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Abstract: Lead (Pb) is one of the major contaminants in many industries, and imposes hazardous
effects on multiple human organs and systems. Studies have shown that lead is able to
induce the alteration of microRNA (miRNA) expression in serum and organs. In this study we
investigated whether polymorphisms in miRNA-regulating genes were associated with the risk of
lead exposure. We genotyped seven single-nucleotide polymorphisms (SNPs) in 113 lead-sensitive
and 113 lead-resistant lead-related Chinese workers by Taqman analysis. The lead-sensitive group
showed a significantly higher blood lead level (BLL) than the resistant group based on unconditional
logistic regression results. One SNP in XPO5 extron (rs2257082) was significantly associated with
lead-poisoning (p = 0.022, odds rate (OR) = 1.63, 95% confidence interval (CI) = 1.07–2.47 in the C allele
compared to the T allele). There were no significant associations between the other six SNPs and the
blood lead levels. Therefore, polymorphism rs2257082 could be used to distinguish lead-resistant
and lead-susceptible populations, and to develop more specific and accurate preventions.
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1. Introduction

Lead (Pb) poses an enormous risk to human health due to its wide distribution in the environment
and its extensive use in various industries. It has been demonstrated that acute and chronic exposure to
lead has irreversible toxicity in several human organs and systems, such as the nervous, hematopoietic,
reproductive systems, as well as in the kidney and bones [1,2]. Even a low blood lead level (BLL)
(<10 µg/dL) was associated with kidney dysfunction in adults [3,4]. Developmental neurotoxicity
has been observed for blood lead concentrations lower than 10 µg/dL in children [5,6]. Based on
the known and established toxic effect, inorganic lead was defined as a potential human carcinogen
(group 2A) by the International Agency for Research on Cancer (IARC). Therefore, there is an emergent
need to identify valid biomarkers for predicting and preventing lead poisoning.

MicroRNAs (miRNAs), a family of small non-coding RNAs (~22 nucleotides), regulate post-
transcriptional gene expression by binding to complementary sequences in the 3′-untranslated region
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(3′-UTR) of target messenger RNA (mRNA), and give rise to the silence of genes [7]. Up to 30% of
protein-coding genes could be regulated by miRNAs, although miRNAs constitute only 1%–3% of the
entire human genome [8]. Aberrant expression of miRNAs is related to various human diseases, such as
hepatocellular carcinoma, lung cancer and endocrine pancreatic tumor [9]. Lead poisoning was also
identified to be associated with dysregulated miRNA expression levels. In animal models, the altered
expression levels of several miRNAs, which target crucial epigenetic mediators and neurotoxic proteins,
were observed with early postnatal exposure to lead [10]. Lead-induced up-regulation of mir-203 could
reduce the expression of the tricellulin protein and lead to blood–cerebrospinal fluid barrier loss as
well [11]. Although studies have shown that the toxicity of lead is associated with miRNA alterations,
the mechanisms of the variations of miRNAs were not comprehensively investigated and understood.

The biogenesis of miRNAs in mammalian cells involves both nuclear and cytoplasmic
processing, beginning with the synthesis of primary miRNA (pri-mRNA) by RNA polymerase
II [12]. The stem-loop structures contained in the primary transcripts are cleaved by the nuclear
Drosha and its RNA-binding partner DGCR8, releasing a 60–70 nt hairpin, termed precursor-miRNA
(pre-miRNA) [13]. The pre-miRNA generated in the nucleus is recognized and transported to the
cytoplasm by the complex composition of exportin-5 (XPO5) and RAN-GTP [14]. Then, cytoplasmic
Dicer processes pre-miRNA into a double-stranded RNA of ~22 nt and one strand of the duplex remains
as mature miRNA [13]. Therefore, XPO5 is a key element of the miRNA biogenesis pathway [15].

Single-nucleotide polymorphisms (SNPs) in miRNA genes, miRNA binding sites, and miRNA
processing machinery, known as miR-SNPs, are able to alter the activity and expression of miRNA
and the target genes, which eventually impact the development and prognosis of disease [16,17].
Aberrant expressions of XPO5 occur in tumors, causing the accumulation of pre-miRNAs in the
nucleus and damaging the production of mature miRNAs in cancer cells. To the best of our knowledge,
the role of miR-SNPs regarding lead poisoning has not been well studied. Nevertheless, lead exposure
accounts for the aberrant expression of miRNAs [18], and thus we hypothesize that miR-SNPs are
strongly associated with lead poisoning. Our pioneer study explores whether polymorphisms in the
miRNA machinery genes GEMIN4, PIWIL1, RAN, DICER, DROSHA, and XPO5 are associated with
lead toxicity in occupational workers exposed to lead.

2. Materials and Methods

2.1. Study Population

The study population consisted of 1130 workers under similar external lead exposure dose
(0.017 ± 0.004 mg/m3) from five battery factories in Jiangsu Province, China. All workers started
their lead-related works since 2012, each of whom had an orientation health check. All workers were
initially healthy without aberrant BLL. Participants were excluded with evidence of any history of
hematological disorders, liver or kidney dysfunction, or exposure to the medicine containing lead
in daily life. Each participant was interviewed by a trained staff with standardized questionnaire,
which included information about demographic characteristics, detailed occupational history, medical
history, individual habits and self-conscious symptoms. In this study, we retrieved the physical
examination data and survey data in the third years of each worker to make sure there was no different
in their working age. We ranked participants’ severities of lead exposure based on their BLLs. Then we
selected 10% individuals with the lowest BLLs as the most lead-resistant participants, while 10%
with the highest BLLs as the most lead-sensitive ones. Each participant signed an informed consent.
This research was approved by the Ethics Committee of the Jiangsu Province Center for Disease
Control and Prevention (No. 2015025, 18 July 2012).

2.2. Blood Lead Levels Measurement

The 5 mL blood samples were collected in metal-free vacuum blood collection tube and stored at
−4 ◦C for transportation. After the collection of blood samples, we finished the detection of BLLs in
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48 h in order to reduce the interference for the BLL. Before the measurement, 0.2% nitrate acid was
added into sample for further reaction which was necessary to our final measurement.

BLLs were measured by atomic absorption spectrometry using the PerkinElmer model
5000 graphite furnace atomic absorption spectrophotometer (PerkinElmer, Waltham, MA, USA).
According to the Chinese standard, the standard substances of GBW09139h-09140h and GBW (e)
09054b-09056b were contained for each measurement of BLLs as controls. Each measurement was
repeated by three persons independently in a blind fashion, and BLLs of samples with less than 5%
concentration error were considered as qualified.

2.3. DNA Extraction

Approximately 5 mL venous blood sample was drawn from each participant into tubes containing
EDTA and centrifuged immediately at 3000× g for 5 min to separate plasma and serum. DNA was
extracted from the plasma by the QIAcube HT Plasticware and QIAamp 96 DNA QIAcube HT Kit
(Qiagen, Dusseldorf, Germany) following the manufacturer’s protocol and then stored at −80 ◦C
until use. The A260/A280 of the purified DNA, tested by Nanodrop OneC Ultramicro ultraviolet
spectrophotometer (Thermo Scientific, Waltham, MA, USA), was between 1.8 and 2.0, indicating that
there was no external contamination.

2.4. SNP Selection and Genotyping

miR-SNPs were selected based on the HapMap database, NCBI database and previous
literature. The selection criterion was MAF (minor allele frequency) of HCB > 0.05 and in potential
functional region of gene. The SNPs, which were reported in previous studies, were also included.
DICER rs3742330 and rs13078, DROSHA rs6877842 and rs10719, RAN rs14035, XPO5 rs2257082 and
rs11077, GEMIN4 rs910924, rs3744741, rs4968104 and rs2740348, PIWIL1 rs1106042 were initially
selected. After genotyping, DICER rs13078, DROSHA rs6877842, XPO5 rs11077, and PIWIL1 rs1106042
were excluded because the numbers of participants carrying the minor alleles were less than 10, which
was unfeasible for reliable statistical analysis.

Genotyping of the selected SNPs was conducted by the ABI TaqMan SNP genotyping assays
(Applied Biosystems, Foster City, CA, USA). The extracted DNA and genotyping assays were added
to TaqMan universal PCR master mix (Applied Biosystems, Foster City, CA, USA) according to the
manufacturer’s protocols. The genotyping procedures were further performed by ABI 7900 real-time
PCR system (Applied Biosystems, Foster City, CA, USA). The condition for real-time PCR was as
follows: 95 ◦C, 10 min; 95 ◦C, 15 s; 60 ◦C, 1 min (40 cycles of the last two steps). The data were analyzed
via ABI 7900 System SDS 2.4.

2.5. Statistical Analysis

Statistical analysis was performed in SPSS 23.0 (Chicago, IL, USA). Hardy–Weinberg
equilibrium was checked by goodness-of-fit χ2 test among resistant and the sensitive participants.
Categorical variables were presented as percentages and continuous variables as mean ± SD
(standard deviation). Student’s t-test was applied to differentiate the two groups for BLLs, while
the differences in individual characteristics, such as age and gender, were compared by Pearson’s χ2.
In this study, workers who smoked once a day for one year were defined as smokers, while individuals
who had consumed alcohol once per week for one year were drinkers. To assess allele and genotype
frequencies, we adjusted the degree of education (described in Table 1) and drinking status and further
conducted a Student’s t test. Unconditional multivariate logistic regression was applied to compute
odds ratio (OR) and 95% confidence interval (95% CI) for different genotypes. All probability measures
corresponding to statistical significance were two-tailed (α = 0.05) and p < 0.05 was adopted as the
criterion for statistical significance.
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Table 1. The characteristics of the 10% most lead-sensitive and 10% most lead-resistant groups.

Characteristics

Group
pLead-Resistant (n = 113)

n (%)
Lead-Sensitive (n = 113)

n (%)

Gender
0.506Male 52 (46.0) 57 (50.4)

Female 61 (54.0) 56 (49.6)

Age (years) 35.86 ± 10.26 38.39 ± 8.85 0.047 *
BMI (kg/m2) 23.7 ± 3.6 24.3 ± 4.8 0.289

Smoking
0.246No 83 (73.4) 75 (66.4)

Yes 30 (26.6) 38 (33.6)

Education
0.412Literate and up to lower secondary level 21 (18.6) 26 (23.0)

Low up to middle secondary level 92 (81.4) 87 (77.0)

Drinking
0.080No 93 (82.3) 82 (72.6)

Yes 20 (17.7) 31 (27.4)

Eat or drink in workplace

0.847
No 31 (27.4) 30 (26.6)
Occasionally 35 (31.0) 39 (34.5)
Yes 47 (41.6) 44 (38.9)

BLL (µg/L) *
<0.001 *

Mean ± SD 89.34 ± 15.39 513.52 ± 63.86

BMI, body mass index; BLL, blood lead level. * p-value of two-sided Student’s t-test for age and BLL.

3. Results

3.1. Characteristics of Study Participants

The basic characteristics of the participants are presented in Table 1. No significant differences
were detected between sensitive workers and resistant workers for gender (p = 0.286), BMI (p = 0.289),
smoking status (p = 0.310) and drinking (p = 0.078). The participants’ educational level and eating or
drinking habit (whether or not they do it in the workplace) were also similar (p = 0.412 and 0.847).
However, lead-sensitive participants were marginally older than the lead-resistant ones (p = 0.047).
BLLs of sensitive participants (the top 10% in BLL) and resistant participants (bottom 10% in BLL)
were 513.86 ± 60.17 and 87.31 ± 20.54 µg/L, respectively.

3.2. Association between miR-SNPs and Plumbism

Table 2 demonstrates the genotypes and allele frequencies of miR-SNPs in sensitive and resistant
participants adjusted by age, gender, education, and alcohol drinking. There is no deviation from the
Hardy–Weinberg equilibrium (HWE) in the distributions of genotypes (p = 0.437). XPO5 rs2257082
is the only SNP (out of the seven total SNPs) that is significantly different between sensitive and
resistant participants: the T allele dominates in both sensitive and resistant workers (55.8% and
65.5%, respectively). Compared to the lead-resistant individuals, the C allele is more frequent
in the lead-sensitive individuals, and is identified as a potential risk factor (44.2% vs. 34.5%,
p = 0.022, OR = 1.63, 95% CI = 1.07–2.47). Furthermore, the CT/CC carriers have nearly twice
the risk of internal lead exposure among sensitive individuals than the resistant ones (p = 0.038,
OR = 1.85, 95% CI = 1.03–3.32). No other SNP shows a significant difference between the sensitive and
resistant participants.
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Table 2. Genotype frequencies of miR-SNPs in lead-sensitive and lead-resistant participants.

Genotype
Lead-Sensitive (n = 113) Lead-Resistant (n = 113)

HWE p * Adjusted OR (95% CI) *
n % n %

DICER

rs3742330 0.430
AA 47 41.6 51 45.1 1.00 (Ref.)
AG 46 40.7 47 41.6 0.957 0.98 (0.55–1.77)
GG 20 17.7 15 13.3 0.385 1.43 (0.64–3.18)
A allele 140 61.9 149 65.9 1.00 (Ref.)
G allele 86 38.1 77 34.1 0.488 1.14 (0.78–1.66)

XPO5

rs2257082 0.543
TT 32 28.3 47 41.6 1.00 (Ref.)
CT 62 54.9 54 47.8 0.096 1.68 (0.91–3.10)
CC 19 16.8 12 10.6 0.034 2.60 (1.08–6.28)
CT/CC 81 71.7 66 58.4 0.038 1.85 (1.03–3.32)
TT/CT 94 83.2 101 89.4 1.00 (Ref.)
CC 19 16.8 12 10.6 0.112 1.92 (0.86–4.30)
T allele 126 55.8 148 65.5 1.00 (Ref.)
C allele 100 44.2 78 34.5 0.022 1.63 (1.07–2.47)

DROSHA

rs10719 0.104
TT 90 79.6 83 73.4 1.00 (Ref.)
CT 23 20.4 30 26.6 0.563 0.83 (0.43–1.66)
CC 0 0.0 0 0.0 - -
T allele 203 89.8 196 86.7 1.00 (Ref.)
C allele 23 10.2 30 13.3 0.563 0.83 (0.43–1.66)

RAN

rs14035 0.080
CC 65 57.5 81 71.7 1.00 (Ref.)
CT 48 42.5 32 38.3 0.061 1.73 (0.98–3.08)
TT 0 0.0 0 0.0 - -
C allele 178 78.8 194 85.8 1.00 (Ref.)
T allele 48 21.2 32 14.2 0.061 1.73 (0.98–3.08)

GEMIN4

rs910924 0.207
CC 82 72.6 89 78.8 1.00 (Ref.)
CT 31 27.4 24 21.2 0.235 1.47 (0.78–2.78)
TT 0 0.0 0 0.0 - -
C allele 195 86.3 202 89.4 1.00 (Ref.)
T allele 31 13.7 24 10.6 0.235 1.47 (0.78–2.78)

rs4968104 0.118
TT 80 70.8 84 74.3 1.00 (Ref.)
AT 33 29.2 29 25.7 0.663 1.14 (0.63–2.08)
AA 0 0.0 0 0.0 - -
T allele 193 85.4 197 87.2 1.00 (Ref.)
A allele 33 14.6 29 12.8 0.663 1.14 (0.63–2.08)

rs2740348 0.338
CC 80 70.8 87 77.0 1.00 (Ref.)
CG 26 23.0 23 20.4 0.602 1.20 (0.61–2.33)
GG 7 6.2 3 2.6 0.238 2.36 (0.57–9.82)
C allele 186 82.3 197 87.2 1.00 (Ref.)
G allele 40 17.7 29 12.8 0.246 1.35 (0.81–2.23)

* Adjusted for sex, age, smoking, and education, drinking, and eating habit in workplace. DICER: dicer
1 ribonuclease III; XPO5: exportin 5; DROSHA: drosha ribonuclease III; GEMIN4: gem nuclear organelle
associated protein 4.

4. Discussion

In this study, we performed a genetic association analysis on the XPO5 miR-SNP between
participants with higher and lower occupational internal exposures to lead. We discovered that XPO5
polymorphism is strongly associated with the susceptibility to lead poisoning, which backed our
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hypothesis that SNPs in miRNA-related genes could be associated with lead toxicity in occupational
workers exposed to lead and implied that the C carriers of rs2257082 were more susceptible to
occupational internal exposure to lead.

XPO5 is a member of the karyopherin β family that takes advantage of RAN-GTP to control
the nucleus export of per-miRNAs [14]. miRNAs are critical players in cellular processes, and are
involved in cell development, proliferation, differentiation, and apoptosis by regulating the expression
of target genes [12]. Therefore, the altered expression of miRNAs contributes to a wide spectrum of
human diseases. miRNAs could also act as tumor suppressors or oncogenes [19]. miRNA expression
patterns are found to be different between lead-exposed and non-exposed animals, associated with
neurotoxicity [20], Alzheimer’s disease and blood–cerebrospinal fluid barrier loss [11]. It has been
shown that down-regulated miRNA expression results from XPO5 deletions [21]. In our previous study,
we identified miR-520c-3p, miR-211 and miR-148a being aberrantly expressed in the lead-sensitive
group involved in the present studies (unpublished data), and we hence hypothesized that the XPO5
miR-SNP would be an influencing factor of occupational internal exposure to lead by altering miRNA
expression. It is possible that the mutations of XPO5 isolate the pre-miRNAs in the nucleus, restraining
the expression of miRNAs, and further impede the miRNA biogenesis and function. The XPO5
protein traverses the nuclear envelope [15], and is supposed to mediate the nuclear export of Dicer
mRNA, one key component responsible for the cleavage of pre-miRNA to the mature miRNA [22].
We conjecture that XPO5 miR-SNP may interact with Dicer, decline the expression of miRNAs, and thus
interfere with miRNA biogenesis.

rs2257082 and rs11077 are the only two XPO5 polymorphisms known for their significance in
diseases. They are located on the extron and 3′UTR region of the XPO5 gene, respectively. As a
synonymous codon variant, rs2257082 is related to ovarian cancer [23] and idiopathic primary
ovarian insufficiency [24]. Considering its special location and synonymous coding characteristics,
the rs2257082 polymorphism most possibly affects mRNA structure, similar to other synonymous SNPs,
which might influence mRNA folding [25] and stability [26], and eventually alter the translation rate of
XPO5. In our study, we report that workers harboring the C allele tend to have higher BLLs. However,
the specific molecular mechanism on how this SNP modifies the susceptibility to lead is not yet known;
thus, further functional studies on rs2257082 will be necessary. The other focal SNP, rs11077, is related
to non-small cell lung cancer (NSCLC) [27], colorectal cancer [28], multiple myeloma [29], Hodgkin’s
lymphoma (HL) [30] and hepatocellular carcinoma (HCC) [31]. Unfortunately, as a low-frequency
SNP in our study, participants carrying rs11077 AC/CC genotypes are rare (<10), and it might impact
the accuracy of the statistical analysis. Future research with a considerably large sample size for
lead-exposure participants is expected to study the accurate mechanism of rs11077 and its combined
effect with rs2257082 on occupational internal exposure to lead.

5. Conclusions

In conclusion, our study is the first to investigate the relationship between miR-SNP and miRNA
processing machinery in occupational subjects exposed to lead. We demonstrate that detection of the
rs2257082 C allele was more frequent among more highly exposed workers.
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