cs(C0 + Cs)

]2
}

(9)

P2 =
∂F
∂Cs

= 2π2F3
0 Cq

{
1− 4π2F2

0 C2
s R2

s + 4πF0CsRs A[
1− 2πF0C0Rs A + 4π2F2

0 R2
s Cs(C0 + Cs)

]2
}

(10)

dF = P1dRs + P2dCs (11)

where F0 is the fundamental frequency of the piezoelectric crystal, C0 is the static capacitance of the
crystal in Equations (9) and (10). They were constants. RS and CS are the initial resistance and the
initial capacitance of the annular microelectrode, respectively. According to Equations (9)–(11), the
frequency shift of the annular microelectrode piezoelectric biosensor was not only affected by the
initial resistance and the initial capacitance of the annular microelectrode, but also by the changes in
resistance and capacitance. The equivalent electric parameters of the sensor were detected using an
HP-4192A Impedance Analyzer, with P1 = 2.31 and P2 = 5.84× 1012. Finally, Equation (11) can be
transformed into Equation (12).

∆F = 2.31× ∆Rs + 5.84× 1012 × ∆Cs. (12)

Therefore, as is evident from Figure 6A, when the concentration of the electrolyte solution is
low, a slight increase in the KCl concentration can greatly increase the equivalent capacitance of the
microelectrode. Thus, the piezoelectric frequency shift was significant. Moreover, the capacitance
and resistance exhibited a downward trend when the concentration of KCl continuously increased.
The piezoelectric frequency shift caused by the capacitance and resistance also decreased. Thus,
when the sensor had increased the electrolyte concentration solution, the curve of the piezoelectric
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shift tended to be smooth. Significantly, the theoretical derivation coincides with the actual
measurement results.

3.4. Real-Time Monitoring of the Growth of E. coli HeLa Cells Using the Annular Microelectrode
Piezoelectric Biosensor

The microelectrode piezoelectric biosensor was employed to monitor the growth of E. coli and
HeLa cell in real time. Results are shown in Figure 7. Both the annular microelectrode sensor and
the IDME sensor can be used to monitor the growth of E. coli or HeLa cells. However, the maximal
frequency shift signal of the annular microelectrode sensor was larger than that of the IDME sensor.
This finding suggests that the piezoelectric biosensor series with the annular microelectrode possesses
more response sensitivities.
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4. Conclusions

In this study, an annular microelectrode was designed and a novel piezoelectric biosensor in
series was also constructed. Multi-physics field simulation software was employed to simulate and
to calculate the electric field strength of the annular microelectrode. The simulated and calculated
results suggested that the annular microelectrode has a very strong intensity electric field. Moreover,
the electric field of the annular microelectrode exhibited an annular shape on the surface. The mass
transfer of the electrolyte conducted within a large scope and the mass transfer efficiency between the
microelectrodes were high because of the electric field shape distribution. Moreover, the influence
of the geometric size of the annular microelectrode on the electrical parameters and the response
frequency shift characteristics were investigated. The annular microelectrode piezoelectric biosensor,
compared to the IDME piezoelectric biosensor, was more sensitive to the changes in the electrical
parameters and more effectively monitors the growth of microorganism or mammalian cells in real
time. Therefore, the piezoelectric biosensor series with an annular microelectrode is a promising
detection method for detecting both microorganism with excellent sensitivity.
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