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Abstract: Traffic and environmental conditions (e.g., weather conditions), which frequently change
with time, have a significant impact on crash occurrence. Traditional crash frequency models with
large temporal scales and aggregated variables are not sufficient to capture the time-varying nature
of driving environmental factors, causing significant loss of critical information on crash frequency
modeling. This paper aims at developing crash frequency models with refined temporal scales for
complex driving environments, with such an effort providing more detailed and accurate crash
risk information which can allow for more effective and proactive traffic management and law
enforcement intervention. Zero-inflated, negative binomial (ZINB) models with site-specific random
effects are developed with unbalanced panel data to analyze hourly crash frequency on highway
segments. The real-time driving environment information, including traffic, weather and road surface
condition data, sourced primarily from the Road Weather Information System, is incorporated into
the models along with site-specific road characteristics. The estimation results of unbalanced panel
data ZINB models suggest there are a number of factors influencing crash frequency, including
time-varying factors (e.g., visibility and hourly traffic volume) and site-varying factors (e.g., speed
limit). The study confirms the unique significance of the real-time weather, road surface condition
and traffic data to crash frequency modeling.

Keywords: hourly crash frequency; real-time driving environment; unbalanced panel data;
zero-inflated negative binomial; refined temporal scale

1. Introduction

Despite all the efforts during the past decades, traffic crashes are still the primary threat on
highways in most countries. A better understanding of the critical contributing factors and the
ability to predict the crash risk has become the key to various prevention efforts, such as advanced
traffic management, proactive law enforcement, and injury mitigation. Traditionally, most crash
frequency models used aggregated information with relatively large time scales (e.g., yearly), rather
than detailed, time-varying data in smaller time scales (e.g., hourly, daily, or weekly). Real time traffic
and environmental conditions (e.g., weather conditions) have significant impact on crash occurrence,
therefore the large scales and aggregated variables may not be sufficient for some complex or adverse
driving conditions, such as inclement weather and/or complex terrains.

As a result of adopting larger time scales, some important information of critical driving
environmental variables over time (e.g., weather or traffic data) is often lost [1]. Therefore, the
crash frequency models developed with aggregated data can only provide the results based on average
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or cumulative data over longer time periods, which may lose potentially important explanatory
information and also introduce error due to unobserved heterogeneity [2]. In addition to possible error,
some real-time driving environmental variables may not be found significant until more refined
data and temporal scales are used in the model. This is especially critical for locations where
some explanatory variables experience considerable variations temporally (e.g., inclement weather,
rush hours).

Although it seems obvious that crash frequency models with more refined temporal scales are
more desirable, to develop appropriate models with detailed time-varying and spatial-varying data
is not straightforward. By using more refined data in temporal domain, the same road segment may
generate multiple observations, which will be correlated over time by sharing unobserved effects [1].
The temporal correlations, if they exist, pose methodological challenges on rationally predicting crash
frequency. This is likely another reason that people often attempt to use more aggregated data to
develop crash frequency models, although some useful information of the explanatory variables are
inevitably lost.

In recent years, with the popularity of ITS applications around the world, rich data source,
including continuously monitoring real-time data, becomes more readily available on many major
highways. With the detailed monitoring data, some attempts have been made to develop crash
frequency models with more refined scales, which primarily focus on real-time relative crash risk
or likelihood. There are, however, very few studies on the modeling of crash frequency in refined
scales and more details can be found in the following literature review subsections. The present study
reports the recent efforts on developing crash frequency models in refined temporal scales using
disaggregated and unbalanced panel-data structure. Zero-inflated negative binomial models with
random effects are developed using panel data in the present study to deal with temporal correlation as
well as dominating zero observations. The inherent correlations of observations with a comprehensive
coverage of all major contributing factors, including real-time environmental conditions, will also be
appropriately considered. Interstate highway I-25 in Colorado will be studied to demonstrate the
methodology and provide some interesting findings.

1.1. Real-Time Crash Risk Models in Refined Temporal Scales

As discussed earlier, the adoption of aggregated data may cause some important detailed
information being lost in the model [1]. In recent years, in addition to crash frequency and
crash rate models, many studies have emerged primarily developing real-time crash frequency
models which estimate the likelihood of crash occurrence using short-term traffic and environmental
conditions [3–16].

In these studies, historical crash data has been typically linked with real-time traffic and
environmental data. In most of these studies, rather than direct crash frequency modeling, the relative
crash probability was often predicted and compared with the crash probability under conditions
without crashes [14]. For example, the matched case–control design has been frequently utilized
in these crash probability studies [12,14,16,17], in which several (e.g., four) non-crash cases were
matched for each specific crash case. Some other methods have also been adopted to develop the crash
probability models, including neural network [18] and Bayesian network [10]. In these studies, the
data structure was based on case-control of crash records instead of the data with both spatial and
time varying information for road segments. Roshandel et al. [19] and Theofilatos [20] reviewed the
papers about real-time freeway crash modeling to provide a summary impact of traffic and weather
characteristics on crash occurrence. Therefore, the present study is different from these existing
studies by developing a direct crash frequency model for road segments rather than relative crash
probability models.
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1.2. Crash Frequency Models: Panel Data Application and Zero-Inflated Consideration

By directly quantifying crash counts, crash frequency modelling is an important tool to study
crash risks on highways. A significant number of count models have been developed to predict crash
frequency during the past several decades. The Poisson model is a popular starting point among
various count models, with the negative binomial (NB) model being an extension of the Poisson model
to handle crash data with over-dispersion issues. In social and behavioral science, panel data models
have been extensively used for data with both spatial and time varying information while still taking
account of the heterogeneity of the individuals. Because road crash data also has cross-sectional and
time-serial nature, panel data count models, such as fixed effects or random effects Poisson models
and negative binomial models, have been adopted for crash frequency analysis in recent years. For
instance, Noland [21] and Noland and Oh [22] used the fixed negative binomial models to study the
impacts of roadway infrastructure improvements on fatal and injured traffic crash frequencies based
on the aggregate state-wide and county-level data. The fixed effects Poisson or negative binomial
models, which are conditioned on the total number of observed crashes, do not allow for site-specific
or time-specific variations.

To deal with such a limitation, Shankar et al. [23] first developed a random effects negative
binomial model to investigate the impacts of geometric and traffic factors on median crossover crash
frequency. In addition to random effects negative binomial models, some other random effect or
random parameter crash frequency models have also been explored [24–30]. Anastasopoulos and
Mannering [27] developed a random parameter negative binomial model to predict annual crash
frequency using 9-year data. Aguero-Valverde [29] compared random effect Poisson-gamma and
Poisson-lognormal models and traditional Poisson-gamma and Poisson-lognormal models when
before- and after- analyses of road safety countermeasures were carried out. In addition to panel data
modeling, it is worth mentioning that the negative multinomial model can also be used to investigate
temporal and cross-sectional variations simultaneously. For example, the negative multinomial model
using a multi-year panel of cross-sectional roadway data was developed to predict the number of
median crossover crashes by Ulfarsson and Shankar [31]. In the study conducted by Caliendo et al. [32],
Poisson, negative binomial and negative multinomial regressions were compared in terms of predicting
crash frequency of multi-lane roads. The main focuses of these panel crash frequency models were
to deal with correlated data caused by yearly repeated observations (multi-year crash frequency)
reflecting long-term effects of contributing factors. For example, when traffic flow and weather
information were being considered, existing crash frequency model applications usually utilized
long-term average data, such as annual average daily traffic volume and/or annual days with rainfall
in a year [33].

One challenge associated with crash frequency modelling is excess zero crash observations,
especially when the sample scale is reduced. As a result, excessive zeroes in the records need to
be taken care of if a refined-scale model with panel data is to be developed. As an extension of
standard Poisson and negative binomial regression, Zero-inflated Poisson (ZIP) and Zero-inflated
negative binomial (ZINB) models have attracted considerable attention [23,34–36]. Although also
facing some criticism [37,38], these models are found to provide a statistically superior fit to the data
in some recent applications [39,40]. Some efforts have also been made using random effect or random
parameter zero-inflated models to predict annual crash frequency. Huang and Chin [41] tried to use a
random effects zero-inflated Poisson regression to study the crash frequency using 8-year crash data
in Singapore in a yearly temporal scale. Dong et al. [30] adopted a multivariate random-parameter,
zero-inflated, negative binomial regression model to estimate annual crash frequencies at intersections
using 5-year data. While crashes are extremely rare over the considered time period (e.g., one day or
one hour), the zero-crash state may be presented as a reasonable theoretical and empirical construct
for the description of dominating virtually safe states on some roadway segments [42]. Recently,
generalized ordered response models which subsume standard count models as subcases and provide
more flexibility than zero-inflated models were developed [43]. For example, Castro et al. [43] proposed
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an equivalent latent variable-based generalized ordered response framework to study crash frequency
at urban intersections, which can also handle excess zeros in correlated count data. But so far, studies
which focus on developing crash frequency models with refined temporal scales are still rare. This
paper intends to contribute to the literature by developing refined scale crash frequency models while
addressing zero-inflation and serial correlations simultaneously. Although the present method is more
time consuming to gather all non-accident cases, it can avoid some key information loss including
both spatial and time varying information for road segments.

2. Data Description

In preparation for this study, we first establish a comprehensive crash database containing
information on crash record, road design, real-time traffic flow, weather conditions and road surface
conditions. The database includes hourly distributions of crash, traffic, weather and road surface data
for each roadway segment (in average 1-mile length) for both driving directions of one portion of
interstate I-25 in Colorado, with the total length of 55.93 miles. A relational database is assembled
with information from four sets of data in this study: (1) one year of crash database (from January
2010 to January 2011) provided by the Colorado State Patrol (CSP); (2) road segment geometric
characteristic data provided by the Colorado Department of Transportation (CDOT); (3) real-time
weather and road surface condition data recorded by five weather stations along the I-25 roadway
segment; and (4) real-time traffic data detected by forty-three traffic flow monitoring stations along
this segment. The combination of these data sets provides a very rich source of information that allows
us to comprehensively study almost all the possible factors influencing crash frequency in refined
scales. It should be noted that the real-time weather, road surface condition and traffic data in this
study is primarily from the Road Weather Information System (RWIS), which is available on many
major highways across the United States. The dependency on the data from RWIS offers significant
advantage over very rare or inaccessible data source in terms of conveniently transferring the proposed
technology to other highways without additional investments on data collection facilities.

The I-25 corridor in Colorado being studied is between the City of Castle Pines and the City of
Northglenn which includes segments across the City and the County of Denver. The 28.55-mile north
bound portion of I-25, starting at mile marker (MM) 188.49 and ending at MM 221.03, is split into 29
segments. Similarly, the 27.38-mile south bound potion of I-25, starting at MM 188.49 and ending at
MM 219.86, is split into 28 segments with an average length of each segment being around 1 mile. The
segments are split in a homogeneous pattern based on changes of geometric features, including curve,
longitudinal grade, speed limit etc. according to the CDOT Roadway Characteristics Inventory (RCI)
and traffic station assignment. If a distinct variance of road design within one road segment exists (e.g.,
variance of lane width, number of lanes, speed limit, shoulder type, median type), the road segment
will be re-segmented based on different geometric designs.

The corresponding traffic flow and environmental data of each roadway segment is also used in
the analysis. Information about temperature, visibility, humidity, wind and precipitation, and road
surface conditions is provided by the RWIS. The RWIS stations report frequent readings as the weather
conditions change within a short time period. For example, visibility in general can be described as the
maximum distance that an object can be clearly perceived against the background sky. We choose the
lowest clear distance in miles that drivers can see in any hour as an hourly measure of visibility. In
this study, the detailed precipitation and road surface condition data for each geographical location
and time period is also obtained. Road surface condition types defined in the CDOT database include
Dry, Wet, Trace Moisture, Chemically Wet (moisture mixed with anti-icer), Ice Warning, Ice Watch and
so on. Each segment of the study has been assigned to the nearest weather station according to the
mile marker. The weather stations report the weather and surface conditions with 20-min intervals
in average and the raw data is combined into the data with 1-h interval. The hourly road surface
condition is defined with the dominant road surface condition type of that particular hour period. For
example, if the weather station recorded two times of wet road surface and one time of dry road surface
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in one given hour, the hourly road surface condition will be determined as wet road surface. Therefore,
for each segment and each hour, the hourly average weather record closest to the road segment has
been extracted and used as the hourly environmental condition of that particular road segment.

In the proposed model, we derive directional hourly traffic volumes for all road segments
from 43 traffic stations. There are 22 and 21 traffic stations located on the north and south bounds
respectively which provide speed, volume and occupancy information. The sensors record 2-min
aggregation of speed, volume and occupancy, and the hourly average speed, volume and occupancy
for each segment are calculated from this data. Real-time traffic speed influences crash probability, but
is also partially controlled by the speed limit of each road segment (the upper limit of the real-time
speed is the legal speed limit in the CDOT database). Thus we choose both the speed limit and the
difference between the speed limit and the current traffic speed (i.e., speed limit minus traffic speed) to
facilitate following analysis.

Temporal dummy variables including night indicator, sunrise indicator and sunset indicator
are calculated based on the 2010 Colorado Sunrise Sunset Calendar for each hour. Other temporal
variables are in terms of month, day of the week, and hour of the day representing the influences of
temporal distribution on crash frequency. One of the traffic characteristics, truck percentage, adopts
the peak time truck percentage value between 6–8 am and 4–6 pm, with the off-peak truck percentage
falling in all remaining hours of a day.

Note that the real-time data is not recorded in a perfectly continuous manner due to possible
malfunction of the data loggers or disruptions. For example, sometimes some weather stations may
lose power and engineers may not be able to find and fix the problem promptly. As a result, some
empty “windows” may exist in the weather, road surface and traffic data records. The sample thus
comprises a total of 328,529 observations (one observation for one road segment in an hour, totaling
for 57 road segments and for 365 ˆ 24 h) after deleting those observations without real-time traffic
or environmental data. Table 1 summarizes the characteristics of the 328,529 observations, which
are statistically significant variables (p-value < 0.1) in the final models. For example, November
indicator is included in Table 1 because other month indicators are not found statistically significant.
The crashes have been assigned to each segment according to the mile marker (MM). A total of 1352
crashes occurred at the corresponding road segments during the one-year period are considered in the
analysis. A total of 99.6% of observations are zeroes (for one road segment in an hour). The data exhibit
over-dispersed as the mean and std. dev. of crash frequency is equal to 0.004 and 0.066, respectively
(Table 1). Only statistically significant variables (p-value < 0.1) are included in the final models to
capture the crash characteristics on I-25 in Colorado.

Table 1. Summary statistics of the data for observations.

Variable Mean Std. Dev Minimum Maximum

Crash frequency 0.004 0.066 0 4

Environmental characteristics
Wet road surface 0.082 0.275 0 1
Chemically Wet road surface 0.037 0.188 0 1
Visibility (miles) 1.075 0.136 0.000 1.100
Cross wind speed (mph) 4.147 3.906 0.000 31.980
Average precipitation rate per minute(inches) 0.021 0.443 0 32
Average temperature (˝F) 57.016 24.473 ´1.333 159

Traffic characteristics
Speed limit (mph) 61.027 5.327 55 75
Speed limit minus traffic speed (mph) 2.642 5.533 0.000 69.180
Hour traffic volume (in 1000 vehicles per hour) 2.916 2.101 0.030 14.988
Truck percentage (%) 6.215 1.922 2.800 10.700
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Table 1. Cont.

Variable Mean Std. Dev Minimum Maximum

Temporal characteristics
Night 0.431 0.495 0 1
Sunset 0.062 0.241 0 1
November 0.095 0.294 0 1
4 am–5 am 0.040 0.196 0 1

Road characteristics
Number of merging ramps per lane per mile 0.252 0.215 0.000 0.926
Segment length (miles) 1.014 0.769 0.236 4.500
Number of lanes 4.159 0.562 3 5
Remaining service life of rutting 97.013 2.984 86.000 100.000
Curvature (degree) 0.947 0.681 0.000 2.260
Good pavement condition 0.419 0.493 0 1
Median width (ft) 13.812 28.604 4 183
Outside shoulder width (ft) 10.335 2.181 6 15
Inside shoulder width (ft) 9.006 2.583 5 15
Grade (%) ´0.018 1.206 ´2.334 2.334

3. Methods

To relax the over-dispersion constraint imposed by the Poisson model, a negative binomial
distribution is commonly used [23,34,44,45].

The negative binomial distribution is shown as:

Ppnitq “
Γpp1{αq ` nitq

Γp1{αqΓpnit ` 1q

ˆ

1{α
p1{αq ` λit

˙1{α ˆ λit
p1{αq ` λit

˙nit

(1)

where Γ is the factorial function, nit is the number of crashes on roadway segment i during period
t, Ppnitq is the probability of nit crashes occurring on this observation, α is an additional estimable
coefficient and λit is the Poisson parameter which equals the expected value of nit(Epnitq):

λit “ exppβNBXit
NBq (2)

where βNB is the vector of unknown regression coefficients, and Xit
NB is the vector of covariates

determining crash frequency on roadway segment i in time period t, such as the roadway segment
geometric characteristics and environmental characteristics.

Zero-inflated negative binomial (ZINB) regression models have been developed to address the
possibility of zero-inflated crash state. One process has the roadway segment in a non-negative count
state for crash frequency (i.e., a normal count process for crash frequency that has a frequency outcome
determined by negative binomial distribution). Another process is the zero-crash state where the
roadway segment is virtually safe during a specific time period, which may be qualitatively different
from Poisson or negative binomial distributed crash frequency counts.

ZINB assumes that the events nit (roadway segment i in time period t) are independent, and:

Prnit “ 0s “ qit ` r1´ qitsRitp0q (3)

Prnit “ j ą 0s “ r1´ qitsRitpjq (4)

where:

Ritpyq “
Γpp1{αq ` yq

Γp1{αqΓpy` 1q

ˆ

1{α
p1{αq ` λit

˙1{α ˆ λit
p1{αq ` λit

˙y
(5)

where the definitions of the parameters are the same as the basic negative binomial models, except
that the general formulation of qit is defined as:

qit “ exppβzXit
z q{p1` exppβzXit

z qq (6)



Int. J. Environ. Res. Public Health 2016, 13, 609 7 of 16

where βz is the estimated coefficient vector in zero-crash state and Xit
z are the vectors of variables of

roadway segment i during period t in zero-crash state.
In the standard Poisson, NB and ZINB models, it is assumed that observations are independent

and such an assumption is possibly violated in repeated measures such as crash counts at the
same specific site during different time periods. There is almost certain correlation among repeated
observations at a specific site due to some unobserved crash-induced factors. Hence, it is necessary
to consider the site-specific effects in the ZINB model, especially when repeated measures inevitably
occur for disaggregated data considering time-varying effects. ZINB with site-specific random effects
can be expressed in the following.

We denote the total number of observations as N:

N “

I
ÿ

i“1

ti (7)

where i = 1, ... , I, and ti is the number of repeated observations in site i (site-specific panel data
structure), I is the total number of different sites. For balanced panel data, ti is the same for all sites.
Because the real-time weather, road surface and traffic data was not recorded in a perfectly continuous
manner, ti is not all the same and thus the panel data structure here was actually unbalanced.

The zero-inflated Negative Binomial model with site-specific random effects is shown as,

nit “ 0 (8)

with the probability of:

qit ` p1´ qitq

„

1{α
p1{αq ` λit

1{α
(9)

nit “ y; py “ 1, 2, . . .q (10)

with the probability of:

p1´ qitq

«

Γpp1{α` yqu1{α
it p1´ uitq

y

Γp1{αqy!

ff

(11)

where:
uit “ p1{αqrp1{αq ` λits (12)

λit “ exppβNBXit
NB ` σiq (13)

logitpqitq “ lnp
qit

1´ qit
q “ βzXit

z ` ψi (14)

The definitions of other parameters are the same as previous equations. σi and ψi are the
site-specific random effects for the two states with independent normal distributions, i.e., σi „ Np0, ϕ2

σi
q

and ψi „ Np0, ϕ2
ψi
q (ϕσi and ϕψi are the standard deviations of σi and ψi).

Although it is obvious that there are dominating zero crash observations in the refined panel
data, questions still remain about whether zero-inflated crash frequency models are truly statistically
more appropriate than traditional counterparts. To test the appropriateness of adopting a zero-inflated
model, Vuong [46] proposed a t-statistic-based test where the statistic is determined through firstly
computing mit:

mit “ ln
ˆ

f1pyit|Xitq

f2pyit|Xitq

˙

, (15)

where f1 pyit|Xitq is the probability density function of the zero-inflated negative binomial model and
f2 pyit|Xitq is the probability density function of the parent negative binomial distribution.
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Vuong’s statistic is computed as [23,47]:

V “
m
?

N
Sm

(16)

where m and Sm are the mean and the standard deviation of m, respectively. N is the sample size. The
Vuong’s statistic V as defined in Equation (16) is asymptotically and standard normally distributed, so
if the absolute value of V is less than 1.96 (the 95% confidence level for the t-test), the test favors the
normal negative binomial. Similarly, the zero-inflated regression model is preferred if the absolute
value of V is greater than 1.96 [47]. To carry out the test, both the parent and zero-inflated models need
to be estimated and tested using t-statistic. Statistical software SAS version 9.3 (SAS Institute Inc., Cary,
NC, USA) is used for the modeling.

4. Results

The model results for the panel data zero-inflated negative binomial estimations with site-specific
random effects are presented in Table 2. The estimation results of unbalanced panel data zero-inflated
negative binomial models suggest that there are many factors influencing the crash frequency on I-25
including time-varying factors (e.g., visibility and hourly traffic volume) and site-varying factors (e.g.,
speed limit and number of lanes). A number of factors, which significantly influence the frequency of
crashes, are identified, including those of environmental, traffic, temporal, and road characteristics.

The random effects parameters are significant at 99.9% level, which confirms the appropriateness
of adopting random effect specification (t-statistic for σi is 7.54). The over-dispersion parameter α

is statistically significant (t-statistics of 3.57), which implies the negative binomial model is indeed
preferred over the Poisson model. The selection of zero-inflated model is endorsed by the Vuong’s test
results for zero-inflation (V = 4.48 for model with site-specific random effects). Therefore, random effect
zero-inflated negative binomial model is confirmed to be the most appropriate one for the present
study. To save space, only the detailed model results from the random effect zero-inflated negative
binomial model are presented hereafter.

Table 2. Random effect zero inflated negative binomial estimation results.

Variable Estimate Coefficients t-Statistic

Zero-inflated State

Constant ´10.731 ´5.84

Environmental characteristics
Visibility (miles) 0.959 1.78
Wet road surface indicator (1 if the road surface is wet, 0 otherwise) ´1.663 ´3.64
Chemically Wet road surface indicator
(1 if the road surface is chemically wet, 0 otherwise) ´1.864 ´5.04

Traffic characteristics
Hourly traffic volume (in 1000 vehicles per hour) ´0.611 ´9.06
Truck percentage (%) 0.439 5.95

Temporal characteristics
Night indicator (1 if the time period is at night, 0 otherwise) 0.352 1.94

Road characteristics
Segment length (miles) 0.755 4.60
Number of lanes 1.917 6.10
Good pavement condition indicator
(1 if the pavement condition is good, 0 otherwise) 0.680 2.63
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Table 2. Cont.

Variable Estimate Coefficients t-Statistic

Negative Binomial State

Constant ´10.673 ´9.31

Environmental characteristics
Cross wind speed (mph) ´0.013 ´1.75
Wet road surface indicator (1 if the road surface is wet, 0 otherwise) ´0.529 ´3.70

Traffic characteristics
Low speed limit (1 if the speed limit is less than 60 mph, 0 otherwise) 0.387 1.83
Difference between speed limit and current traffic speed
(speed limit minus traffic speed) 0.081 29.75

Truck percentage (%) 0.107 2.69

Temporal characteristics
Sunset indicator (1 if the time period is during sunset, 0 otherwise) ´0.200 ´1.88
November indicator (1 if the time period is in November, 0 otherwise) 0.292 3.20
4 am–5 am indicator
(1 if the time period is between 4 am to 5 am, 0 otherwise) ´0.608 ´1.96

Road characteristics
Number of merging ramps per lane per mile ´1.072 ´2.65
Segment length (miles) 0.786 5.44
Number of lanes 0.849 3.69
Curvature (degree) 0.406 3.07
Long Remaining service life of rutting indicator
(1 if the value of ruti is higher than 99, 0 otherwise) 0.546 2.88

α 1.818 3.57
σi (site-specific) 0.484 7.54

Vuong statistic 4.48

´2 Log Likelihood 15,145

AIC (smaller is better) 15,197

BIC (smaller is better) 15,250

Generally speaking, if the estimated coefficient of a parameter in a zero-crash state is positive,
the probability in the zero state will increase and the predicted mean value of the crash count will
decrease when the parameter increases. Meanwhile, if the estimated coefficient of a parameter in the
negative binomial state is positive, then the predicted mean value of the crash count will increase.
Therefore if the estimated coefficients of a parameter in the zero state and the negative binomial state
are both positive or negative, it will be hard to tell whether the predicted mean value of the crash count
will actually increase or decrease when the parameter increases. In this case, elasticity results will be
important to provide more information. Elasticities are often computed to determine the marginal
effects of the independent factors in panel data crash frequency models to provide some insight about
the influence of different factors. The elasticities results are shown in Table 3 and some discussions are
made by categories of parameters in the following.

Table 3. Elasticity estimates for crash frequency (crash/hour).

Variable Elasticity

Environmental characteristics
Visibility (miles) ´0.562
Cross wind speed (mph) ´0.054
Wet road surface indicator (1 if the road surface is wet, 0 otherwise) ´0.243
Chemically Wet road surface indicator (1 if the road surface is chemically wet, 0 otherwise) 0.465

Traffic characteristics
Low speed limit (1 if the speed limit is less than 60mph, 0 otherwise) 0.321
Difference between speed limit and traffic speed (speed limit minus current traffic speed) 0.215
Hourly traffic volume (in 1000 vehicles per hour) 0.637
Truck percentage (%) ´0.892
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Table 3. Cont.

Variable Elasticity

Temporal characteristics
Night indicator (1 if the time period is at night, 0 otherwise) ´0.219
Sunset indicator (1 if the time period is during sunset, 0 otherwise) ´0.221
November indicator (1 if the time period is in November, 0 otherwise) 0.253
4am-5am indicator (1 if the time period is between 4 am to 5 am, 0 otherwise) ´0.836

Road characteristics
Number of merging ramps per lane per mile ´0.270
Segment length (miles) 0.350
Number of lanes ´0.838
Curvature (degree) 0.385
Long remaining service life of rutting indicator (1 if the value of ruti is higher than 99, 0 otherwise) 0.421
Good pavement condition indicator (1 if the pavement condition is good, 0 otherwise) ´0.484

4.1. Environmental Characteristics

The higher visibility is, the more likely the road segment will be in the zero-crash state. This
implies that better visibility conditions decrease the crash frequency and bad visibility conditions
increase the crash probability. Specifically, 1% decrease in visibility causes a 0.562% increase in
the mean number of hourly crash frequencies, indicating that visibility is the most influential
environment-related factors affecting crash frequencies on this I-25 corridor. Some other studies
also highlighted the vital influence of real-time visibility condition on crash frequency [15,48–50].

The results in Table 2 suggest that crashes are more likely to occur with a lower crash frequency
at night in the zero-crash state on I-25. It is noted that hourly traffic volume has also been included in
the model which also decreases during night time. The results suggest that two different factors (i.e.,
night and lower traffic volume) may jointly contribute to lower crash frequencies at night on I-25. Yet
some studies found that nighttime increases the crash risk [51]. So more comprehensive studies may
be needed in order to better disclose the nature of traffic safety at night when multiple contributing
factors are involved.

The elasticity results in Table 3 suggest that crosswind speed slightly decreases crash frequency in
the negative binomial state. It is known that driving under strong crosswind is pretty complex as it
involves both vehicle performance and also driving behavior [52,53]. For the present study on I-25,
it seems the benefits gained from more cautious driving likely outweigh the increased risk associated
with vehicle performance under stronger crosswind. Usman et al. [48] found that higher wind speed is
associated with higher number of crashes during winter storms. Because there are not many wind
storms and complex terrain on I-25 in Colorado, it is found hard to draw a general conclusion about
the influences on traffic safety from crosswind for all highways and a case-by-case study may still
be needed.

Wet road surface is found to decrease crash frequency (negative coefficient in the negative
binomial state as shown in Table 3). In contrast, chemically wet road surface contributes to the
increase of crash frequency. Similar to crosswind, adverse road surface conditions (e.g., wet surface
or chemically wet road surface) usually pose higher threats on vehicle stability, while at the same
time, may alert the drivers to be more cautious on driving. Therefore, the final outcome of the impact
from a particular variable depends on the cumulative safety effects from both the advantageous
factors (e.g., more cautious driving behavior) and also the disadvantageous factors (e.g., slippery road
surface with reduced friction coefficients). The influence on driving behavior from specific adverse
environmental characteristics is very hard to be generalized only with the historical data used in this
model. More studies on different highways with more extensive data are felt necessary in the future. In
the meantime, the results in Table 3 show that chemically wet road surface is likely to be more critical
than wet surface in terms of posing challenges on controlling the vehicle. The results also show that,
given above discussed environmental variables included in the model, other hourly weather conditions
like temperature and precipitation type, intensity and amounts have been found to not be significant
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in the models. Although the I-25 portion in this study has primarily flat terrain without experiencing
frequent adverse weather common on highways with typical mountainous terrains, we still observe
the significant effects from road surface and other environmental conditions in the crash frequency
models. For those highways with typical mountainous terrain, the significance of refined-scale models
considering detailed environmental and traffic conditions may become more substantial.

4.2. Traffic Characteristics

We use an instrumental indicator for speed limit and consider three options (<60, <65, <70 mph).
Based on the best model fit, we choose a speed limit dummy indicator (1 if the legal speed limit is less
than 60 mph, 0 otherwise) as the final input. In the negative binomial state, the indicator of low speed
limit is found to increase crash frequencies (a positive coefficient). This finding is similar to those by
Lee and Mannering [35], and instrumental indicator instead of the speed limit variable was also used
in their study.

If actual average speed exceeds local speed limit, the Colorado DOT database will truncate it
to speed limit of road segment. In the present study, the difference between speed limit and traffic
speed instead of the absolute speed value is used; therefore the original real-time speed data from the
Colorado DOT database do not exceed the local speed limit for each road segment. As a result, the
difference between speed limit and traffic speed in this study has only nonnegative values, and it can
reflect traffic congestion but not speeding behaviors. With regard to traffic speed, it is found that the
larger difference between the legal speed limit and the traffic speed contributes to an increase of crash
frequency (a positive elasticity coefficient in the negative binomial crash state). When the difference
between speed limit and traffic speed is high, the traffic speed is usually low which indicates that
congestion may occur. Therefore the model results show that the occurrence of congestion will increase
the crash frequency on the study portion of I-25. Some existing studies also drew similar conclusion,
and for example, Yu and Abdel-Aty [15] found that congested conditions in downstream traffic would
contribute to an increase in the likelihood of multi-vehicle crashes.

Higher hourly traffic volume decreases the probability that the road segment would be in the
zero-crash state (a negative coefficient). This indicates that higher hourly traffic volume may push the
model to the negative binomial crash state, and then increase the crash frequency. Similar findings
are also found in other studies [30,48]. Truck percentage is found to increase the crash frequency in
the negative binomial crash state and also to increase the probability of road segments being in the
zero-crash state. Therefore the trends of the elasticities of negative binomial state and zero-crash state
are opposite. According to the elasticity results listed in Table 3 of both the negative binomial and the
zero-crash states, higher truck percentage decreases the crash frequency. This finding can be found in
some other studies [23,27]. One possible reason might be that as the percentage of trucks increases,
other vehicle drivers will become more alert.

4.3. Temporal Characteristics

Turning to the estimation findings of temporal characteristics, we discover that a lower number
of crashes are likely to occur during 4 am to 5 am, or sunrise period, within a day (negative coefficient
in the negative binomial crash state). Within the whole year of 2010, a higher number of crashes are
likely to occur during November. This could be due to unobserved effects associated with the early
storm arriving Colorado and sudden temperature drop in November of 2010.

4.4. Road Characteristics

Several roadway geometric characteristics are found to significantly affect crash frequency along
I-25 for both the non-zero and zero crash states. For the negative binomial state, crash frequency is
found to decrease as the number of merging ramps per lane per mile increases. This phenomenon is
likely related to the reduction in average speed of the traffic flow and/or the more cautious driving
behavior with the number increase of merging ramps. Some studies found similar trends [54]. However,
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in some other studies, when the number of ramps (both merging and diverging ramps) per lane per
mile increases, the crash probability increases as well [27,42]. Like some variables discussed previously,
the findings indicate that the number of ramps may influence crash frequency in a more complex
manner than people originally anticipated.

For I-25, the segment length of the highway is found to increase crash frequency in the negative
binomial crash state and also to increase the probability of road segments being in the zero-crash
state. The number of lanes is found significant with a positive coefficient in both negative binomial
state and zero-crash state. If the number of lanes increases, crash frequencies decrease based on the
elasticity results. The increase on the probability of zero-crash state is also possibly due to the relief of
traffic congestion and more maneuvering space for vehicles to avoid being involved in a collision. The
literature review shows that some studies [55] found similar results while some other studies found
that crash frequency increases with an increase in the number of lanes due to more lane changing
actions and in turn more conflicts [56,57].

On those segments with curvature, crash frequency is found to increase. The elasticity results show
that 1% increase in degree of curvature is associated with a 0.385% increase of hourly crash frequency.
While some studies found that a high degree of curvature is associated with an increase in crash
likelihood [26], and more other studies found it to be positively associated with road safety [14,23,54,55].
Since curvature often works alongside other driving conditions (e.g., weather, slope, surface), it is not
surprising to see the mixed effect of curvature on road safety from various studies.

The remaining service life for rutting index in the original CDOT database is used to define the
rutting condition. The value of 100 indicates .15 inch or less rut. The value of 50 is the threshold that
indicates no more remaining service life is left with an average rut depth of 0.55 inches. We choose
a dummy variable named long remaining service life of rutting indicator (1 if the value of ruti is
higher than 99, 0 otherwise) based on the best model fit (different thresholds of ruti have been tried).
According to the elasticity results, the long remaining service life of a rut contributes to an increase
of crash frequency (positive sign in negative binomial state). This implies that fewer crashes would
occur when people likely tend to drive more slowly and cautiously on road segments with more ruts
after sensing the rut-induced vibration and noise. Anastasopoulos and Mannering [27] found the
effects of rut on crash frequencies vary significantly across roadway segments. Under excellent rutting
condition, the majority of the road segments result in a decrease in crash occurrences, yet a few of the
road segments still show the opposite. With regard to pavement conditions, good pavement condition
indicator is found to decrease crash probability (negative sign in the negative binomial state). The
definition of this indicator is that the condition of the road pavement for the primary direction is good.
This phenomenon may reflect the improved vehicle performance due to better pavements.

5. Conclusions

The crash frequency model with refined scales in temporal domain is developed in this study.
The major significance of this study is summarized in the following. Firstly, zero-inflated negative
binomial model with site-specific random effect is developed to analyze the hourly crash frequency
on highway segments with unbalanced panel data for the first time. Secondly, thanks to the high
quality of the datasets, the present study can offer comprehensive coverage of various variables with
refined scales, including environmental and traffic conditions, adding to the understanding of crash
frequency modeling on major highways. Finally, the proposed refined-scale crash frequency models are
developed with the monitoring data primarily from Road Weather Information System (RWIS), which
is commonly available on many major highways around the country. As a result, similar technique can
be applied to hundreds of major highways in the United States and other areas of the world without
additional investments on data collection equipment.

Detailed data sets from I-25 in Colorado, including crash record, road design, real-time
environmental and traffic conditions with refined temporal distributions, are adopted in the study.
A number of critical factors about environmental characteristics, traffic characteristics, temporal
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characteristics and road characteristics are found significant to crash frequency. Some important
findings are summarized in the following statements:

(1) Random effect zero-inflated negative binomial model is confirmed to be the most appropriate
one according to the modeling fitness results. Elasticities are also computed to provide some
important observations of the influence from different factors.

(2) The estimation results from the unbalanced panel data models show that both time-varying
factors (e.g., visibility and hourly traffic volume) and site-varying factors (e.g., speed limit and
number of lanes) may significantly influence the crash frequency on highways like I-25. Even for
a typical highway without experiencing frequent adverse weather, the effects from road surface
and weather conditions are found significant to the crash frequency model.

(3) Among all the significant variables, visibility condition is found to be the most influential
environment-related factors affecting crash frequencies on I-25. Dark light condition (night),
crosswind speed and wet road surface decrease crash frequency, while chemically wet road
surface increases crash frequency. It is interesting that other hourly weather conditions, such as
precipitation conditions and temperature, are not found to be significant on top of the current
variables. It can be explained by the fact that precipitation and temperature does not influence
crash likelihood directly, instead precipitation and temperature impact crash likelihood through
changing visibility and road surface conditions. Since visibility and road surface conditions are
already incorporated in the model, it is not surprising that precipitation and temperature becomes
insignificant. Therefore the findings above underline the unique value and importance of the
real-time road surface condition data to crash frequency studies.

(4) This paper reports the explorative effort on developing the new crash frequency models using
detailed traffic, weather and road surface condition data in much more refined temporal scale
(e.g., hourly data). Such a study bears a lot of potentials for engineering applications to make
major highways safer and more resilient to adverse conditions.
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