
International  Journal  of

Environmental Research

and Public Health

Review

Biomarker-Based Approaches for Assessing Alcohol
Use Disorders
Onni Niemelä

Department of Laboratory Medicine and Medical Research Unit, Seinäjoki Central Hospital and University of
Tampere, Seinäjoki 60220, Finland; onni.niemela@epshp.fi; Tel.: +358-6-4154719; Fax: +358-6-4154924

Academic Editor: Icro Maremmani
Received: 10 November 2015; Accepted: 20 January 2016; Published: 27 January 2016

Abstract: Although alcohol use disorders rank among the leading public health problems worldwide,
hazardous drinking practices and associated morbidity continue to remain underdiagnosed. It is
postulated here that a more systematic use of biomarkers improves the detection of the specific role
of alcohol abuse behind poor health. Interventions should be initiated by obtaining information on
the actual amounts of recent alcohol consumption through questionnaires and measurements of
ethanol and its specific metabolites, such as ethyl glucuronide. Carbohydrate-deficient transferrin
is a valuable tool for assessing chronic heavy drinking. Activities of common liver enzymes can
be used for screening ethanol-induced liver dysfunction and to provide information on the risk of
co-morbidities including insulin resistance, metabolic syndrome and vascular diseases. Conventional
biomarkers supplemented with indices of immune activation and fibrogenesis can help to assess
the severity and prognosis of ethanol-induced tissue damage. Many ethanol-sensitive biomarkers
respond to the status of oxidative stress, and their levels are modulated by factors of life style,
including weight gain, physical exercise or coffee consumption in an age- and gender-dependent
manner. Therefore, further attention should be paid to defining safe limits of ethanol intake in various
demographic categories and establishing common reference intervals for biomarkers of alcohol
use disorders.
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1. Introduction

Alcohol use disorders, both acute and chronic, are significant clinical problems due to their
devastating health impacts and high prevalence throughout the world [1–5]. Virtually all tissues in the
body can be affected by excessive alcohol consumption and a wide variety of alcohol-related disorders
are currently known. For successful clinical interventions, hazardous drinking should be detected in
an early phase to prevent the affected individuals from entering a stage of severe dependence with
associated tissue toxicity.

The occurrence of health problems in alcohol consumers seems to be proportional to the amount
of alcohol ingested over a long period of time [1–4]. Chronic alcohol drinking exceeding 300 g (men) or
200 g (women) per week is known to sharply increase the risk for damage [6,7]. In women, adverse
effects may arise at lower levels and alcohol-related problems concerning pregnancy could add another
dimension to the problem of excessive alcohol consumption per se [3,4,8]. In individuals with risk factors
such as obesity, smoking or hepatitis C infection, health problems can also be triggered by relatively low
levels of alcohol intake [9–14]. Recent American Association for the Study of Liver Diseases (AASLD)
guidelines on non-alcoholic fatty liver disease (NAFLD) defined alcohol consumption exceeding 21
drinks (~250 g) per week in men and 14 drinks (~170 g) per week in women as limits of significant
alcohol consumption [15]. However, current lifetime risk evaluations have indicated that even levels
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of 14 drinks per week for men or seven drinks per week for women can increase alcohol-attributable
mortality [16].

Recent developments in the treatment of patients with alcohol use disorders have emphasized
the role of biomarkers as an integral part of the assessment [17–21]. Biomarkers are markers of a
biological process or state, which are useful for clinicians and patients if they provide information
about the current status or future risk of disease [22]. In alcohol use disorders, biomarkers should
be used not only to confirm the aetiology but also to help the interactions between physicians and
patients on raising the issue of alcohol use as a possible cause of adverse health outcomes. They can
also improve patient follow-up procedures providing useful prognostic information. Biomarker-based
evaluations may also open new insights on the primary mechanisms of ethanol-induced diseases. The
aim of the present contribution is to discuss the current role of biomarkers in the assessment of alcohol
consumption and associated health problems. For additional information, the reader is referred to
other previous reviews in this field [17–21,23].

2. Biomarkers of Alcohol Consumption per se

Both the amounts and patterns of ethanol consumption determine the risk of developing alcohol
addiction and associated morbidity. Information on the actual amounts of alcohol consumption can
be collected by specifically designed questionnaires such as Alcohol Use Disorders Identification
Test (AUDIT), CAGE alcohol questionnaire (Cut down, Annoyed, Guilty, Eye-opener), Michigan
Alcoholism Screening Test (MAST) or time-line follow-back (TLFB) [24,25]. While the first three are
screening tools covering various aspects of alcohol consumption, problems and dependency, TLFB
calendar assessment provides estimates of the actual amounts of consumption. All of these are,
however, dependent on self-reports, which are memory-dependent and often unreliable channels of
information. Prevailing attitudes towards drinking both among patients and health care personnel
can also influence the outcome of the questionnaires in clinical settings. Therefore, laboratory tests are
often needed to provide additive information (Table 1).

Measurements of ethanol itself reveal ethanol intoxication. They can also be used in the assessment
of compliance during treatment [17]. In alcohol-dependent patients, positive blood ethanol may be
seen even at the time of the clinic visit. Based on blood ethanol findings and clinical observations it is
possible to reach conclusions on long-term drinking habits. Ethanol levels exceeding 1.5‰(33 mmol/L)
without any apparent signs of intoxication indicate ethanol tolerance, which is a typical sign among
alcohol-dependent individuals. In fact, in health care settings, the occurrence of positive blood alcohol
levels at any time should lead to a suspicion of heavy drinking history [26].

The short half-life of ethanol often prevents physicians from routinely ordering these tests. Ethyl
glucuronide (EtG), a minor nonoxidative metabolite of ethanol, is formed in the liver by enzymatic
conjugation of ethanol with glucuronic acid and this metabolite can be analyzed by immunological
or liquid chromatograpy-mass spectrometry techniques from different types of biological fluids, hair
or nails [27–32]. Depending on the sample type used, EtG may remain positive for several days after
cessation of ethanol intake and it can thereby provide additional value when assessing recent alcohol
consumption [28]. Studies so far have indicated useful diagnostic applications for EtG in post-mortem
evaluations of alcohol drinking [30], assessment of fetal alcohol exposure [27,29,33,34] or in patients
scheduled for liver transplantation [35]. Ethyl sulfate (EtS) is another conjugated metabolite of ethanol,
which is formed in low amounts after alcohol consumption [28,36]. Monitoring both EtG and EtS is,
however, usually unnecessary [37]. Phosphatidylethanol (PEth) is a specific long half-life metabolite
of ethanol, which is formed in the body only when ethanol is present. This phospholipid species
increases in a highly sensitive manner in biological fluids as a consequence of alcohol drinking [38–41].
Stability of PEth has recently shown to be good in assays from dry blood spot cards, which may further
improve the potential of PEth for routine applications [41]. Fatty acid ethyl esters (FAEE) are formed
by esterification of ethanol with free fatty acids [42]. Assays of FAEE by gas chromatography-mass
spectrometry techniques from hair have been suggested as possible tools for retrospective detection
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of alcohol abuse during pregnancy or in forensic applications [33,34,42]. Acetaldehyde is the first
metabolite of ethanol, which, due to its high reactivity, is capable of binding to proteins and cellular
constituents during ethanol metabolism [43,44]. Such binding creates distinct neoantigenic epitopes and
immune responses, which have been suggested not only as diagnostic tools but also as an important
pathogenic feature underlying alcohol-induced tissue toxicity [43–46].

Table 1. Biomarkers of alcohol consumption.

Biomarker Abbreviation Biological Sample
Type Marker Characteristics

Ethanol EtOH
Blood
Urine
Breath

Restricted to conditions where ethanol is
still present in circulation.

Ethyl glucuronide/
Ethyl sulfate EtG/EtS

Urine
Serum
Cerebrospinal fluid
Vitreous humour
Hair
Nails

Ethanol metabolite, which remains
positive in urine samples 2–5 days after
stopping ethanol use. Window of detection
dependent on sample type.

Phosphatidylethanol PEth Blood
Dry blood spots

Ethanol metabolite, which remains
detectable 1–2 weeks after alcohol use.
Measured by LC-MS or immunological
techniques.

Fatty acid ethyl esters FAEE
Plasma
Hair
Meconium

Ethanol metabolite derived from a
combination of fatty acid with alcohol.

Acetaldehyde adducts
and associated immune
responses

AA-Ab Blood
Tissue specimens

IgA response towards acetaldehyde
adducts most specific for alcohol-related
disorders.

Carbohydrate-deficient
transferrin CDT Serum

Cerebrospinal fluid

Specific marker of chronic alcohol
consumption. Lacks sensitivity for
screening purposes.

Gamma-glutamyltransferase GGT Serum/plasma

Sensitive marker of alcohol use, liver
dysfunction and oxidative stress. Several
sources of unspecificity. Normalization
time 2–3 weeks.

GGT-CDT combination GGT-CDT Serum/plasma
Improves sensitivity and specificity of
detecting alcohol abuse. Relies on a
mathematical model.

Blood cell counts Blood

Mean corpuscular volume (MCV) of
erythrocytes typically elevated in
alcoholics. Normalization time 2–4 months.
Mean corpuscular haemoglobin (MCH)
and thrombocytes (platelet counts) are also
frequently altered in alcohol abusers.
Several sources of unspecificity.

Transaminase enzymes ALT, AST Serum/plasma

Suitable for screening for liver dysfunction
in alcohol users. Sensitive to effects of
excess body weight. AST/ALT ratio
increases in alcoholic liver disease.

Elevated levels of serum carbohydrate-deficient transferrin (CDT) reveal chronic alcohol
abuse in a rather specific manner (Table 1). Both the amounts of disialo- and asialo-isoforms of
transferrin increase as a result of heavy alcohol intake and this abnormal sialylation pattern can
be analyzed by immunological techniques, high performance liquid chromatography or capillary
electrophoresis [18,47,48]. Interestingly, the levels of total serum sialic acid also increase in association
with glycoprotein desialylation as a result of heavy alcohol intake [49,50]. Unlike many other
biomarkers, CDT is more sensitive to changes in ethanol consumption than to the secondary effects of
liver disease, and it can also help to differentiate between alcoholic versus non-alcoholic liver disease.
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However, it should be noted that CDT assays, which are sensitive to changes in serum total transferrin,
also fluctuate in response to the status of liver disease per se [51]. CDT elevations require consumption
of at least 50–80 g of ethanol per day for a period of several weeks and, thus, it lacks sensitivity as a
screening tool in general populations. In alcohol-dependent patients, it is, however, sensitive enough
for detecting relapses and monitoring sobriety [48,52–54].

Gamma-glutamyltransferase (GGT) is a membrane-bound glycoprotein enzyme, which has long
been used as a marker of excessive alcohol intake (Table 1) [55,56]. GGT is sensitive to changes in
alcohol consumption, but, due to lack of specificity, it is not suitable for screening among populations
with non-alcoholic liver diseases, obesity or hospitalized patients [17,57]. In alcoholics, increased
activities usually return to normal within 2–3 weeks upon abstinence, whereas persistently abnormal
values may suggest liver disease.

Previous work has indicated that diagnostic improvement in detecting alcohol use disorders could
be achieved by combining two or more alcohol markers [17,21]. The conventional manner of combining
markers is to see whether either is elevated [48,58]. This approach obviously gives improved assay
sensitivity but is frequently associated with a decrease in specificity. However, combination of GGT
and CDT using a mathematically formulated equation GGT-CDT = 0.8 ˆ ln(GGT) + 1.3 ˆ ln(CDT) can
improve the detection of excessive alcohol consumption by increasing assay sensitivity without a loss
in specificity [58]. This marker is elevated in a higher percentage of alcohol abusers than either GGT
or CDT alone and reacts after regular ethanol consumption exceeds a threshold of 40g per day. The
correlations with the actual amounts of ethanol consumption and GGT-CDT are also higher than those
of its parent components [58].

Hazardous drinking practices also create typical abnormalities on blood cell counts and their
morphological features, particularly on erythrocyte and thrombocyte lineages (Table 1) [59]. There
seems to be a dose-dependent response between erythrocyte size (mean corpuscular volume, MCV) and
ethanol intake [60]. Mean corpuscular haemoglobin (MCH) is also elevated in heavy drinkers. Upon
abstinence, normalization of red cell indices may require 2–4 months. In heavy drinkers without
co-morbidities, high MCV values are typically seen without anaemia, whereas in patients with
alcoholic liver disease and a concomitant folate deficiency, megaloblastic bone marrow alterations
and haemolysis, high MCV and anaemia usually co-exist [61]. Erythrocytes from alcoholics are
prone to damage and shortened biological half-life, which may be associated with modifications
of proteins and cell membrane constituents by acetaldehyde and reactive aldehydic products of lipid
peroxidation [44,59]. Blood platelet counts are decreased in one third of the alcoholics [61]. Upon
abstinence, the levels return to normal usually within a few days. A low thrombocyte count associated
with increased liver transaminase (aspartate aminotransferase, AST, and alanine aminotransferase,
ALT) enzymes—and possibly increased AST/ALT ratio—can be considered an early warning sign of
developing alcoholic liver disease.

A wide variety of other laboratory markers are also altered in response to excessive alcohol
use, although without sufficient specificity to serve as biomarkers of alcohol abuse. Heavy alcohol
consumption increases serum uric acid, a compound with free radical scavenging properties, which
may indicate an increased need for antioxidant capacity under such conditions [62–64]. Uric acid also
correlates with the activities of liver enzymes in alcohol consumers [62]. In lipid profiles from heavy
drinkers, increased high density lipoprotein-cholesterol (HDL) is observed even following regular
alcohol intake of less than five drinks per day. Excess drinking also frequently leads to dysregulated
fat metabolism, as reflected in increased levels of serum triglyserides and free fatty acid ethyl esters.
Such findings also associate with increased hepatic fat content, glucose dysregulation, and low-grade
inflammation [65].

3. Liver Enzymes as Indicators of Hepatic and Extrahepatic Effects of Alcohol

The liver is a major target of ethanol toxicity due to its primary role in ethanol metabolism [2–4].
Therefore, unexpected abnormalities in liver enzyme activities, GGT or ALT, are frequently the first
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clinical signs of excessive alcohol consumption. Measurements of these enzymes are also widely
used as screening tools for abnormal liver function and in decisions to select patients needing the
closest monitoring.

Fatty liver disease associated with obesity (NAFLD) is the most common non-alcoholic cause
of increased GGT and ALT activities [14,15,66–69]. Alcohol use and obesity often co-exist and create
toxicity in a synergistic manner [9,69–72]. Alcoholic liver disease (ALD) and NAFLD can also be
overlapping phenomena and the threshold levels of harmful alcohol consumption in individuals with
varying body weights have not yet been established. In obese persons, increased GGT and tissue
morphology similar to alcohol excess is common even in those drinking an average of two drinks per
day [9]. This may be explained by induction of common pathways of oxidative stress since GGT plays
a key role in the metabolism of glutathione (GSH) and in the regulation of oxidative stress [9,13,73–78].
GGT could also be interpreted as a biomarker of oxidative stress indicating an increased need to
maintain intracellular GSH levels [73,79,80].

Interestingly, in current populations, there seems to be a trend even towards permanent
GGT increases [79]. Studies have further shown an association between GGT levels and a
variety of extrahepatic chronic diseases, which are associated with oxidative stress, including
cardiovascular diseases, diabetes, metabolic syndrome, cancer, neurodegenerative diseases and
rheumatoid arthritis [81–87]. While the specific role of alcohol as a possible trigger for such morbidity
has remained unknown, it should be noted that recent studies have indicated that even light to
moderate alcohol drinking can lead to an elevated risk of cancer [88] and an increase in all-cause
mortality [16,89]. Elevated GGT is associated with increased cardiovascular risk especially in men
with simultaneous evidence of hepatic steatosis [90–93]. Furthermore, recent studies have linked the
development of fatty liver and early atherosclerosis with the ability of GGT to trigger iron-dependent
oxidation of low density lipoprotein (LDL) in coronary plaques [94]. Studies have also noted significant
correlations between LDL-cholesterol and GGT levels, especially in men [95]. However, GGT levels are
also associated with mortality outcomes independently of fatty liver [87].

Alcohol abuse is also a common cause of increased serum aminotransferase (ALT,AST) activities.
ALT originates primarily from the hepatocytes, whereas AST is also abundant in heart, skeletal
muscle tissue, kidneys, and the brain. Thus, serum ALT has been considered a more specific
marker of liver affection, whereas AST often shows increased activities due to extrahepatic reasons,
including muscle diseases or strenuous exercise [96]. Current estimates have indicated that over
half of the aminotransferase abnormalities in Western countries result from obesity and related
comorbidities [14,97,98]. The occurrence of alcohol consumption and adiposity together also increases
the risk of abnormal transaminase activities and while GGT enzyme seems to be relatively more
sensitive to ethanol intake, ALT may be the predominant responder towards increasing BMI [9,71,99].
In obesity, ALT activities correlate with ectopic fat deposition, and the values decline with weight
loss [100,101]. Increased ALT levels are also linked with extrahepatic health risks, such as type 2
diabetes, metabolic syndrome, and insulin resistance [72,83,102–104]. They also predict vascular
morbidity [72,92,102–108].

When interpreted together, aminotransferases can provide information on the nature of liver
dysfunction. The elevation of the AST/ALT ratio over one has been considered suggestive of alcoholic
aetiology [96,109–111]. Such findings may be explained by depletion of pyridoxine (B6) vitamin for
ALT biosynthesis, more pronounced hepatic mitochondrial damage or skeletal or cardiac muscle injury
(alcoholic myopathy), which release AST into circulation [109,112]. Elevated AST/ALT ratios have,
however, also been reported from non-alcoholic steatohepatitis (NASH) patients with a high fibrosis
risk [55,113,114].

4. Impacts of Gender, Age and Life Style

Many ethanol-induced biochemical changes take place in a gender-dependent manner [3,9,62,95,115].
The individual susceptibility to disorders such as liver cirrhosis, brain damage, heart disease or
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alcohol-induced cancer is markedly higher in women despite the fact that women generally drink less
alcohol over their lifetime [3,88,115]. Lower limits for safe drinking levels are also recommended for
women [16]. Women have less water in their body and therefore it is believed that women are exposed
to higher concentrations of alcohol and its toxic metabolites during periods of alcohol drinking and
ethanol metabolism. In women, GGT levels are also elevated after ingestion of lower levels of alcohol
than in men (Figure 1).Int. J. Environ. Res. Public Health 2016, 13, 166 
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Figure 1. Threshold levels of alcohol consumption (standard drink units/week) for initiating GGT
activation in individuals below and above 40 years of age. Alcohol consumption was recorded from
the past one year prior to sampling [116]. The levels leading to GGT increases are markedly lower than
the current limits of heavy drinking in many Western countries (men: 24 drinks, women: 16 drinks).

Recent studies have also emphasized increasing age as an important determinant of
alcohol-related toxicity. In individuals over 40 years of age only eight standard drinks for men
and four drinks for women as levels of regular ethanol consumption per week lead to first signs
of GGT activation (Figure 1). Although in those below 40 years old the corresponding threshold doses
are higher, it should be noted that both levels of consumption are clearly lower than the currently
used limits of heavy drinking in many countries. Since recent population studies have emphasized
high mortality rates among older individuals consuming alcohol [117], the concept of safe limits for
ethanol intake should obviously be revisited not only between genders but also among different age
categories. In addition, in experimental animals, aging has been shown to promote the development of
diet-induced steatohepatitis and induction of liver enzyme levels [118].

The composition of the diet and the presence or absence of obesity are important co-factors
in determining body responses to alcohol consumption [9,11,71,119]. Induction of liver enzyme
activities together with elevated blood lipid levels may be seen even among young individuals with
overconsumption of the Western diet [95,118]. In experimental animals, adverse effects of ethanol are
aggravated by high-fat-diets [120] or diets deficient in folate [121]. Excess dietary iron also exacerbates
ethanol toxicity [120]. Genetic variation in adiponutrin (PNPLA3) or in alcohol-metabolizing enzymes
also seem to play a role in conferring susceptibility to tissue damage [14].

Recent studies have further indicated a synergistic toxic effect of smoking on ethanol-induced
liver pathology and activation of GGT enzyme [10,122]. On the contrary, in heavy drinkers with regular
coffee consumption, GGT levels seem to be relatively lower than in heavy drinkers without any coffee
consumption, indicating a possible protective effect of coffee towards alcohol-induced liver damage
and associated oxidative stress [123–125]. Coffee consumption seems to modulate the effect of ethanol
in a dose- and gender-dependent manner, the most striking effects being found among men who drink
over four cups of coffee per day [123]. Regular aerobic exercise reduces hepatic lipids even in the
absence of body weight reduction and could also provide protection towards oxidative stress [126,127].
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5. Differential Diagnosis of Alcoholic versus Non-Alcoholic Causes of Tissue Toxicity

Clinical symptoms of alcohol toxicity are often unspecific and may arise from virtually any
tissue [3,6,18,128]. Alcohol-consuming patients, however, tend to escape specific treatment because
the clinicians ability to detect alcohol abuse is often constrained by the difficulties in obtaining
reliable reports on alcohol intake [19]. In addition to obtaining information on current drinking
habits by specific questionnaires and biomarkers, a wide selection of biomarkers is also available
to rule out possible non-alcoholic etiologies (Table 2). For example, in patients with suspected
liver affection, NAFLD is known to be the most common non-alcoholic etiology and evaluation
of metabolic co-morbidities with measurements of body mass index, waist circumference, and oral
glucose tolerance are helpful [14,18]. Many competing and co-existing causes of abnormal liver function
can be excluded by appropriate serological and genetic tests (Table 2). In a similar manner, combined
use of tissue-specific laboratory markers with markers of ethanol consumption, such as CDT, can be
used to detect the possible alcoholic origin in pancreatic disorders [129].

Table 2. Biomarker-based differential diagnosis of abnormal liver function.

Condition Supporting Laboratory Data Other Diagnostic Tools

Fatty liver

Alcoholic Alcohol, EtG, GT, CDT, ALT, AST,
MCV

Questionnaires: AUDIT, TLFB,
CAGE, MAST

Non-alcoholic (obesity) ALT, AST, glucose, OGT, triglycerides,
PNPLA3 genotyping

BMI, waist circumference,
abdominal ultrasonography

Viral hepatitis

A: anti-HAV IgM; B: HBsAg, PCR,
anti-HBc IgM; C: anti-HCV, PCR;
D: anti-HDV; E: anti-HEV; G:
anti-HGV

Liver cirrhosis
Albumin, bilirubin, prothrombin time,
immunoglobulins, markers of immune
activation and fibrogenesis

Liver biopsy, xenobiotic metabolism
and excretion tests, liver imaging:
ultrasound, MRI, Fibroscan, measures
of hepatic function: Child-Pugh,
CCLI, CMI

Drug toxicity Transaminases, therapeutic drug
monitoring, blood eosinophils Case history

Hemochromatosis
Iron status, transferrin iron saturation,
ferritin, HFE-genotyping
(C282Y mutation)

Liver biopsy (hepatic iron index)

Autoimmune diseases

Autoimmune hepatitis Immunoglobulins, antinuclear
antibodies, antismooth muscle antigen

Primary biliary cirrhosis AP, IgM, antimitochondrial antibodies

Primary sclerosing cholangitis ANCA, AP ERCP

α1-antitrypsin deficiency α-1-antitrypsin phenotyping

Wilson’s disease Ceruloplasmin, urine and
hepatic copper

Celiac disease Tissue transglutaminase antibodies

Strenuous exercise AST, ALT, myoglobin,
creatinine kinase

Malignant condition AFP Ultrasound

Idiopathic Absence of markers Liver biopsy

ALT: alanine aminotransferase; ANCA: anti-neutrophil cytoplasmic antibody; AP: alkaline phosphatase;
AST: aspartate aminotransferase; AUDIT: alcohol use disorders identification test; BMI: body mass
index; CAGE: alcohol questionnaire; CDT: carbohydrate-deficient transferrin; ERCP, endoscopic retrograde
cholangiopancreatography; EtG: ethyl glucuronide; GGT: gamma-glutamyltransferase; MAST; Michigan
alcoholism screening test; MCV, mean corpuscular volume of erythrocytes; OGT: oral glucose tolerance; PCR,
polymerase chain reaction; PNPLA3: patatin like phospholipase-3; TLFB: time line follow-back.
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6. Markers of Disease Prognosis

Scoring systems based on selected combinations of biomarkers have been developed for assessing
severity of alcohol-induced tissue damage. In patients with liver disease, algorithms such as the
Child–Turcotte–Pugh score, Model for End-Stage Liver Disease, and Combined Clinical and Laboratory
Index reflect overall liver function, life expectancy and surgical mortality [19,130] (Table 3). These
parameters correlate with disease prognosis and help to stratify expected disease outcome and to
identify high-risk patients for therapy. The laboratory indices selected in these models also show
significant correlations with important morphological indices of disease severity, such as combined
morphological index (CMI) [130].

Table 3. Biomarker-based scoring systems for the severity of alcoholic liver disease.

Score Full Name Clinical and Histological
Components Laboratory Components

CPT Child-Pugh-Turcotte Ascites, encephalopathy Albumin, bilirubin, prothrombin time

MELD Model of end-stage
liver disease Bilirubin, creatinine, INR

MDF Maddrey discriminant function Bilirubin, prothrombin time

GAH Glascow alcoholic
hepatitis score Age White blood cell count, urea, prothrombin

time, bilirubin

CCLI Combined clinical and
laboratory index

Ascites, encephalopathy,
collateral circulation, edema

Hemoglobin, albumin, bilirubin, alkaline
phosphatase, prothrombin time

CMI Combined morphological index Necrosis, inflammation,
cMallory bodies

Correlates with laboratory indices of
prognostic significance

Among the most high-impact biomarkers for assessing the severity of alcoholic liver disease
(ALD) are serum bilirubin and liver-derived proteins. Bilirubin is an insoluble breakdown product of
heme, which is conjugated to glucuronic acid in the liver [55]. Strongly (5–10 fold) elevated bilirubin
levels have been shown to be a highly significant prognostic determinant and is included in most
algorithms (Table 3) [130]. Concentrations of serum albumin, ferritin, and blood clotting factors also
show characteristic changes in response to liver disease stage [55]. The half-life of albumin is about
20 days, whereas that of clotting factors is only about one day. Serum albumin, which also plays
a functional role as a circulating antioxidant, is often slightly elevated in heavy drinkers devoid of
liver disease [131,132]. In patients with advanced liver disease protein synthesis rates are markedly
decreased and levels below 25 g/L associate with poor prognosis [55,133]. In alcohol consumers
without apparent liver disease, serum ferritin synthesis rates are also increased, which can be associated
with disturbances in cellular iron homeostasis and the risk of secondary iron overload [133,134]. Iron
and alcohol can also act in a synergistic manner to enhance lipid peroxidation, oxidative stress and
associated liver injury [12,120,135,136]. On the other hand, serum ferritin can sequester catalytically
active free iron, which has been considered a possible defense mechanism towards ethanol-induced
oxidative stress [137].

7. Biomarkers of Fibrogenesis

Fibrosis in alcoholics is a response to injury, cell death and inflammation, constituting a major
determinant of patient outcome [20,138,139]. Although progression of fibrosis to irreversible cirrhosis
is largely dependent on the amounts of alcohol consumed over a long period of time, it may also
occur in an unpredictable manner in susceptible individuals. The gold standard of diagnostics is the
morphological examination of biopsy specimens, which is, however, a costly and invasive approach
with a possible risk of complications. Therefore, biomarkers for following the activity of excess
connective tissue deposition are also required. Over the past decades, several non-invasive tools have
been introduced to allow repeated examinations during patient follow-up (Table 4). In addition to
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specifically designed imaging techniques (Fibroscan), biomarkers based on collagen type-specific
peptides and various laboratory algorithms have become available [18,20,140].

Type I and type III collagens are the main types of collagen accumulating in hepatic tissue in
response to alcoholic injury. The latter is more pliable and therefore type III procollagen derived
fragments have been preferred as biomarkers [18,141]. The aminoterminal propeptide of type III
procollagen (PIIINP), is elevated in ALD and the measurements help to identify patients with
progressive collagen deposition [141]. Hyaluronic acid (HA), a mucopolysaccharide synthesized
by fibroblasts and hepatic stellate cells, also increase in ALD correlating with the progression of
perisinusoidal fibrosis and cirrhosis [138].

The inability of collagen degradation to keep pace with increased biosynthesis is a typical
feature of progressive fibrosis. The degradation of extracellular matrix is regulated by tissue
inhibitors of metalloproteinases (TIMPs), which are usually elevated in alcoholics with precirrhotic
states [138,139]. In severe stages of ALD, there seems to be prominent elevations in serum PIIINP and
proinflammatory cytokines (IL-2, IL-6, IL-8, TNF-α), which coincides with low levels of markers of
fibrolysis and anti-inflammatory cytokines (IL-10, TGF-β) [142,143]. Assays reflecting the disturbed
balance between collagen synthesis and degradation have been proposed to provide more accurate
estimates of the collagen deposition rates than analyses of any single connective-tissue derived
peptide [20,138–140,144,145] (Table 4). At this time, Fibrotest is the most widely used such algorithm
in Europe [140]. ELF (Enhanced Liver Fibrosis), a test combining serum PIIINP, hyaluronic acid
and TIMP, has also shown significant correlations with histological findings in the follow-up of
fibrogenesis [146]. Other markers include combinations of connective tissue components with blood
platelet levels [147] (Table 4).

Table 4. Biomarkers of fibrogenesis.

Marker Abbreviation Components in Combination

Connective tissue derived peptides

Aminopropeptide of procollagen type III PIIINP

Aminopropeptide of procollagen type I PINP

Carboxypropeptide of procollagen type I PICP

Carboxyterminal telopeptide of type I collagen ICTP

Hyaluronic acid HA

β-Crosslaps β-CTX

Tissue inhibitor of matrix metalloproteinase TIMP

Combination markers

Fibrotest GGT, ALT, α-2-macroglobulin,
haptoglobin, apo A1, bilirubin

Enhanced liver fibrosis ELF PIIINP, hyaluronic acid, TIMP

AST/platelet ratio APRI AST, platelet count

Traffic light test TLT PIIINP, hyaluronic acid, thrombocytes

8. Markers of Immune Activation in Alcohol Use Disorders

Table 5 summarizes useful conventional and novel biomarkers of immune activation in alcoholic
patients. The presence or absence of inflammation is a key determinant of patient outcome in
the pathogenesis of alcohol use disorders. In alcoholic liver disease, an altered balance between
pro- and anti-inflammatory status is related with progression of fibrogenesis. Proteins expressed
by immunologically active cells, such as soluble urokinase plasminogen activator receptor (suPAR)
is increased as a result of heavy alcohol consumption and further with the development of liver
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disease [148]. Several lines of recent evidence have shown that CD163, a biomarker reflecting the
activity of Kupffer cells, yields prognostically important information in alcoholic patients [149,150].
CD163 is an endocytic receptor for haptoglobin-hemoglobin complexes and is expressed specifically on
macrophages and monocytes. This biomarker also seems to show potential to identify those at risk of
developing liver cirrhosis [149–151]. Progression of liver damage in alcohol abusers is also associated
with the generation of specific immune responses directed towards chemical modification of proteins
by acetaldehyde [44,152,153].

Conventional biomarkers of inflammation, including high sensitivity CRP, and proinflammatory
cytokines, such as IL-6, can also contribute to the assessment of changes occurring even in the central
nervous system in alcohol abusers [154,155]. The presence or absence of inflammation seems to play a
pivotal role in alcohol-induced mental disorders and depression such that patients presenting with a
pro-inflammatory status may be expected to be more resistant to treatment efforts.

9. Reference Values for Biomarkers

An ideal biomarker for identifying alcohol use disorders should be easily measurable, accurate,
reproducible, cost-effective and easy to interpret by the clinician [22]. Biomarkers should help to
separate patients with the disease state from the individuals who are in good health. Biomarker-based
approaches for assessing alcohol use disorders at this time are, however, far from ideal due to lack of
knowledge concerning the definition of biomarker reference intervals [156–159]. Although an extensive
amount of previous literature is available on biomarkers of alcohol consumption, the information on
the sensitivities and specificities of even the most commonly used markers has remained controversial.
Many marker studies have contrasted extreme populations such as obvious alcoholics to teetotallers.
Studies may also have failed to distinguish between the amount of alcohol consumed and the secondary
effects of liver disease. On the other hand, studies aimed at establishing biomarker normal limits may
have failed to exclude individuals who exceed the limits of consumption which—in light of current
data—are associated with increased health risks. Not surprisingly, the upper normal limits even for
the most common liver enzymes show a great deal of variation between individual laboratories as well
as between different countries [95,157,158]. The differences are especially striking in those markers,
which are most sensitive to ethanol consumption and obesity-related morbidity, such as ALT and GGT.

Table 5. Biomarkers of immune activation in alcoholics.

Marker Abbreviations Characteristics

Macrophage receptor for
haptoglobin-hemoglobin complexes CD163 Marks Kupffer cell activation. Elevated

levels are associated with poor prognosis.

Soluble urokinase plasminogen
activator receptor suPAR Marks activation of inflammatory cells.

Associated with disease severity.

Cytokines An altered balance in the ratio of
proinflammatory and anti-inflammatory

Proinflammatory TNF-α, IL-6, IL-8 cytokines is typical during the course of
Anti-inflammatory IL-10, TGF-β liver disease progression in alcoholics.

Immune responses towards
ethanol metabolites

Anti-acetaldehyde
adduct IgA, IgG, IgM

Anti-adduct IgAs are typical in ALD.
Useful for differential diagnosis between
alcoholic and non-alcoholic causes of liver
disease.

High sensitivity
C-reactive protein hs-CRP

A marker of low-grade-inflammation.
Associated with pro-inflammatory status,
which also contributes to multiple
alcohol-induced mood disorders,
including depression.
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Recent surveys have indicated that if the reference populations consist of typical apparently
healthy individuals with a wide range of body mass index and alcohol consumption up to 20 standard
drinks per week, the upper normal limits computed based on such populations would become
29%–40% and 12%–92% higher than the corresponding limits based on normal weight abstainers for
ALT and GGT, respectively (Table 6). It is obvious that the concept of normal limits for any biomarker
sensitive to alcohol consumption needs to be revisited in different demographic populations and over
a range of different ages. This is also an important prerequisite for successful implementation of early
intervention programs.

Table 6. Comparison of upper limits of normal (ULN) of two liver enzymes based on two different
types of reference populations.

Liver Enzyme Reference Population

Normal Weight
Non-Drinkers

Moderate Drinkers with or
without Overweight Difference

ALT (U/L)
Men 50 70 +40%
Women 35 45 +29%

GGT (U/L)

Men 60 80 (age < 40 yrs) +33%
115 (age ě 40 yrs) +92%

Women 40 45 (age < 40 yrs) +12%
75 (age ě 40 yrs) +88%

Reference: Danielsson et al. [95].

10. Conclusions

Recent progress in laboratory medicine has provided us with novel possibilities for
biomarker-based assessment of health risks related to excessive alcohol use and other factors of
life style. The data gathered has also improved our understanding on the primary mechanisms of
such problems. To date, approximately every sixth individual of the adult population in most Western
countries drinks alcohol in excessive amounts. At the same time, half of the population suffers from
being overweight. A more systematic use of biomarkers of alcohol consumption, including EtG and
CDT or GT-CDT, improves the possibilities for early intervention in alcohol use disorders. Increased
activities of serum liver-derived enzymes, ALT and GGT, are useful screening tools for liver affection
but also prognostic indices of simultaneous extra-hepatic risks, such as metabolic syndrome, and
cardio- or cerebrovascular events. GGT levels are linked with the status of oxidative stress, which is a
key mechanism by which ethanol use promotes tissue injury. The presence of adiposity, unhealthy
diet or smoking in alcohol consumers increases the risk for co-morbidities in a synergistic, age- and
gender-dependent manner. In women and in those over 40 years of age, alcohol toxicity occurs
at markedly lower levels of alcohol consumption. Epidemiological and biomarker-based evidence
suggests that coffee consumption, in turn, may provide protection towards ethanol-induced oxidative
stress. Biomarkers of inflammation, fibrogenesis and various specifically designed prognostic indices
can provide additional value in the assessment of disease outcome in patients with alcohol-induced
tissue damage.

Future work should be aimed at establishing biomarker-based neural networks and prediction
models for individual disease risk assessment. More accurate estimates of safe levels of ethanol
consumption in different demographic categories are also needed. Correct definitions of biomarker
normal limits should be the first step to be taken in this direction.
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