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Abstract: This study aimed to investigate and quantify the relationship between climate variation
and incidence of Vibrio parahaemolyticus in Taiwan. Specifically, seasonal autoregressive integrated
moving average (ARIMA) models (including autoregression, seasonality, and a lag-time effect) were
employed to predict the role of climatic factors (including temperature, rainfall, relative humidity,
ocean temperature and ocean salinity) on the incidence of V. parahaemolyticus in Taiwan between
2000 and 2011. The results indicated that average temperature (+), ocean temperature (+), ocean
salinity of 6 months ago (+), maximum daily rainfall (current (´) and one month ago (´)), and
average relative humidity (current and 9 months ago (´)) had significant impacts on the incidence of
V. parahaemolyticus. Our findings offer a novel view of the quantitative relationship between climate
change and food poisoning by V. parahaemolyticus in Taiwan. An early warning system based on
climate change information for the disease control management is required in future.
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1. Introduction

Fish and seafood are central to the diet in Taiwan. The average per person fish consumption
in Taiwan was 36.5 kg/yr in 2012, which was 2.5 times higher than the world average of 14.5 kg/yr.
In Taiwan, the premier food poisoning threat over the most recent ten years has been Vibrio
parahaemolyticus, and seafood is the major food type causing food poisoning (Table 1) [1,2].
V. parahaemolyticus is naturally present in the marine and estuarine environments of tropical and
temperate areas. It is naturally of particular importance in the countries where seafood consumption
is high [3–5]. V. parahaemolyticus is a Gram-negative, halophilic bacterium. There are three major
manifestations of Vibrio infection: gastroenteritis, wound infection, and primary septicemia. Fatality
rates were 1% for gastroenteritis, but as high as 5% for wound infections and 44% for septic disease [6].
Although the microbiological aspects of seafood safety have been studied intensively for many decades,
there is still a considerable burden of food-borne illness, even in industrialized countries [7–10].

Climate change or variability is the greatest environmental challenge the world faces today [11–14].
Climate change includes changes in temperature and precipitation patterns, increased frequency and
intensity of extreme weather events, ocean warming and acidification, and changes in the transport
pathways of complex contaminants [15]. A substantial body of influential research indicates that
climate change relates to food safety because it affects microbial ecology and growth, plant and animal
physiology and host susceptibility [16–18]. These effects, in turn, could affect human health [11,19–25].

Quantitative data have indicated that climate variation is related with infectious diseases
caused by pathogenic organisms, such as Salmonella [22,26], pathogenic Escherichia coli [23], and

Int. J. Environ. Res. Public Health 2016, 13, 188; doi:10.3390/ijerph13020188 www.mdpi.com/journal/ijerph

http://www.mdpi.com/journal/ijerph
http://www.mdpi.com
http://www.mdpi.com/journal/ijerph


Int. J. Environ. Res. Public Health 2016, 13, 188 2 of 15

Campylobacter [27]. Although growing numbers of researchers have considered the influences of
climate change on human health caused by pathogenic organisms, very little attention has been paid
specifically to V. parahamolyticus, and from the perspective of Taiwan [28]. This paper therefore serves
to address this under-researched area. We aim to quantify the relationship between climate variability
and V. parahaemolyticus incidence in Taiwan in order to provide a mechanism with which to establish
an early warning system in the future.

2. Materials and Methods

2.1. Materials/Data

Monthly data for 2000–2011 of V. parahaemolyticus outbreaks (outbreak) was obtained from the
Food and Drug Administration, Department of Health, Taiwan due to data access limitations. The
climate data was obtained from the Central Weather Bureau, Taiwan, and were aggregated from all
recording stations. They were maximum, average and minimum temperature (maxtemp, avgtemp,
mintemp), maximum, average, and minimum relative humidity (maxrh, avgrh, minrh), as well as
average and maximum daily rainfall (avgrf, maxrfd). Data for oceanic temperature and salinity
(octemp, ocsant) were also obtained from Ministry of Science and Technology, Taiwan. A total of
144 monthly data values were obtained. The study area range is at latitude 20˝00’North to 29˝58’North
and longitude 115˝00’East to 124˝99’East. Regional differences were not considered in this study
because Taiwan is a small island [21].

2.2. Methods/Analysis

In order to accommodate the autocorrelation and seasonality in the time course of
V. parahaemolyticus outbreak cases, we employed a Box & Jenkins [29] seasonal autoregressive integrated
moving average model (ARIMA). This model captured variation, autocorrelation, long-term trends,
and allowed the examination of the independent impacts of the covariates such as the climatic variables.
This model has been widely used to examine the seasonality in the time course of other pathogens,
such as Salmonella [22,26], pathogenic E. coli [23], and Leptospira interrogans [30].

The seasonal ARIMA model incorporates both non-seasonal and seasonal factors in a
multiplicative model. One shorthand notation for the model was ARIMA (p,d,q)ˆ(P,D,Q)S. The
model could be written more formally as:

p1´ BSqDΦpBSq p1´ Bqd φpBq yt “ ΘpBSq θpBq εt (1)

where yt was the outbreak variable, εt was a white noise process, B was lag (or back) operator;
non-seasonal components AR(p): φ(B) = 1 ´ φ1(B) ´ φ2(B)2 ´ . . . ´φp(B)p, MA(q): θ(B) = 1 + θ1(B)
+ θ2(B)2 + . . . + θq(B)q; seasonal components AR(P): ϕ(BS) = 1 ´ ϕ1(BS) ´ ϕ2(B2S)2 ´ . . . ´ϕp(BPS),
MA(Q): Θ(BS) = 1 + Θ1(BS) + Θ2(B2S)2 + . . . + ΘQ(BQS), and d was the degree of non-seasonal
differentiation, D was the degree of seasonal differentiation, and S was the length of the seasonal cycle.
On the left side of Equation (1) the seasonal and non-seasonal AR components multiplied each other,
and on the right side of Equation (1) the seasonal and non-seasonal MA components multiplied each
other. The seasonal AR components captured the seasonal pattern of the dependent variable, and
non-seasonal AR components captured the lag-time structure of the dependent variable.

The outbreak variable was first tested for seasonal variation and stationarity by the Augmented
Dickey-Fuller (ADF) unit root test. The orders of the ARIMA(p,d,q) ˆ (P,D,Q)S model were then
determined by examining the autocorrelation function (acf) and the partial autocorrelation function
(pacf). A detailed explanation of ARIMA procedures was provided in Box and Jenkins [29]. The climate
variables were included in the model by calculating the cross-correlations function (ccf) to examine the
correlation between the climatic variables and the V. parahaemolyticus outbreaks. All ARIMA modelling
and the corresponding statistical tests were performed in the SAS/ETS 9.3 statistical software.
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3. Results

To avoid the collinearity problem of the independent variables, we calculated the Pearson
correlation coefficients between all pairs of climate variables (Table 2). The temperature variables,
maxtemp, avgtemp, and mintemp, were highly correlated (all r > 0.99) with each other, and variable
avgtemp had the highest correlation with outbreaks. We therefore selected avgtemp as the temperature
variable. For the same reason, maxrfd was selected as the rainfall variable and avgrh that for relative
humidity. Vibrio incidence was also significantly and positively correlated with average temperature
(avgtemp) (r = 0.2675), maximum daily rainfall (maxrfd) (r = 0.1402), and ocean temperature (octemp)
(r = 0.1938). Average relative humidity (avgrh) and ocean salinity (ocsant) were not clearly correlated
with Vibrio outbreaks.

We summarized the descriptive statistics of outbreaks and climate variables in Table 3. The
average values, maximum values and minimum values of outbreak variable and climatic variables
were calculated by month from 2000 to 2011. In total, 3870 V. parahaemolyticus outbreaks occurred
between 2000 and 2011 in Taiwan. On average, 26.9 cases each month occurred shown in the last
column of Table 3. Over 80% of incidences occurred between May and September which were the
warm, humid and rainy months in Taiwan. The average temperature (avgtemp) during these months
was about 3.94 ˝C higher than the annual average temperature, the average maximum daily rainfall
was 37.36 mm more than the annual average (69.4 mm), and the average ocean temperature was
0.38 ˝C higher than the annual average (20 ˝C). In contrast, the ocean salinity during this period was
0.18 Practical Salinity Unit (psu) lower than the average (34.1 psu). Outbreaks and all these climatic
variables showed annual seasonality.

Monthly incidence of Vibrio parahaemolyticus outbreaks in Taiwan from January 2000 to
December 2011 compared to climatic variables for the same period is shown in Figure 1. The
plot of the observed Vibrio parahaemolyticus incidence showed three major outbreaks in Taiwan
(2002/4–2002/9, 2003/6–2003/9, 2008/1). The bivariate analysis between crude climatic variables and
V. parahaemolyticus incidence shows that the three major outbreaks were correlated to an increase of
average temperature (Figure 1A), maximum daily rain fall (Figure 1B), relative humidity (Figure 1C),
and a slightly increase of ocean temperature (Figure 1D). V. parahaemolyticus incidence was not clearly
correlated to monthly average ocean salinity (Figure 1E). An annual seasonality was identified for all
these climatic variables.

As a first step in ARIMA modelling, we made the response series stationary, i.e., the monthly
V. parahaemolyticus outbreaks count in Taiwan. To test of stationarity, the Augmented Dickey-Fuller
(ADF) unit root test was performed. The ADF test determined whether the autoregressive term had a
unit root. The model, with the time trend specification, was:

∆yt “ a0 ` a2t` γYt´1 `

P
ÿ

i“2

βi∆yt´i`1 ` εt (2)

where, a0 was a constant, a2, r the coefficients on a time trend (t) and lag 1 period of yt, P the lag order
of the autoregressive (AR) process, and βi the coefficient of the lag order p of AR terms. The hypotheses
of ADF test was Ho: γ = 0, H: r < 0, and MacKinnon [31] one-sided p-values was performed.

The testing results were shown in Table 4. The ADF test statistics were ´9.20254, ´10.8712
and ´11.18945 for the models of zero mean without trend, single mean without trend and single
mean with trend specification, respectively. It indicated that all of the p-values were small enough
(p < 0.05) to cause to reject the null hypothesis that the series had a unit root, so that the time series of
V. parahaemolyticus outbreaks was stationary.
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Table 1. Top five pathogens and foods in food poisoning cases from 2000 to 2011 in Taiwan a.

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 Total

Top 5 Pathogens
1 Vibrio parahaemolyticus 84 52 86 82 64 62 58 38 52 61 60 52 751
2 Staphylococcus 22 9 18 7 8 12 18 23 14 30 41 27 229
3 Bacillus cereus 5 8 4 11 7 9 10 7 12 11 46 36 166
4 Salmonella 9 9 6 11 8 7 8 11 14 22 27 11 143
5 Pathogenic Escherichia coli 1 0 0 0 0 0 2 1 1 10 11 16 42

Top 5 Food
1 Seafood 8 5 15 8 6 7 7 4 10 4 12 23 109
2 Meat 2 0 3 4 0 2 4 6 2 3 5 2 33
3 Cereal 2 2 2 0 0 5 7 5 2 2 1 4 32
4 Vegetable 1 2 1 1 8 2 2 1 0 0 5 7 30
5 Bakery and confectionary 3 3 0 0 2 0 1 0 2 4 4 1 20

Total of food poisoning
outbreaks b 208 178 262 251 274 247 265 248 272 351 503 426 3485

a Adapted from food-borne disease data (in Chinese) published by Taiwan Food and Drug Administration [2]; b Total of food poisoning outbreaks covered all pathogens, natural
toxins and chemicals.

Table 2. Pearson correlation coefficients between variables, N = 144.

Variable Avgtemp a Maxtemp Mintemp Avgrf Maxrfd Avgrh Maxrh Minrh Octemp Ocsant

avgtemp 1.0000
maxtemp 0.9971 *** b 1.0000
mintemp 0.9978 *** 0.9901 *** 1.0000

avgrf 0.5261 *** 0.4889 *** 0.5516 *** 1.0000
maxrfd 0.5577 *** 0.5252 *** 0.5791 *** 0.9410 *** 1.0000
avgrh 0.4417 *** 0.4320 *** 0.4487 *** 0.4498 *** 0.3371 *** 1.0000
maxrh 0.2354 *** 0.2590 *** 0.2127 ** 0.1253 0.0678 0.7315 *** 1.0000
minrh 0.5781 *** 0.5517 *** 0.6023 *** 0.5403 *** 0.4856 *** 0.7423 *** 0.3601 *** 1.0000

octemp 0.0956 0.1003 0.0913 0.0875 0.1070 0.1498 * 0.1438 * 0.0963 1.0000
ocsant ´0.2152 *** ´0.2096 ** ´0.2167 *** ´0.1933 ** ´0.2136 ** ´0.1204 ´0.0384 ´0.1721 ´0.4668 *** 1.0000

outbreak 0.2675 *** 0.2674 *** 0.2700 *** 0.1174 0.1402 * 0.0639 ´0.0377 0.1273 0.1938 ** ´0.0064
a: Average temperature (avgtemp), maximum temperature (maxtemp), minimum temperature (mintemp), average rainfall (avgrf), maximum daily rain fall (maxrfd), average
maximum relative humidity (maxrh), minimum relative humidity (minrh), ocean temperature (octemp), and ocean salinity (ocsant); b: *, ** and *** indicate significance at the 10%, 5%,
and 1% level of probability, respectively.
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Table 3. The average, maximum and minimum values of outbreak variable and climatic variables by month from 2000–2011.

Variable (Unit) January February March April May June July August September October November December Average

outbreaks
(people)

avg 22.2 1.3 5.3 10.5 49.6 29.4 44.7 28.5 105.6 7.8 15.7 2.2 26.9
max 219 7 53 70 125 114 101 86 497 26 82 12 76.9
min 0 0 0 0 0 0 0 0 0 0 0 0 10.4

avgtemp
(˝C)

avg 15.4 16.5 17.9 20.9 23.6 25.2 26.4 26.3 25.2 22.9 20.3 17 21.4
max 16.7 19.4 19.4 22.2 24.8 26.4 27.9 27.2 26.9 24.4 21.6 18.3 22.2
min 13.6 13.9 16.1 18.7 20.9 22.9 23.4 23 22.1 20.4 17.2 15.4 19.3

maxrfd
(mm)

avg 27.7 28.7 29.2 37.7 62.9 102.4 121.4 119.9 127.2 83.1 56.9 35.8 69.4
max 54.6 52.4 46.9 66.2 104.9 186.4 232.9 307.3 303.4 180.7 150.2 103.3 91.4
min 17.1 19.2 17 8.6 19.4 37.1 27 43.5 36.7 15.2 17.3 9.2 46.8

avgrh
(%)

avg 75.3 77 75.4 76.9 77.3 79.1 77.2 78.3 78.1 75.3 75.5 73.7 76.6
max 80.6 83.1 79.9 81.6 81.9 82.5 80.5 82.5 82.2 79.7 81.1 79 78.8
min 69.3 70.6 66.7 72.9 69.6 72.5 72 71 69.6 69.6 65.1 69 70.9

octemp
(˝C)

avg 19.8 19.8 19.9 19.7 19.5 20.8 20 20.4 21.2 19.1 19.8 20 20.0
max 26.3 24.2 23 24.2 23.1 28 27.7 28.1 29.1 22.3 25.4 24.5 23.2
min 15 15.8 17.1 15.1 11.9 16 12.2 12.4 11.9 13.5 15.8 17 17.2

ocsant
(psu)

avg 34.2 34.1 34.3 34 34.3 34.1 33.5 33.7 34 34.1 34.2 34.3 34.1
max 34.5 34.7 34.6 34.6 34.5 34.5 34.4 34.6 34.5 34.6 34.5 34.5 34.5
min 33.3 33.1 33.1 33.1 33.1 32.3 27.6 30.6 33.1 33.5 33.9 33.9 32.7

Table 4. The Augmented Dickey-Fuller Unit Root Tests for outbreaks.

Type t-Statistic p-Value a

zero mean without trend ´9.20254 0.0000
single mean without trend ´10.8712 0.0000

single mean with trend ´11.18945 0.0000
a MacKinnon [31] one-sided p-values.
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Figure 1. Dashed red line: Monthly incidence of Vibrio parahaemolyticus outbreaks in Taiwan from
January 2000 to December 2011 compared to climatic variables for the same period: (A) average
temperature (AVGTEMP); (B) Maximum daily rainfall (MAXRFD); (C) average relative humidity
(AVGRH); (D) average ocean temperature (OCTEMP); (E) average ocean salinity (OCSANT).

We further used the auto-correlation (acf) and partial auto-correlation function (pacf) plots to
identify the order of the ARIMA model for the stationary series. The acf and pacf pattern of the original
time-series determined the initial autoregressive (AR) and moving average (MA) order. Figure 2
showed both acf and pacf peaked at lag 12, and all other values fell between the upper and lower
bounds of 2 standard errors. This pattern suggested the existence of an annual seasonal component of
the original outbreak-series in the time series model.
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represents the two standard error limits; (a) the acf pattern; (b) the pacf pattern.

To account for annual seasonality, we fitted several further univariate ARIMA models
with different orders and subsequently excluded any models in which the residuals exhibited
autocorrelation. Of which four univariate models, ARIMA(1,0,0)12, ARIMA(0,0,1)12, ARIMA(1,0,1)12

and ARIMA(1,0,0) ˆ (1,0,0)12 (null model#1, model#2, model#3, and model#4) had showed better
predictive Root Mean Square Error (RMSE) and lowest Akaike Information Criterion (AIC). The
estimated models were tested for residuals autocorrelation. The presence of autocorrelation was
investigated using the acf, the pacf and the correlogram reported in the Figure 3A–D. Figure 3
indicated all of the autocorrelation coefficients of the residuals did not differ significantly from zero
with all acf and pacf values fell between the upper and lower bounds of 2 standard errors. All the
performed diagnostic statistics indicated that the models pass all the tests. Their maximum likelihood
estimation (MLE) estimated coefficients were summarized in Table 5. Of these four univariate models,
ARIMA (1,0,1)12 had the best predictive RMSE and lowest AIC. We, therefore, used the model ARIMA
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(1,0,1)12, with AR at lag 12 and MA at lag 12, as the baseline univariate model for further comparisons.
The selected model could be written as follows:

´

1´ 0.7526B12
¯

yt “ 8.4141`
´

1´ 0.6836B12
¯

εt (3)

where, yt represented the V. parahaemolyticus outbreaks. In order to incorporate the climate variables as
input variables to the baseline univariate model, we first used ccf to examine the correlations between
V. parahaemolyticus outbreaks and the environmental series. Figure 4 indicated that there were
significant correlations (based on the two standard error limits) of outbreaks with monthly average
temperatures at lag 0 to 8, monthly average relative humidity at lag 8 to 10, monthly maximum
daily rainfalls at lag 7 and ocean temperature at lag 0. It was therefore evident that the original
time-series was correlated with these climatic factors. Subsequently, the baseline univariate model
(ARIMA (1,0,1)12) with one or more climatic variables included were estimated. Several models
were computed and only models with statistically significant coefficient were selected, ensuring the
non-autocorrelation of residuals at 5% significant level. The estimated coefficients of ARIMA(1,0,1)12

for V. parahaemolyticus outbreak series with climatic variables were shown in Table 6. For these covariate
models, the best fit was obtained from ARIMA(1,0,1)12 with average temperature, current and one
month previous maximum daily rainfall, current and 9 months previous relative humidity, ocean
temperature, and ocean salinity of 6 months previous as covariates had the best prediction RMSE and
lowest AIC. The selected model could be written as follows:

yt = ´310.1019 ´ 0.0211 yt´12 + 3.5590 avgtempt ´ 0.0151 maxrfdt

´0.1734 maxrfdt´1 + 0.9559 avgrht ´ 4.5770 avgrht´9 + 4.5140 octempt (4)

+13.4580 ocsantt´6 + 0.5153 εt´12 + εt

where, yt represented the V. parahaemolyticus outbreaks, yt´12 12 months previous outbreak, avgtempt

current average temperature, maxrfdt current maximum daily rain fall, maxrfdt´1 one month previous
maximum daily rain fall, avgrht current average relative humidity, avgrht´9 9 months previous
average relative humidity, octempt current ocean temperature, and ocsantt´6 ocean salinity of 6 months
previous. Comparing the model with the baseline univariate model (ARIMA(1,0,1)12), we found that
including the environmental input series improved the AIC by 1.57% and the predictive RMSE by
2.54% compared to the baseline model.
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standard error limits.
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Table 5. The estimation results of ARIMA model for Vibrio parahaemolyticus outbreak series:
univariate models b.

Variable ARIMA(1,0,0)12
a ARIMA(0,0,1)12 ARIMA(1,0,1)12 ARIMA(1,0,0) ˆ (1,0,1)12

Intercept 24.5430 *** b 26.4550 *** 8.4141 *** 14.9992
AR at lag1 0.0636

AR at lag 12 0.3826 *** 0.7526 *** 0.7995 ***
AR at lag 13 ´0.0473
MA at lag 12 0.3790 *** ´0.6836 ´0.6372 ***

AIC 10.8494 10.8170 10.7066 10.7647
RMSE 54.0868 53.2847 49.7958 50.3811

a The four univariate models can be represented as follows: model#1, ARIMA(1,0,0)12 : (1 ´ Φ1B12)yt = u + εt,
model #2, ARIMA(0,0,1)12 : yt = u + (1 + ΘB12) εt, model #3, ARIMA(1,0,1)12 : (1 ´ Φ1B12)yt = u + (1 + ΘB12)εt,
model #4, ARIMA(1,0,0) ˆ (1,0,1)12: (1 ´ Φ1B12)(1 ´ φB)yt = u + (1 + ΘB12)εt. where, yt is outbreak; εt is a white
noise process; u is intercept; Φ, Θ and φ are estimate parameters, and B is lag (or back) operator; b *** indicate
significance at the 1% level of probability, respectively.

The best fit model indicated that average temperature, ocean salinity of 6 months previous,
and ocean temperature were all significantly and positively related to V. parahaemolyticus outbreaks.
Thus outbreaks might increase when increasing in current temperature or ocean temperature or,
when increasing in ocean salinity of 6 months previous. However, there were significant negative
relationships of outbreaks with maximum daily rainfall of a month previous or relative humidity of
9 months previous. This relationship meant that increased heavy rain or increased relative humidity
9 months previously may reduce current outbreaks.

Table 6. The estimation results of ARIMA(1,0,1)12 for Vibrio parahaemolyticus outbreak series with
climatic variables: Covariate models.

Variable Covariate #1 Covariate #2 Covariate #3 Covariate #4

Intercept ´344.9471 ´368.2690 ´364.3913 * ´310.1019
AR at lag 12 0.3518 *** a ´0.0211
MA at lag 12 0.3230 *** 0.5153 ***

avgtemp 3.8521 ** 4.7055 *** 2.3822 3.5590 ***
avgtemp at lag1 2.2843

maxrfd ´0.1022 ´0.1630 * ´0.1401 * ´0.0151
maxrfd at lag1 ´0.1307 ´0.1368 * ´0.1682 ** ´0.1734 **

avgrh 1.1641 1.2892 1.2607 0.9559
avgrh at lag9 ´4.2791 *** ´3.7936 *** ´4.0850 *** ´4.5770 ***

octemp 4.7350 *** 4.1967 *** 4.4053 *** 4.5140 ***
ocsant at lag6 13.0870 ** 12.2781 ** 12.8271 ** 13.4580 ***

AIC 10.8543 10.8054 10.7346 10.5413
RMSE 51.8809 54.5196 51.3805 48.5625

a *, ** and *** indicate significance at the 10%, 5%, and 1% level of probability, respectively.

4. Discussion

4.1. Key Findings

The results from our models were consistent with expectations and with results in the literature.
The variables associated with food-borne diseases were ambient temperature, ocean temperature, ocean
salinity, and rainfall. Ambient temperature, ocean temperature, and ocean salinity were positively
related to V. parahemolyticus outbreaks. Rainfall was negatively related to V. parahemolyticus outbreaks.

Theoretically, temperature was likely to influence the growth of V. parahaemolyticus.
V. parahaemolyticus can grow well at below 10 ˝C, moreover, its generation time can be as fast as
10 min at ~37 ˝C [32]. Our empirical evidence showed that environmental temperature was the major
factor determining the seasonality of growth and the geographical distribution of V. parahaemolyticus
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in shellfish [33,34]. The results from our models were largely consistent with expectations and results
published in the literature. For example, there was a significant positive correlation between the mean
temperature of the previous month and the number of salmonellosis notifications in the current month
in five Australian cities. The increase in notifications was 4%–10% for every degree of temperature
rise. Tam et al. [27] also investigated the relationship between ambient temperature and Campylobacter
enteritis using time-series analysis to study short-term associations between temperature and number
of Campylobacter reports in England and Wales. They also adjusted for long-term trend and seasonal
patterns. They found a linear relationship between mean weekly temperature and reported C. enteritis.

In addition, our results also confirmed the importance of salinity as a climate predictor of seafood
poisoning outbreaks. Compared to V. vulnificus, V. parahaemolyticus could tolerate higher salinity
levels [35,36]. V. parahamolyticus could survive at salinity ranging from 10 to 34 ppt, with 23 ppt as
its optimum salinity [28]. Although recent researches had considered impacts of climate change on
salinity in costal and marine ecosystems [15,37], very little empirical evidence had been given on
influences of salinity on seafood poisoning outbreaks. Recently, Young et al. cconducted meta-analysis
to exam impacts of salinity on V. parahaemolyticus in oysters at harvest and in harvest waters [38].
They found no consistent relationship for water salinity. They further explained this might be due
to poor reporting of study sampling methods and quantitative outcome data from collected articles.
We thus encourage further research to investigate the impact of salinity in other regions or in other
waterborne pathogens.

Rainfall was negatively related to V. parahemolyticus outbreaks as in covariate #3 and covariate
#4. Deepanjali, Kumar and Karunasagar [34] also found that V. parahaemolyticus abundance was high
during the dry season and low after rainy seasons. This might result from pathogen concentrations in
estuaries being diluted by heavy rain thus reducing contamination of oysters and other filter feeding
shell fish. In both Brisbane and Townsville rainfall was also a significant factor in regression models of
climate effects on cases of Salmonella infection [26].

Furthermore, our findings also indicated that ambient temperature, ocean temperature, ocean
salinity had higher impacts than rainfall on microbial seafood safety. This echoed reports in the
literature showing that temperature change plays an important role in food-borne diseases [22,23,26,27].
In distinction to other studies of food pathogen outbreaks, we also proved here the importance to
V. parahaemolyticus outbreaks not only of ambient temperature, but also of ocean factors such as ocean
temperature and ocean salinity. Marques et al. [11] contend that a combination of environmental and
genetic factors might play a key role in the presence or absence of virulent Vibrio spp. because it may
alter the deposition of material in bivalve shells or the composition of plankton exoskeletons. This
will in turn directly change the habitat of Vibrio spp., so forcing the organism to adapt genetically
and produce strains with great virulence. We likewise demonstrated that knowing the effects of
multiple climate factors on food-borne diseases was necessary for an intensive examination of accuracy
in predicting disease. Moreover, effort should also be devoted to individualize more precisely the
consequences of these interactions on V. parahaemolyticus infections in order to better identify control
and mitigation measures [39].

Overall, increases of seafood contamination by V. parahaemolyticus in Taiwan due to climate
changes could be explained as below. V. parahaemolyticus is part of the natural flora of estuarine and
coastal marine environments. Climate change will likely influence the vulnerability of estuaries to
eutrophication in several ways, including changes in temperature, sea level, and exchange with the
coastal ocean and salinity [15,40,41]. This then will influence aquatic animals, which are vulnerable to
climate change because their related metabolic processes are influenced by water temperature, salinity,
and oxygen levels [42]. This in turn may favour a group of potentially emerging microbiological
pathogens, the marine Vibrios, which are a genus of thermodependent bacteria which thrive in naturally
warm sea water. Furthermore recent studies regarding climate impacts on marine systems in Taiwan
has provided some evidence. For example, Chang et al. [43] and Lee et al. [44] observed that extreme
weather and marine environmental changes induced by climate change could harm the marine fish
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population and aquaculture. Lu et al. [45] also observed that increased sea surface temperatures could
causes fluctuations in the presence of cold-water and warm-water fishes and in the timing of fishing
seasons in coastal zones of the Kuroshio Current and China Coastal Current. Chou et al. [21] also
proved that climatic variations could influence diarrhea-associated morbidity in Taiwan. Thus, we can
speculate that the increased seafood contamination by V. parahaemolyticus in Taiwan could be caused
by climate changes.

4.2. Limitations

This research made an important contribution to the academic literature and provided the
potential for positively influencing risk management practice; there were nonetheless limitations
that provide opportunities for further research. First, our results were only for Taiwan. To generalise
our findings we encouraged the implementation of similar studies in other countries. Second, we
evaluated only temperature, humidity, and rainfall as predictors. We support, therefore, the inclusion in
future studies of other oceanic factors, such as ocean turbidity, dissolved oxygen, and pH. For example,
Parveen et al. [33] indicated that dissolved oxygen might increase V. parahaemolyticus abundance. Third,
our analysis found that key predictors were related to the number of cases of V. parahaemolyticus
infection. We suggested therefore that future studies should investigate the individual effects of these
predictors on fishery production, fishery manufacturing, and the distribution system [10,46].

5. Conclusions

This research provided empirical evidence for the relationship between V. parahaemolyticus
outbreaks and climatic change factors. Our results showed that average temperature, ocean salinity
of 6 months previous, and ocean temperature were all significantly and positively related to
V. parahaemolyticus outbreaks. However, there were significant negative relationships of outbreaks
with maximum daily rainfall of a month previous or relative humidity of 9 months previous. Our
findings also indicated that ambient temperature, ocean temperature, ocean salinity had higher
impacts than rainfall on microbial seafood safety. Overall, our findings predicted that, in Taiwan, food
poisoning caused by V. parahaemolyticus was related with climate factors. It is hoped that the findings
of this research will help to guide public health and community interventions to protect Taiwanese
consumers. Thus, future research into the health impacts of extreme weather events, and early warning
and response tools is required.
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