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Abstract: To make driving assistance system more humanized, this study focused on the prediction
and assistance of drivers’ perception-response time on mountain highway curves. Field tests were
conducted to collect real-time driving data and driver vision information. A driver-vision lane
model quantified curve elements in drivers’ vision. A multinomial log-linear model was established
to predict perception-response time with traffic/road environment information, driver-vision lane
model, and mechanical status (last second). A corresponding assistance model showed a positive
impact on drivers’ perception-response times on mountain highway curves. Model results revealed
that the driver-vision lane model and visual elements did have important influence on drivers’
perception-response time. Compared with roadside passive road safety infrastructure, proper visual
geometry design, timely visual guidance, and visual information integrality of a curve are significant
factors for drivers’ perception-response time.
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1. Introduction

A variety of studies are under way today in developing driver assistance systems. A driver
assistance system aims to help drivers to drive more safely under various traffic environments.
Modern technologies, such as video detection, Light Detection and Ranging (LiDAR), and V2X
communication, have been tested and used in some cases [1]. However, a new question arises with
such rapid development of information-based systems: how do intelligent driving systems (including
assistance driving systems) deal with these forms of information? Will they respond like a machine
or a human being? Responding like a machine means using a pre-set unchangeable process mode
as the core of the system without consideration of drivers’ personal needs. A humanized system
learns to respond in human recognition mode that takes both a driver’s perspective and real-time
mechanical data into consideration, which would thereby provide suitable assistance according to
different driving conditions.

In this research study, an intelligent driving system is regarded as the interaction between a driver
and a vehicle. The advanced driver assistance system (ADAS) has been improved a lot in recent years,
with many features such as obstacle warning, collision warning, lane control and traffic light assistance
strategy, to keep drivers informed of the latest information or warnings during the driving process [2–5].
In such systems, the so-called “Perception-response time” (PR time) or “Perception-response distance”
is usually defined as an empirical value (e.g., 3 s) according to the Chinese Highway Standard [6] or a
fixed range (e.g., 1.5 to 3.5 km) [7]. However, perception-response (PR) time as defined by Olson and
Sivak is “the time from the first sighting of an obstacle until the driver applies the brakes” [8]. It was
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tested that the PR time of over 95% of tested drivers, including young and old, was 1.6 s. This indicates
that the value suggested by the current national standard is improper, due to the loss of real individual
data. However, timely, relevant, and comprehensive information is quite vital when providing drivers
with more choices and perception-response time to an emergency situation [9].

As PR time varies among individuals, personal driving behavior should to be included in order
to meet drivers’ humanized demands. Past studies mainly treat this factor as driving experience,
which appeared to be a safe-relevant element in comparative study. It showed a positive impact
in drivers’ response time to static roadway hazards [10]. By estimating the performance of novice,
experienced, highly-experienced, and taxi drivers through video and eye movement data, Borowsky
and Oron-Gilad revealed that drivers who had more driving experience were more skilled in the
awareness of materialized hidden hazards [11]. Moreover, skilled drivers alter their driving behavior
more frequently than the unexperienced ones to adapt accordingly to changing driving situations [12].
Although more driving experience would help drivers to respond more properly than new drivers [13],
its impact differs among drivers. It is not always important in all situations. According to Sagberg
and Bjørnskau [14], driving experience did not show a strong relationship with hazard perception
time. It also did not show a significant influence on obvious risk perception. Some detailed methods
have been introduced to describe the effects of different driving behaviors, such as driving habit graph
(DHG) which can be utilized to explain different driving performances [15]. Naturalistic driving factors
are also considered in individual-targeted driving response time studies, including safety margin
adjusting [16], braking control [17], and eye-off-road ratio [18]. Drivers’ gaze data were also used in
ADAS to identify simulation information for drivers and to make predictions of behaviors [19,20].

The factors above reflect drivers’ performance and differentiation, but ultimately the performance
of drivers is still largely based upon the perception and decisions of drivers. A driving assistance
system based on these elements loses the “Perception-Response” process. It cannot really “think”
as a real driver from the first identification of a changing driving circumstance. Human-simulated
ADAS needs to respond like a human in advance, such as the graphical model proposed by Oliver
and Pentland who established the relationship between driver and vehicle with vehicle data, road
geometric elements, and drivers’ vision data [21].

This research, as a further study, focuses on mountain highway curves in China where
most accidents happened in 2014 among three kinds of highways curves: plain (3875 accidents),
hill (3981 accidents), and mountain (6038 accidents) [22]. Different from the definition of
perception-response time (PRT) in Olson and Sivack’ theory, the PRT in this study focused on “left/right
curve” rather than “obstacle”. The PRT in their theory is an important component of stopping sight
distance on a vertical curve (e.g., cresting a hill) to avoid collision. However, in this research we predict
drivers’ response time from the curve appearance until the first reaction, during which they do not
need to stop, but to drive safely. For the different driving purpose, we do not apply their theory in our
PRT definition or prediction model which is only serves as a hint or piece of evidence for us to improve
Chinese current national standard. The inner relationship between road information obtained by a
driver’s vision and the perception-response time on a mountain highway curve is discussed. Based on
on-board video, Catmull-Rom spline describes the driver-vision lane and corresponding elements are
extracted. These visual factors and mechanical factors are then used in a multinomial log-linear model
via neural network, which has also been verified with a series of field tests. This work serves as the
basis of human-like ADAS that takes actual perception-response time into consideration.

This paper consists of five sections as shown in Figure 1.
The first section introduces the background and purpose of this study. The second section

illustrates the definition of PR time in this research. The experiments data and visual information
are also explained. The third section builds a multinomial log-linear prediction model for PR time.
A corresponding assistance model is also established and tested in the fourth part. The last section
concludes the key points of this study.
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Figure 1. Workflow of the research.  Figure 1. Workflow of the research.

2. Experiments and Data

2.1. Definition of Perception-Response Time on Mountain Highway Curves

Traditional perception-response time on a highway according to the Chinese Highway Standard
is divided into three parts: driver’s sensing time, reaction time, and braking time. The first two parts
show the human factors in perception-response time. A mechanical process is considered in the third
part. It is always considered as a value (3 s) in the design and evaluation of a highway. However,
highways with various combinations of characteristics/or different environmental conditions can
result in different driving behaviors. For instance, drivers may take a variety of strategies (e.g., steering,
lifting the foot from accelerator, or braking) when a highway curve appears, which will lead to different
perception-response times.

In this study, the perception-response time on a mountain highway curve is defined as the
duration from the first sight of a curve’s appearance in a driver’s sight to the moment of the driver’s
reaction (braking or turning). Figure 2 shows the meaning of this term. This identification is different
from the perception concept in Embodied Cognition Theory [23], which reflects the overall response
period from the curve appearance to the first detection moment of driver reaction (either steering
or braking).
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tests, they were not assigned with any task. Each driver faced the same route and were asked to drive 

Figure 2. Illustration of perception-response time on a mountain highway curve.

2.2. Experiments

To understand the impact of different perception-response (PR) times on driving behaviors on
mountain highway curves, 220 field experiments were conducted during the daytime on mountain
highway curves (design speed: 40 km/h) in Lishui and Suichang city, Zhejiang Province, China. Based
on field conditions, tested curves were divided into six types. Detailed parameters are listed in Table 1.

A total of 32 drivers who had over three years of driving experience (Mean: 11.4, S.D.: 2.4) took
part in the experiments. They were between the age of 28 and 40 (Mean: 38.8, S.D.: 3.5). During the
tests, they were not assigned with any task. Each driver faced the same route and were asked to drive
on the six types of curves respectively. A driving recorder (GARMIN GDR35) was fixed on windshield
to record the front view. During the tests, a built-in sensor that was synchronized with the camera and
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fixed on the steering wheel recorded the vehicle’s mechanical changes. Table 2 shows the detailed data
collected by sensors.

Table 1. Categories of Tested Curves.

Curve Category Distance Curve Direction Curve Category Distance Curve Direction

1 Near (<30 m) Right 4 Middle (30~50 m) Left
2 Near (<30 m) Left 5 Far (>50 m) Right
3 Middle (30–50 m) Right 6 Far (>50 m) Left

Note: “Distance” in the table means how far the curve beginning point is away from the test car when it comes
into view.

Table 2. Data Collected by Inner Sensor of Driving Recorder.

Parameter Accuracy Frequency

Longitude and Latitude - 1 hz
Speed 1 km/h 1 hz

Vertical Acceleration 0.001 g 1 hz
Lateral Acceleration 0.001 g 1 hz

Longitudinal Acceleration 0.001 g 1 hz

Note: “g” means gravity (9.8 m/s2).

According to the video and vehicle data, the perception-response time of each test can be obtained.
After eliminating incomplete and wrong records, 129 tests were applied in the following study.
The population distribution of perception-response time shown in Figure 3 indicates that most tested
drivers were inclined to respond between 1 and 2 s.
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However, different scenarios would have diverse impacts on drivers’ perception-response times.
A comparative analysis was done to reveal drivers’ perception-response times on the six kinds of
curves. Figure 4 shows the histogram and cumulative frequency curve [24–26] of the tested curves.

The average and standard deviation of the PR times show that drivers reacted quickly on near
curves, especially on near right curves. The variation of PR times on near right curves is also quite
low. This means most drivers’ perception-response times on such curves are relatively consistent.
However, the middle curves, including right and left curves, tended to result in longer PR times than
other types of curves, which was not expected. It can also be seen from Figure 4 that 85% of drivers
reacted within two seconds when faced with a near curve on a mountain highway. On middle-right
curves, over 30% of participants’ PR times were among 1~2 s and the 85th quantile of PR times was
over 3 s. The test results also show that drivers’ PR times were usually under 3 s (0~3 s) on middle-left
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curves and far-right curves. On far-left curves, they tended to react within 1~3 s. Three mechanical
coefficients of variation on six types of curves during the turning process are listed in Table 3.

CV = σ/µ (1)

where σ is standard deviation; µ is average value.Int. J. Environ. Res. Public Health 2017, 14, 0031 5 of 13 
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Table 3. Average Value of Three Mechanical Coefficients of Variation (CV) on Six Types of Curves.

CV
PR

Time

Type of Curves

(1) (2) (3) (4) (5) (6)

V. N. V. N. V. N. V. N. V. N. V. N.

Lateral
force

0 1.78 19 0.43 18 3.93 4 0.53 6 2.24 8 0.32 10
1 0.89 7 0.4 10 2.59 3 0.58 1 1.99 7 0.22 10
2 1.67 2 0.24 4 2.85 3 0.49 1 3.23 5 0.44 2
3 4.15 1 0.81 1 0.69 2 0.17 1 2.22 4 NO RECORDS

Lateral
deviation

0 0.01 19 0.17 18 0.04 4 0.01 6 0.05 8 0.02 10
1 0.02 7 0.02 10 0.02 3 0.02 1 0.06 7 0.03 10
2 0.02 2 0.09 4 0.03 3 0.05 1 0.05 5 0.03 2
3 0.05 1 0.5 1 0.08 2 0.01 1 0.03 4 NO RECORDS

Speed

0 2.36 19 0.72 18 0.88 4 0.64 6 1.09 8 2.48 10
1 1.15 7 0.81 10 0.59 3 0.43 1 1.22 7 1.34 10
2 3.24 2 1.92 4 0.38 3 0.24 1 1.22 5 1.17 2
3 2.34 1 3.14 1 2.33 2 1.02 1 1.68 4 NO RECORDS

Note: (1) six types of scenarios are mentioned in Figure 4; (2) grey area covers 85% participants; (3) V. means
“Value”; (4) N. means “Number of drivers”.
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Three kinds of coefficients were relatively low among 85% tested drivers, which is in accordance
with the distribution of PR time. This means that a suitable PR time would result in good turning
process (low CV). In the following assistance model, the 85th quantile of PR time will be regarded as
the boundary value for the recommended range.

2.3. Visual Information Extraction

According to our previous study (see Yu et al. [27]), the road alignment in a driver’s vision
can be described as a driver-vision lane (the blue line in Figure 5) during the process of driving.
The driver-vision lane model is based on Catmull-Rom spline to fit with a driver’s visual perception
(a detailed explanation of this model is available in Yu et al. [27]). Perception characteristics of road
alignment in this research include the following elements obtained by the driver-vision lane model.
The bottom-left corner of the on-board driving recorder video is set as the origin of coordinate.
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Figure 5. Driver-vision lane model based on driver’s visual perception (unit: pixel).

There are four control points (Pi, i = 1, 2, 3, 4) on Catmull-Rom spline. The value of 1© accumulated
spline length (Si, i = 1, 2, 3); 2© spline length between Pi and Pi−1 (VSi , i = 1, 2, 3); 3© tangent direction
angle of Pi (fi, i = 1, 2, 3, 4); 4© curvature rate between Pi and Pi−1 (VKi , i = 1, 2, 3) are decided by Pi.
The relationship between these elements is as follows.

VSi = Si − Si−1 VKi =
fi − fi−1

VSi

(2)

where VSi is the visual curve length between control point Pi and Pi+1 (pixels); VKi is the visual curve
curvature between control point Pi and Pi+1.

There are two rules to judge a curve based on an image with the elements above:

(1) Curve appearance: On a straight highway, the tangent direction angles are normally equal to
each other. When there is a curve ahead, there will be a change in f4.

(2) Right/left curve: f4 > 0 and VK3 < 0 means right curve; f4 < 0 and VK3 > 0 means left curve.

Apart from detecting the elements of the driver-vision lane model, we also classified the
visual information of traffic/road environment into six major parts. Each part consists of four
sub-classifications (see in Table 4).
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Table 4. Visual Information Classification of Traffic/Road Environment.

No. Classification
Sub-Classification

0 1 2 3

1 Access None Far Near Village nearby
2 Sign/Marking None Lane marking Information sign Danger warning sign
3 Lane width <3.5 m 3.5–3.75 m >3.75 m Multi-lane

4 Passive road safety
infrastructure None Warning pier Corrugated-steel

guardrail Concrete guardrail

5 Vision shelter None Tree/House Mountain/Tunnel Vehicle ahead
6 Road surface Smooth Mottled Bumpy Sand gravel

3. Perception-Response Time Prediction Model

In this study, a driver’s perception-respond (PR) time is predicted by three parts: traffic/road
environment information, driver-vision lane model, and mechanical status (last second). Traffic/road
environment is a uniform factor for each driver. It provides drivers with similar driving tasks. However,
similar or even the same curve conditions did not result in the same PR times according to the tests.
This means there are some other factors effecting drivers’ PR processes, such as the driver-vision lane
model. It is the impact of lane alignment on drivers, and last second speed and acceleration adjustment
is another facet considered in the prediction model.

In Figure 6, the three parts all have a certain impact on drivers’ PR times, for drivers’ responses
depend on some knowledge: what are the environmental conditions (traffic/road environment),
what is the shape of the next curve (driver-vision lane model), and what is the status of the vehicle
(mechanical status). Detailed parameters of these three parts are listed in Table 5.
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A multinomial log-linear model via a neural network can be established to quantify the weights
of the parameters above. After 790 iterations, the converged model results are shown in Table 6.

The model provided here is a multinomial log-linear regression model based on one-hidden-layer
neural network. The p-value is an index of the multinomial log-linear model, which is a post-calculated
value. AIC is Akaike Information Criterion, which is used as a measure of the relative quality of
statistical models for a given set of data. In this model, VK2 and VK3 of driver-vision lane have the most
significant impact on drivers’ PR times, especially on the PR times during 2~3 s and >3 s. Compared
with VK2 , VK3 shows a greater determining effect on PR time. Although it shows a negative impact on
the third category, one unit change (Odds Ratio [28]) of it would result in the most significant change
on PR time compared with other factors. Hence VK3 is a determining factor. A large VK3 would lead to
a sharp drop in drivers’ PR times. Highway access is the third important factor which would result in
lower PR times (<3 s). Among the protective roadside marking and infrastructure, warning pier is the
most effective way to guide drivers. The existence of corrugated-steel guardrails has a negative impact
on PR times over 1 s, so that they would accelerate the PR process. Concrete guardrails and traffic
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markings/signs have similar low influence on PR times. Each additional opposite vehicle results in
additive negative effects. This means that a high volume of opposite traffic increases driving task
difficulty and decreases PR times. All the distance of curve appearance parameters are positive, and
they have larger impacts on longer PR time. This conforms to common knowledge. However, curve
distance between 30 m–50 m has a greater positive influence on both short and long PR time compared
with curve distance over 50 m. This reveals that drivers responded dispersedly in such circumstance.
PR times increase with large longitudinal impact force (steep slope) and decrease with vertical impact
force (rough road surface). This shows the impact of road geometry on drivers’ PR times. Drivers’
real-time operation consists of speed and acceleration changing rate, but they are not significant in the
prediction model.

Table 5. Explanation of Parameters Considered in the Prediction Model.

Category Explanation Parameters Variable Type

Traffic/road
environment information

The area proportion of
front view

Sky proportion
ContinuousRoad proportion

Pavement type Sand-gravel surface Dummy: 1
Bituminous pavement 0

Passive road safety
infrastructure

Warning pier Dummy: 100
Corrugated-steel guardrail 010

Concrete guardrail 001
No road safety infrastructure 000

Lane marking and yield sign Traffic marking and sign Dummy: 1
No marking or sign 0

Whether access before curve
Access exists Dummy: 1

No access 0

Opposite traffic Number of opposite vehicles Continuous

Curve distance
Distance (>50 m) Dummy: 10

Distance (30–50 m) 01
Distance (<30 m) 00

Driver-vision lane model

Visual curve length
S1 (m)

ContinuousS2 (m)
S3 (m)

Visual curve curvature
|VK1 |

Continuous|VK2 |
|VK3 |

Mechanical status

Impact force of last second
Impact force (vertical)

ContinuousImpact force (longitudinal)
Impact force (latitudinal)

Speed of last second Speed (km/h) Continuous

Acceleration change of
last second

Acceleration changing rate
(m/s3) Continuous
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Table 6. Perception-Response Time Prediction Model on Mountain Highway Curves.

Data Source Parameters

Perception-Response Time

1 a 2 a 3 a

Coefficient p-Value b Coefficient p-Value Coefficient p-Value

(Intercept) 45.500 0.000 *** 31.164 0.000 *** 82.597 0.000 ***

Video
detection

Sky proportion 4.015 0.257 −1.902 0.661 48.616 0.005 **
Road proportion −8.468 0.252 −6.321 0.522 −92.144 0.000 ***

Sand-gravel surface −0.193 0.817 −0.830 0.448 21.907 0.000 ***
Warning pier −29.157 0.000 *** −27.469 0.000 *** 26.006 0.000 ***

Corrugated-steel guardrail −3.021 0.042 * −1.087 0.455 −4.157 0.000 ***
Concrete guardrail −2.328 0.018 * −2.717 0.020 * 10.485 0.066 #

Traffic marking and sign −2.682 0.044 * −2.441 0.134 8.080 0.313
No access −34.343 0.000 *** −34.401 0.000 *** 80.602 0.000 ***

Number of opposite vehicles −0.885 0.345 −1.257 0.294 −49.488 0.000 ***
Distance (>50 m) c 1.470 0.051 # 2.640 0.003 ** 15.777 0.001 ***
Distance (30–50 m) 2.266 0.026 * 2.526 0.057 # 24.819 0.000 ***

S1 (m) −0.312 0.241 0.203 0.506 −3.710 0.000 ***
S2 (m) 0.026 0.931 −0.354 0.309 2.642 0.002 **
S3 (m) 0.062 0.735 0.109 0.590 −0.089 0.917
|VK1 | 2.885 0.854 25.855 0.020 * 60.162 0.000 ***
|VK2 | −14.996 0.000 *** 169.928 0.000 *** 451.889 0.000 ***
|VK3 | 76.444 0.000 *** 121.068 0.000 *** −875.740 0.000 ***

Driving
recorder Last second

Impact force (vertical) −2.719 0.543 2.340 0.668 −88.139 0.000 ***
Impact force

(longitudinal) 5.364 0.235 −1.338 0.821 34.066 0.001 ***

Speed (km/h) −0.045 0.271 0.064 0.196 −1.399 0.000 ***
Acceleration

changing rate (m/s3) 0.203 0.597 0.162 0.709 1.972 0.384

AIC (Akaike Information Criterion) 325.897
Adjusted R2 0.78

Precision 72.0% 83.3% 98.9%

Note: a Perception-response time categories: 1 (1~2 s), 2 (2~3 s), 3 (>3 s); 0 (0~1 s) is the control group; b p-Value significance: “***”: 0 ≤ p ≤ 0.001, “**”: 0.001 < p ≤ 0.01,
“*”: 0.01 < p ≤ 0.05, “#”: 0.05 < p ≤ 0.1;; c “Distance” in the table means how far the curve is when it comes into view. It was classified into: >50 m, 30–50 m, <30 m, considered as
dummy variables.
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4. Perception-Response Time Assistance Model

4.1. Model Structure

According to the PR time prediction model and the recommended range of PR times introduced
in Section 2.2, this section will build a PR time assistance model to help drivers to respond timely and
properly on a mountain highway curve. Figure 7 describes the flowchart of the assistance model.Int. J. Environ. Res. Public Health 2017, 14, 0031 10 of 13 
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4.2. Model Calibration

There were six tests conducted on each type of curve. Six drivers did one test on six types of
curves respectively. The PR time prediction results are shown in Figure 8.
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In Figure 8, the black bar stands for the tests of which the predicted PR time is inappropriate
(beyond or below the recommended range). The dash line is the recommended range of PR time
according to the 85th quantile in Figure 4. The PR times of most drivers were within this range.
On near-left curves, no sample was beyond the recommended range. All cases (black bars) with
unsuitable PR time were detected by the assistance model (see Table 7).

Table 7. Perception-Response Time Assistance Model Performance.

Curve Type No. PR Time
Deviation

Warning Success
(0-Fail, 1-Success)

Average Dispersion Change of
CV a after ASSISTANCE

Near-right 1© 0.13 s 1 ↓19%
2© 0.25 s 1 ↓24%

Middle-right 3© −0.46 s 1 ↓8%

Middle-left
4© 0.28 s 1 ↓10%
5© 1.18 s 1 ↓11%

Far-right 6© 0.2 s 1 ↓9%

Far-left
7© −0.51 s 1 ↓6%
8© 0.3 s 1 ↓12%
9© −0.23 s 1 ↓3%

Note: a. Mechanical coefficients of variation are described in Section 2.2.

Among the five curve types, the far-left curves tended to result in a large deviation on PR times,
followed by the middle-right curve. This means that when a far-left curve appeared, some drivers
would take reaction within 1 s and other drivers tended to respond far more slowly. Average dispersion
change of CV had more improvement on right-turning curves than left-turning curves after assistance,
especially on near-right curves. This would result from the fact that the right-turning process has more
flexibility than left-turning process according to the traffic rule in China. The possibility of an unsafe
turning process (large value of three CVs) would increase with different PR times. Hence proper
assistance strategy can help drivers to behave well in such circumstances.

5. Conclusions

This study defined the concept of perception-response time (PR time) on mountain highway
curves. Field tests were conducted with a driving recorder to record drivers’ real-time driving data
both before and during the turning process. As drivers’ visual information is an important factor
in perception-response time prediction in this study, driver-vision lane model was used to extract
the elements of visual information from the sight of the drivers. To predict the perception-response
times, a multinomial log-linear prediction model with the elements of traffic/road environment,
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driver-vision lane model, and mechanical status was presented. A corresponding assistance model
was also illustrated to help drivers to have more proper perception-response times on mountain
highway curves.

The results showed that the same road situation could result in various understandings regarding
the interpretation of perception-response times in this work. Compared with the length of driver-vision
lane, curvature rate (especially VK3) had more impact on PR times. This indicates that drivers’
PR process is mostly based on the visual information integrality of curves. Uncertainty of the
curve shape and curvature rate will lead to uncertain PR times, such as observed with the middle
curve (middle-VAR: 1.162, near-VAR: 0.609, far-VAR: 0.826). Meanwhile, the effect of road safety
infrastructure are less significant than that of driver-vision lane elements. Therefore, good road visual
geometry is more effective than passive road safety infrastructure in driving behavior guidance.

On the other hand, this study verified the need for establishing a personal-targeted assistance
model, which took drivers’ personal behavior and visual information into consideration. This is more
humanized than a traffic-rule-based system. Although the model in this study has been proven valid,
the absolute data and the meaning obtained should be considered only as relative result [29] due to the
limitation of low-frequency data. More high-frequency and accurate biological information detectors
would contribute to future studies. The change of eye gaze position/area would also help to illustrate
drivers’ different perception processes to establish a more personalized assistance system. In the future,
complex driving behavior and driver-based decision processes will be analyzed and quantified.
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