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Abstract: Background: Clinical major adverse cardiovascular event (MACE) prediction of acute
coronary syndrome (ACS) is important for a number of applications including physician decision
support, quality of care assessment, and efficient healthcare service delivery on ACS patients.
Admission records, as typical media to contain clinical information of patients at the early stage of
their hospitalizations, provide significant potential to be explored for MACE prediction in a proactive
manner. Methods: We propose a hybrid approach for MACE prediction by utilizing a large volume of
admission records. Firstly, both a rule-based medical language processing method and a machine
learning method (i.e., Conditional Random Fields (CRFs)) are developed to extract essential patient
features from unstructured admission records. After that, state-of-the-art supervised machine learning
algorithms are applied to construct MACE prediction models from data. Results: We comparatively
evaluate the performance of the proposed approach on a real clinical dataset consisting of 2930 ACS
patient samples collected from a Chinese hospital. Our best model achieved 72% AUC in MACE
prediction. In comparison of the performance between our models and two well-known ACS
risk score tools, i.e., GRACE and TIMI, our learned models obtain better performances with a
significant margin. Conclusions: Experimental results reveal that our approach can obtain competitive
performance in MACE prediction. The comparison of classifiers indicates the proposed approach has
a competitive generality with datasets extracted by different feature extraction methods. Furthermore,
our MACE prediction model obtained a significant improvement by comparison with both GRACE
and TIMI. It indicates that using admission records can effectively provide MACE prediction service
for ACS patients at the early stage of their hospitalizations.

Keywords: MACE prediction; acute coronary syndrome; admission record; hybrid model;
risk factor identification

1. Introduction

Acute coronary syndrome (ACS) refers to a group of conditions due to decreased blood flow in
the coronary arteries such that part of the heart muscle is unable to function properly or dies [1,2].
Major adverse cardiovascular events (MACE) is used to denote the composite of a variety of adverse
events related to the cardiovascular system [3,4]. Clinical MACE prediction of ACS, as an important
and widely studied topic, has significant impact on medical decision making for ACS patient care
and treatment, and clinical outcome evaluation [1,5]. Extensive research efforts have been devoted
to MACE prediction of ACS patients. Traditionally, many ACS risk scoring tools, e.g., GRACE [6],
TIMI [7], Pursuit [8], and Framingham [9], etc., are developed based on population samples monitoring
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over a long period of time [10]. Relied on a pre-selected set of risk factors identified in these models,
the goal of these ACS risk scoring tools was to predict the risks of patients [11]. Although useful, these
tools have several important weaknesses, e.g., they only consider a limited number of risk factors,
have difficulty in coping with missing risk factors, and required the selection of a standard tool to be
applied in clinical practice, etc. [5].

Recently, with the rapid development of hospital information systems, a large volume of
electronic health records (EHRs) has become available, which offers the opportunity to alleviate
the aforementioned limitations for MACE prediction of ACS patients [12–14]. In particular, admission
records, as an important type of EHRs, contain a wealth of information to describe patient conditions
at the early stage of length of stay (LOS), and thus can be utilized for MACE prediction in a proactive
manner [13]. Figure 1 shows a de-identified sample of admission records collected from a Chinese
hospital. It contains valuable patient information like demographics, medical history, physical
examination results, lab test and specific inspection, etc. In addition, the first primary diagnosis
and common comorbidities of the patient are given at the end of the admission record. In clinical
practice, physicians often refer to the admission record of an ACS patient to determine his/her clinical
risk. In this sense, it is possible to utilize admission records, study medical cases, extract significant
ACS risk factors, and exploit these for helping physicians predict MACE for patients at the early stage
of their hospitalizations, so as to make the practice better for the care of individual patients [15–17].
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Figure 1. An example of part of an admission record collected from a Chinese hospital. (A) Original
admission record in Chinese; and (B) its translation into English.

In this study, we propose a hybrid approach by utilizing admission records for MACE prediction.
Specifically, we firstly extracted structured patient features from a large volume of admission records.
Two well-known methods, namely the rule-based medical language processing (RBMLP), and
Conditional Random Fields (CRFs), were assessed to show that essential patient features can be
consistently extracted from a large volume of admission records. After that, we applied several
representative supervised learning algorithms, namely Support Vector Machine (SVM), Random Forest
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(RF), Naïve Bayes (NB) and Logistic Regression with `1 regularization on the regression coefficients
(`1-LR), to construct MACE prediction models, and comparatively evaluated the performances of the
learned models on a real clinical dataset consisting of 2930 patient samples, which were collected from
the cardiology department of Chinese PLA General Hospital.

The remainder of this paper is organized as follows: Section 2 summarizes some related works.
Section 3 describes the proposed approach for MACE prediction using admission records. Section 4
illustrates our experiment results on a clinical dataset collected from a Chinese hospital. In Section 5,
we discuss the limitations and some future works in our study. Finally, some conclusions are given
in Section 6.

2. Related Work

As a crucial problem for medical informatics, risk prediction is necessary to modern clinical
decision support systems by providing healthcare practitioners an assessment of an individual’s
risk against an adverse outcome [13,18]. Recent years, a lot of studies have focused on this topic.
For example, Fonarow et al. [19], developed a classification and regression tree using CART for risk
prediction of patients hospitalized with Acute Decompensated Heart Failure (ADHF), the experiment
results indicated the risk of in-hospital mortality can be reliably estimated using routinely available
vital signs and laboratory data obtained in hospital admission. Karaolis et al. [20], employed a C4.5
algorithm with five different splitting criteria methods to assess the risk factors of coronary heart
events, which included myocardial infarction (MI), percutaneous coronary intervention (PCI) and
coronary artery bypass graft surgery (CABG). Besides the events prediction models, they also obtained
three rules with three risk factors, i.e., smoking, blood pressure and cholesterol, which can be controlled.
Dong et al. [12], proposed a new genetic fuzzy algorithm to develop an unstable angina assessment
model. Physicians manually evaluated the patients’ risk to support fuzzy association rules mining
for model construction. Liu et al. [21], proposed an ensemble-based scoring system (ESS) to predict
acute cardiac complications within 72 h based on heart rate variability, 12-lead ECG and vital signs
data. In particular, they adopted a hybrid-sampling approach to manipulate the imbalanced data in
their study.

With the widely adoption of EHRs in healthcare organizations, a large number of studies have
explored the utilization of EHRs for risk prediction and more advanced machine learning algorithms
were introduced into this topic. Singh et al. [22], employed a novel logistic regression with `2

regularization on the regression coefficients (`2-LR) to develop predictive models incorporating
temporal EHR data. Their experiment results indicate that exploiting temporal information can
yield improvements in predicting deterioration of kidney function. Churpek et al. [23], employed a
person-time multinomial logistic regression to develop a prediction model for adverse events, i.e.,
cardiac arrest and intensive care unit transfer, using EHR data to overcome the vital sign-based risk
scores’ limited accuracy. The results indicate including laboratory values in the prediction model
contributes important knowledge to the field. Bandyopadhyay et al. [14], presented a machine learning
approach based on Bayesian network trained on electronic health data (EHD) to predict the probability
of having a cardiovascular events, which can overcome the missing data and censored outcome data
issues. Besides of the structured EHRs, the various unstructured clinical texts have been employed
to supplement the prediction task. Pineda et al. [24], compared the machine learning classifiers for
influenza detection from emergency department free-text reports. They employed a pipeline-based
NLP system, namely Topaz, to extract 31 features from the reports and developed the classifiers with
three different missing value strategies. The results show machine learning classifier achieved a better
performance than an expert-constructed classifier, and missing value and imbalance data issues have
little influence on the prediction task. Jonnagaddala et al. [14], developed a method to calculate the
Framingham Risk Score from unstructured EHRs using clinical text mining. They extracted the eight
risk factors used in Framingham from the unstructured EHRs collected from the i2b2 2014 shared task 2
and employed a hybrid imputation strategies to handle the missing values in the extraction results.
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However, as can be easily pointed out, nearly all the aforementioned studies have been estimated
using a small hand-picked subset of features from highly stratified patient cohorts and developed their
models using structured data. To the best of our knowledge, there have not been any studies for MACE
prediction of ACS patients using unstructured admission records. Motivated by these observations,
in our study, we proposed a hybrid approach by extracting as many informative features as possible
from the free-text admission records without any cohort inclusion criteria, in which offers a novel and
complementary approach for MACE prediction of ACS patients.

3. Methods

In this study, we built a hybrid approach for MACE prediction, which leverages patient features
extracted from admission records. The pipeline of the proposed approach is depicted in Figure 2,
which consists of several functional components described in the following subsections. In brief,
we firstly extracted patient features from admission records using two popular feature extraction
methods, namely the rule-based medical language processing (RBMLP) and Conditional Random
Fields (CRFs). After that, we employed four well-established supervised learning algorithms to build
our MACE prediction models.
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3.1. Feature Extraction

In our study, we aimed to construct the dataset from admission records to support the MACE
prediction. So a crucial procedure is feature extraction from the free texts of admission records, which
plays the key role to describe the patient conditions at their early stages of hospitalization. Here one
meaningful question to explore beforehand is how sensitive the machine learning results are with
respect to a different feature extraction methods [24]. To assess that, we employed two popular feature
extraction methods to process the free text of admission records, one is the Rule-Based MLP method
(RBMLP) and the other is a machine learning method, namely Conditional Random Fields (CRFs).

3.1.1. Rule-Based Medical Language Processing Method

As shown in Figure 1, the patient information is narrated in a relatively regular manner in Chinese
in the admission record. For example, if there is a stenosis appeared in a vessel, the descriptive word
“stenosis” always locates behind the word “vessel” and all related information is described in a clause
separated by comma. According to this fact, we developed a RBMLP model to extract essential patient
features from admission records. Our RBMLP model consists of three core modules, i.e., medical
lexicon, tokenization and annotation executor, and rule matcher:
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• A comprehensive medical lexicon which supports the automatic lexical tagging process is
indispensable [25,26]. In this study, we manually extracted and encoded lexemes and their
semantic classes in the clinical pathway specification published by the host hospital and merged
them into the medical lexicon described in [27] as our prototype lexicon. To improve the prototype
lexicon, we first removed the lexemes in some sematic classes, i.e., Unit, Number, Time and etc.,
we didn’t need in our methods, and then we mapped the lexicon to 50 admission records to
added the missing critical lexemes, i.e., missing descriptive lexemes, symptom and diagnosis
lexemes in different forms from the one in lexicon, and etc., to our medical lexicon. We repeatedly
consulted clinicians to clarify the lexemes and validate the results during the lexicon construction.
Totally 230,284 lexemes were included in the lexicon which covered 15 semantic classes.

• Supported by the lexicon mentioned above, the tokenization module was implemented based
on a reverse directional maximum match method [28], which segmented the text into words or
phrases, and semantic classes were annotated by special symbols in the meantime. The symbol
annotated to support rule matching was constructed by a semantic class abbreviation (“ST” is the
abbreviation of “Symptom”) to indicate the word or phrase’s semantic class, a special character
structure (we used “#” as our structure) to distinguish the symbol from text and an index to
retrieve the original word or phrase of the symbol. We used the symbols to replace the original
words or phrases to support the process of rule matcher. Four pairs of original and annotated
clauses can be found in Table 1.

• By observing 50 training admission records, we identified 18 rules to match the information.
Rule matcher was executed in the following steps. Firstly, each annotated admission record
was decomposed into clauses based on a punctuation-driven sentence boundary detection
algorithm [29]. Then all annotated clauses were matched sequentially by a total of 18 rules
defined in the rule matcher. A negation detection algorithm was applied to determine if matched
concepts were affirmed or negated. Four representative rules were used for matching clauses,
as shown in Table 1.

Table 1. Four rules used for matching clauses.

Rule Expression Regular Expression of Rule Matched Clause (English
Translation) and Annotated Clause

[Body Part] + [Symptom]
(?<BPPatternSet>(BP#[0–9]+#)+)
[4̆e00–9̆fa5]*(?<STDGPatternSet>

(ST#[0–9]+#)+)

有双下肢水肿
(Having lower extremity edema)

有BP#2#ST#1#

[Body Part] + [Description]
(?<BPPatternSet>(((BP#[0–9]+#))+)

[4̆e00–9̆fa5]*(?<DSPattern>
DS#[0–9]+#)

行冠状动脉CT检查提示前降支、回旋
支弥漫性狭窄

(The result of coronary CT showed
there were diffuse stenosis in anterior

descending artery and
circumflex artery.)
行BP#5#EX#4#检查提

示\BP#3#BP#2#弥漫性DS#1#

[Diagnosis] (?<DGPattern>(DG#[0–9]+#))

无明显诱因出现胸闷
(Feeling chest tightness without any

obvious incentive)
无明显诱因出现DG#1#

[Medication] (?<MDPatternSet>MD#[0–9]+#)

术后口服“阿司匹林”等药物
(Oral drugs including Aspirin

after operation)
术后口服“MD#1#”等药物
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3.1.2. Conditional Random Fields Method

To evaluate whether different feature extraction methods can influence the results of risk
prediction models significantly, we employed another feature extraction method, i.e., Conditional
Random Fields (CRFs), to extract patient features again. CRFs is a framework for building probabilistic
models to segment and label sequence data [30]. This state-of-the-art machine learning model is widely
used on named entity recognition, text chunking and especially information extraction. In our work,
we manually remarked what we want to extract in the training set with BIO tags, where “B” indicates
a character is the beginning of the feature, “I” indicates a character is in the feature, and “O” indicates
a character is out of the feature [25]. A total of 100 admission records were randomly selected and
remarked as the training set to support the CRFs model construction.

To construct the features template, we used basic context features such as Cn and Cn/Cn+1

where C0 represents the current Chinese character and Cn represents the nst character from the
current character, and two binary features P(Cn) and N(Cn) indicate whether the current character is a
punctuation (e.g., “，”) or a negative word (e.g., “未”), respectively. Details of our template are shown
in Table 2. We employed CRF++ [31] to train our model and extracted the characters tagged “B” and “I”
continuously as the output feature and a negation detection algorithm was applied in the meantime.

Table 2. Conditional random fields feature template.

No. Feature n Value

1 Cn n = −3, −2, −1, 0, 1, 2, 3
2 Cn/Cn+1 n = −3, −2, −1, 0, 1, 2
3 P(Cn) n = −3, −2, −1, 0, 1, 2, 3
4 N(Cn) n = −3, −2, −1, 0, 1, 2, 3

3.2. MACE Prediction Model

Based on steps above, we can extract a set of patient features from admission records to describe
the patient conditions at their early stage of hospitalization. And then we can build our MACE
prediction models using well-established machine learning algorithms with their predictive accuracy
on the hold-out samples. In this study, 4 representative supervised machine learning classifiers,
including Support Vector Machine (SVM), Random Forest (RF), Naïve Bayes (NB) and Logistic
Regression with `1 regularization on the regression coefficients (`1-LR), were selected and compared
to each other due to their demonstrated predictive performance and their popularity in the recently
published research literature. All classifiers were binary classification models and 5-fold cross
validation was performed on each classifier. We repeated the learning process 10 times to measure the
average performance and the 95% confidence interval of each classifier. Below is a brief introduction
to the employed algorithms as clinical risk prediction tools:

SVM is one of the most popular classification models based on constructing a hyperplane or
set of hyperplanes in a high- or infinite-dimensional space to classify [32]. SVM works by mapping
data to a high dimensional feature space. The mapping functions can be either a classification or
regression function. There are four kernel functions, i.e., linear function, polynomial function, radial
based function (RBF), and the sigmoid function, to be used in classification problems when the input
data are not easily separable. In this study, we used the RBF kernel to build the non-linear SVM
classifier with parameters determined by cross validation [33].

RF is an ensemble learning method that operates by constructing a multitude of decision trees
and outputting the class that is the mode of the classes of the individual trees [34]. To classify a new
object from an input vector, put the input vector down each of the trees in the forest. Each tree gives a
classification, and “votes” for that class. The forest chooses the classification having the most votes.
In this study, we constructed the RF classifier by setting 1000 as the number of trees in the forest and
the square root of the number of features as the number of tried at each split [34].
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NB is a simple probabilistic model based on Bayes’ theorem that assumes there is strong
independence between the features [35]. This helps alleviate problems stemming from the curse
of dimensionality, such as the need for feature sets that scale exponentially with the number of features.

`1-LR is the LR with a lasso penalty factors on the regression coefficients [36]. `1-LR has been
widely used for many classification problems, particularly ones with many features. It is well-known
that regularization is required to avoid over-fitting, especially when there are a large number of
parameters to be learned. Hence, `1-LR can be used for feature selection, and has been shown to have
good generalization performance in the presence of many irrelevant features [36]. The admission
records often contain a large volume of patient features, and many of them may be irrelevant to the
problem of MACE prediction. In this sense, `1-LR is appropriate for MACE prediction with many
patient features extracted from admission records.

Instead of providing a detailed description of these algorithms, we focus on reviewing the
selected algorithms with the purpose of discussing important issues in a fundamental comparative
analysis. To this end, we used two well-known performance measures, i.e., the receiver operating
characteristic (ROC) curve and the area under the ROC curve (AUC), to evaluate the learning
algorithms. A nonparametric method developed by DeLong et al. [37], which is common method
used in biomedical research, was employed to compare the models’ curves to explore the differences
between them. All model constructions and statistical analyses were completed using R version 3.2.1
(The R Foundation for Statistical Computing, Vienna, Austria).

4. Experiments and Results

4.1. Data

A collection of electronic health records (EHRs) consisting of 3463 ACS patient samples was
obtained from the Cardiology Department of the China PLA General Hospital. The EHRs cover
heterogeneous aspects like admission records, progress notes, radiological examination reports, etc.,
and thus can be used to provide MACE prediction service at an early stage of hospitalizations.
We excluded the patient samples with incomplete admission records and progress notes from the
dataset. Finally, a total of 2930 patient samples were included to develop our MACE prediction model.
The average LOS of selected patients is 8.20 days, while some patients took a very short time, e.g.,
only 1 day in hospital, and others much longer, e.g., more than 3 months in hospital. It implicitly
indicates the diversity of patient conditions in treatment processes.

In this study, we extracted patient’s features from admission records mainly based on the two
NLP techniques, i.e., RBMLP and CRFs, to construct MACE prediction models. An admission record
sample has been shown in Figure 1. Furthermore, to determine whether the patients got MACE in their
hospitalization, we recruited 4 clinical engineers to manually annotate the ischemic MACE, including
all-cause death, Myocardial infarction, Angina attack, Heart failure, Arrhythmias, Re-revascularization,
Transfer to undergo the CABG, Long length of stay, found in patient progress notes. Each progress note
was annotated by at least three clinicians and the final results were determined over majority voting
criterion by the three clinicians’ annotation results. The temporal relationship of data is illustrated
in Figure 3, which indicates we employed the admission records to predict the MACE occurred in
patients’ hospitalization.
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In future applications, MACE annotations can be theoretically extracted in an automatic manner
leveraging natural language processing (NLP) technology. However, as a proof-of-concept study
here, evaluating NLP annotations is beyond our focus and complicates the assessment of the
machine-learned MACE prediction models. Therefore, in our experiment evaluation, we used manual
annotations to eliminate this level of complexity. Finally, we obtained 752 patient samples (752/2930)
with MACE in their hospitalization and the remaining 2178 (2178/2930) without MACE were as control
group. Summary statistics of 2930 patient samples were illustrated in Table 3.

Table 3. The summary statistics of pool of patient samples.

Item All Patient Samples Controls Patient Samples with MACE

Patient Samples 2930 2178 752
Male (%) 2080 (70.99%) 1553 (71.30%) 527 (70.08%)

Age (S.D.) 62.27 (±12.11) 60.60 (±11.71) 67.13 (±11.95)
Average LOS (S.D.) 8.20 (±7.07) 5.94 (±3.01) 14.77 (±10.51)

The case study was performed in the Cardiology Department at the Chinese PLA General Hospital.
Prior approval was obtained from the data protection committee of the hospital to conduct the study
(No. H1814). We state that the patient data were anonymized in this study.

4.2. Feature Extraction and Evaluation

4.2.1. Feature Extraction Results

To explore how sensitive the machine learning results are with respect to different feature
extraction methods, we employed two methods, one is a RBMLP method and the other is a CRFs
method, to extract the features from the free texts of admission records, respectively. Note that
patient’s vital signs and lab test results were recorded in a structured manner, so we only needed to
employ simple regular expressions to extract these features. Summary statistics of dataset are shown
in Tables 4 and 5.

Table 4 shows the numbers of feature types categorized into different classes. Table 5 lists the vital
sign-related features’ means and standard deviations and the top 10 in lab test-related and free text
features with most abnormalities are shown.
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Table 4. The summary statistics of feature categories.

Method

Feature Categories (*: Free Text Features)

Diagnosis-Related
*

Symptom-Related
*

Medicine-Related
*

Surgery-Related
*

ECG-Related
*

Personal-Related
*

Vital
Signs-Related Lab Test-Related TotalNumber

RBMLP 49 25 9 7 8 7 7 156 268
CRFs 56 26 11 15 6 7 7 156 284

Table 5. The summary statistics of features.

Vital
Signs-Related

Features
Mean S.D.

Lab
Test-Related

Features
Frequency

RBMLP
Free-Text
Features

Frequency CRFs Free-Text
Features Frequency

BT (◦C) 36.2 0.3 HDL-C 1273 CHD 2865 CHD 2841
Pulse (bpm) 73.4 9.7 Calcium 994 Angina 2787 UA 2354

BR (bpm) 18.1 0.5 Triglycerides 991 Arteriosclerosis 2267 Arteriosclerosis 2046
SBP (mmHg) 132.1 17.6 Glucose 867 CPS 2149 Hypertension 1990
DBP (mmHg) 77.6 10.2 Neutrophils 852 Hypertension 1988 CPS 1826
Height (cm) 167.0 8.1 Urine color 831 PRP 1561 PRP 1573
Weight (kg) 71.8 12.4 Eosinophils 818 Anti-H therapy 1375 Postoperative 1372

Lymphocytes 773 Anti-A therapy 1216 Anti-H therapy 1361
Monocytes 633 Anti-C therapy 1216 Anti-C therapy 1188

Apo A-1 546 Sweating 1115 Anti-A therapy 1178
Smoking 1115

BT: body temperature; BR: breathe rate; SBP: systolic blood pressure; DBP: diastolic blood pressure; HDL-C: high density lipoprotein-cholesterol; Apo A-1: apolipoprotein A-1; CHD:
Coronary Heart Disease; CPS: chest pain and stuffiness; PRP: precordial region pain; Anti-H therapy: anti-hypertension therapy; Anti-A therapy: anti-angina therapy; Anti-C therapy:
anticoagulant therapy; UA: unstable angina.
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4.2.2. Feature Extraction Evaluation

To evaluate the performances of the proposed feature extraction methods, we randomly
selected 100 testing patient samples from the pool of admission records excluding the 50 records
used in the lexicon supplement and rule identification and 100 records used in the CRFs training set.
An experienced clinician was recruited to annotate the features of the testing set. Finally, a total of 4177
and 3897 feature-value pairs were annotated by the clinician for RBMLP and CRFs method, respectively.

We computed the standard metrics of precision, recall and F1 score for each method. For the
RBMLP method, a total of 4037 feature-value pairs were extracted, in which 3979 were equal to the
manually annotated records and 58 were not. Thus, the precision, recall and F1 score of the rule-based
MLP method were 98.56%, 95.26% and 96.88%. For the CRFs method, a total of 3754 feature-value
pairs were extracted, in which 3685 were same and 69 were inconsistent with the manually annotated
patient records. Thus, the precision, recall and F1 score were 98.15%, 94.56% and 96.33%. As a result,
both feature selection methods achieved consistently high accuracy compared to manual annotations.

To further analyze the false negative and false positive samples, we found there were two main
reasons for incorrect feature extraction. One reason is text errors in admission records, e.g., punctuation
misuse and misspellings. The other reason is that the rules we identified cannot cover all possible
scenarios narrated in admission records. Note that, in our study, we focus on the method that utilizes
the admission records for MACE prediction but not the feature extraction task. The evaluation results
indicate the features extracted by the two methods are quite reliable and can effectively reflect the
patient conditions such that they are suitable for our prediction task.

4.3. MACE Prediction Model Construction and Evaluation

To construct our models, we employed four representative supervised classification methods
(i.e., SVM, RF, NB, and `1-LR) mentioned in Section 3.2. In comparison with our machine-learned
models, the well-known ACS risk score tool, i.e., GRACE (which was established by the full spectrum
of ACS patients (ST-segment elevation myocardial infarction, non-ST-elevation myocardial infarction
and unstable angina) and has shown excellent ability to assess the patient’s in-hospital risk [38]), and
the TIMI risk score (which was established based on composite end point included all-cause mortality,
new or recurrent MI, or severe recurrent ischemia requiring urgent revascularization), were employed
as the baseline approaches to predict the MACE in our dataset. We employed metrics of the receiver
operating characteristic curve (ROC) and the area under the curve (AUC) to evaluate the learned
models and the baseline models. Table 6 shows the AUC values with 95% CI by the 10 times repetition
of learning process using 5-fold cross validation. As shown in the table, all four models have shown
good performances based on the datasets constructed by both RBMLP and CRFs methods. Random
Forest achieved the best performance with 0.72 AUC value.

Furthermore, the differences between our models and the baseline models were assessed by
the nonparametric method developed by DeLong et al. [37] and shown in Table 7. According to the
comparison results, our learned models achieve better performances with a significant margin in
comparison with the baseline models (Cells: E1–E4 and K7–K10 for GRACE; Cells: F1–F4 and L7–L10
for TIMI), which indicated a significant difference between our models and the baseline models.
Moreover, the Random Forest obtains a significant improvement in comparison with Naïve Bayes
(Cells: C1, I1, G3, I7), and relatively obvious improvements with `1-Logistic Regression (Cells: D1, J1,
G4, J7) and Support Vector Machine (Cells: B1, H1, G2, H7).

Table 6. The AUC values using 5-fold cross validation (*: 95% CI by 10 times repetition of the learning process).

Methods
SVM * RF * NB * `1-LR * GRACE TIMI

AUC CI AUC CI AUC CI AUC CI AUC AUC

RBMLP 0.703 0.701–0.705 0.724 0.722–0.725 0.695 0.693–0.696 0.705 0.702–0.708 0.636 0.579
CRFs 0.705 0.703–0.708 0.723 0.722–0.724 0.695 0.694–0.697 0.706 0.704–0.709 0.641 0.576
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Table 7. Statistical differences between all learned models and the baseline models.

Model
RBMLP CRFs Row

RF SVM NB `1-LR GRACE TIMI RF SVM NB `1-LR GRACE TIMI

RBMLP

RF 1
•

0.0015
**

6.81 × 10−5

***
0.0034

**
3.21 × 10−15

***
2.2 × 10−16

***
0.6636
•

0.0050
**

8.67 × 10−5

***
0.0083

**
8.32 × 10−14

***
2.2 × 10−16

***
1

SVM 1
•

0.2286
•

0.9735
•

1.19 × 10−8

***
2.2 × 10−16

***
0.0028

**
0.4013
•

0.249
•

0.8166
•

1.18 × 10−8

***
2.2 × 10−16

***
2

NB 1
•

0.1847
•

1.77 × 10−6

***
2.2 × 10−16

***
0.0001

***
0.1511
•

0.7042
•

0.1189
•

1.22 × 10−5

***
2.2 × 10−16

***
3

`1-LR‘ 1
•

1.58 × 10−11

***
2.2 × 10−16

***
0.0056

**
0.7382
•

0.2031
•

0.4196
•

4.28 × 10−10

***
2.2 × 10−16

***
4

GRACE 1
•

8.89 × 10−6

***
5.29 × 10−15

***
3.62 × 10−9

***
1.31 × 10−6

***
1.40 × 10−12

***
0.0159
•

4.03 × 10−6

***
5

TIMI 1
•

2.2 × 10−16

**
2.2 × 10−16

***
2.2 × 10−16

***
2.2 × 10−16

***
1.28 × 10−6

***
0.5885
• 6

CRFs

RF 1
•

0.0062
**

0.0001
***

0.0106
•

1.31 × 10−13

***
2.2 × 10−16

***
7

SVM 1
•

0.1584
•

0.9442
•

3.88 × 10−8

***
2.2 × 10−16

***
8

NB 1
•

0.1261
•

9.32 × 10−6

***
2.2 × 10−16

***
9

`1-LR 1
•

4.70 × 10−11

***
2.2 × 10−16

***
10

GRACE 1
•

4.33 × 10−7

***
11

TIMI 1
• 12

Column A B C D E F G H I J K L
***: p-value < 0.005; **: p-value < 0.01; *: p-value < 0.05; •: p-value > 0.05.
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In Figures 4 and 5, we present a more comprehensive comparison between the four learned
models and the baseline models. As shown in Figure 4, for the averaged ROC over 10-time repetition,
all our learned models outperform the baseline models by a considerable margin in MACE prediction
and there is little difference between the four learned models’ performances and confident intervals.
Moreover, the influences of changes of sample sizes on AUC values were illustrated in Figure 5.
We randomly selected the same proportion of samples from positive and negative samples to construct
datasets in different sizes. The AUC values of all four models gradually ascend in overall trend
along with the increases of the sample sizes. And all models were able to achieve relatively stable
performances with 20% of all patient samples, which illustrates that our models can obtain good
performances under a small sample size.
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By comparing the performances of models built with datasets constructed by the RBMLP and
CRFs methods in Figures 4 and 5, Table 6 (Cells: G1, H2, I3, J4, K5, L6), it is easy to see that there are few
differences in ROC curves and AUC values between the models’ performances, although the results
were obtained based on different methods, which illustrates that our approach has a competitive
generality regardless of the employed feature extraction methods.

Depending on the evaluation of the MACE prediction models illustrated above, we can conclude
that our learned models achieve better performances than the traditional risk score models. However,
one natural question is, if this improvement is mainly caused by the extracted features or the employed
machine learning algorithms. To answer this question, we employed the features included in GRACE.
As shown in which has a better performance than TIMI, and the four machine learning algorithms
mentioned above to train models called models-GRACE.
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Table 8 shows the AUC value of each model-GRACE and Table 9 shows the differences between
GRACE, models-GRACE and our learned models. As illustrated in Tables 8 and 9, we can notice that
the SVM-GRACE models don’t obtain any improvement compared with GRACE in both RBMLP and
CRFs datasets but gain significant improvement when using all extracted features. The RF-GRACE
models obtain continuous improvement from GRACE to models-GRACE to learned models. However,
the NB-GRACE and `1-LR-GRACE models show different characteristics, which they obtain significant
improvement when just employing features in GRACE but gain no further elevation in AUC when
using all extracted features.

Table 8. The AUC values of models-GRACE using 5-fold cross validation (*: 95% CI by 10 Times
repetition of learning process).

Methods
SVM-GRACE * RF-GRACE * NB-GRACE * `1-LR-GRACE *

AUC CI AUC CI AUC CI AUC CI

RBMLP 0.622 0.610–0.634 0.687 0.685–0.689 0.692 0.691–0.693 0.698 0.697–0.699
CRFs 0.620 0.608–0.632 0.683 0.681–0.686 0.691 0.690–0.692 0.697 0.696–0.698

Table 9. Statistical differences between models-GRACE and GRACE, all learned models.

Methods SVM-GRACE RF-GRACE NB-GRACE `1-LR-GRACE

RBMLP

GRACE 0.1827
•

3.45 × 10−6

***
1.7 × 10−7

***
6.2 × 10−10

***

Learned
models

5.55 × 10−12

***
2.05 × 10−5

***
0.6802
•

0.1098
•

CRFs

GRACE 0.05384
•

1.54 × 10−4

***
3.72 × 10−6

***
8.01 × 10−8

***

Learned
models

2.47 × 10−13

***
3.86 × 10−6

***
0.5267
•

0.02104
*

*** p-value < 0.005; ** p-value < 0.01; * p-value < 0.05; • p-value > 0.05.
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4.4. Potential Risk Factors

As illustrated in above section, all four learned models achieved competitive performances in
MACE prediction. Among all these models, random forest achieved the best performance, which can
offer the most powerful risk factors in predicting MACE. Therefore, we extract some important features
from random forest models in terms of the mean decrease accuracy. Figure 6 shows the top-rank 20
risk factors in the random forest model. In addition, `1-LR can extract some important features that
influence the prediction results when the other models lack the interpretability [39]. Note that the
positive value of the coefficient in `1-LR model indicates an increasing possibility for occurrence of
MACE, while the negative value means the opposite, in which the possibility is decreasing. Figure 7
shows the top 20 risk factors with their coefficients.

As illustrated in Figures 6 and 7, several risk factors show high discrimination abilities for
ACS patient, which have been demonstrated in [6,7,40–42], such as Age, Creatine kinase isoenzyme
and Troponin T as cardiac markers, D-Dimer, C reactive protein and pro-brain natriuretic peptide as
biomarkers, Killip class and Post CABG. And also, some risk factors like Operation for cancer, Short of
breath and medicine history, i.e., Vasodilator and Antianginal agents, also took an important role for
MACE prediction. Moreover, Hepatitis B surface Antigen-Normal reduces the risk of MACE which
obtains a complementary results with [13]. By comparing Figures 6 and 7, we notice that several
uppermost risk factors are both employed in both the GRACE and TIMI risk score models and mainly
cardiac markers, which illustrates that our learned models are consistent with the traditional risk
scores to some extent. Moreover, some risk factors overlapped in random forest and `1-LR models,
which indicates the machine learning algorithms can both discover the most discriminatory features
from our data. Depending on the evaluation of clinical experts, all the extracted risk factors are indeed
coherent and informative.
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5. Discussion and Future Work

The ability of analyzing a large volume of EHRs in modern healthcare systems plays a vital
role in the improvement of the quality of care delivery [43]. In this paper, we present a hybrid
approach to utilize a specific type of EHRs, i.e., admission records, for MACE prediction. We first
extracted features from admission records to describe patient condition at the early stage of their
hospitalization. And then, the state-of-the-art supervised machine learning algorithms were employed
to build our models for MACE prediction. In contrast to most traditional risk prediction approaches
that require a well-controlled patient cohort to train the model with hand-picked risk factors, our
approach automatically extracted patient information from unstructured admission records to establish
MACE prediction models, extracted hidden risk factors from data, and has potential to provide nearly
run-time decision support services for cardiologists in their daily work.

Experiments have been conducted on a real ACS dataset collected from a Chinese hospital to
evaluate the performance of our approach. The experimental results indicate that our approach
has a competitive generality with datasets extracted by different patient information extraction
methods, and can achieve a comparative performance for MACE prediction. In addition, our models
achieved significant improvements in comparison with both the GRACE and TIMI risk score models.
Furthermore, the proposed approach can extract extra potential ACS risk factors according to `1-LR
model. It has been evaluated by clinical experts and the extracted risk factors are indeed coherent
and informative.

It should be mentioned that there exist some limitations in our current work. First, although both
feature extraction methods can sufficiently and efficiently extract patient features from the free text of
admission records, we should notice that there exist some mistakes in the feature extraction results,
which introduced interferences into the accurate descriptions of patient conditions. With regard to the
rule-based model, it is necessary to extend/improve the lexicon and the rule set to reduce mistakes.
However, it inevitably decreases the generalization of the model such that the over-fitting problem
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may come out. With regard to the CRFs model, the performance can be improved by considering more
features for templates, such as Part-Of-Speech tags and Number tags, etc. and more training samples.

In addition, there are still several steps involving manual work in our rule-based and CRFs
methods, such as rule definition and CRFs training set annotation. These steps are essential and crucial
for the feature extraction but time-consuming work needed professional knowledge, which limits our
proposed method’s scalability. The limitation of scalability in rule-based method is an everlasting
problem since it was proposed, but it is a very useful method because of its remarkable performance
for specific environment. On the other hand, the machine learning method, i.e., CRFs, can obtain
the better performance with more varied and comprehensive training set, which means that it can
become more and more powerful along with the increase of training samples. Moreover, to prove
the concept in our study, we manually annotated the MACE occurred in patients’ progress notes.
However, it is a tedious and time-consuming process for human evaluation on a large volume of
patient samples. To this end, semi-supervised learning could provide a feasible solution since it can
use readily available unlabeled data to improve supervised learning tasks when the labeled data are
scarce or expensive [39]. The annotated data, on the other hand, provides a valuable benchmark for
future semi-supervised learning technology development for us. Moreover, we should notice that
different definitions of MACE as composite end points may lead to a different experiment results and
conclusions [4], so we need to explore the influences of different definitions of MACE on the prediction
performances in our future work.

6. Conclusions

In this paper, we have presented a hybrid approach to utilize the admission records for
MACE prediction of ACS patients. The experimental results indicate that using admission records
can effectively provide MACE prediction services for ACS patients at the early stage of their
hospitalizations. As for future work, we intend to carry out a large scale of experiments and evaluate
the model performance on a larger scale of EHRs of ACS patients, as a crucial advantage over traditional
techniques for MACE prediction.
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