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Abstract: A modeling method based on discrete wavelet transform (DWT) was introduced to
analyze the concentration of chromium, copper, zinc, arsenic and lead in soil with a portable X-ray
fluorescence (XRF) spectrometer. A total of 111 soil samples were collected and observed. Denoising
and baseline correction were performed on each spectrum before modeling. The optimum conditions
for pre-processing were denoising with Coiflet 3 on the 3rd level and baseline correction with Coiflet
3 on the 9th level. Calibration curves were established for the five heavy metals (HMs). The detection
limits were compared before and after the application of DWT, the qualitative detection limits and
the quantitative detection limits were calculated to be three and ten times as high as the standard
deviation with silicon dioxide (blank), respectively. The results showed that the detection limits
of the instrument using DWT were lower, and that they were below national soil standards; the
determination coefficients (R2) based on DWT-processed spectra were higher, and ranged from 0.990
to 0.996, indicating a high degree of linearity between the contents of the HMs in soil and the XRF
spectral characteristic peak intensity with the instrument measurement.
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1. Introduction

Rapid population growth and urbanization, together with expansion of industrial production,
have resulted in serious soil contamination issues globally. Heavy metal (HM) pollution is a major
type of soil pollution. HMs in soil mainly derive from atmospheric dust, sewage irrigation, mining
and smelting, and the application of pesticides and fertilizers [1]. Heavy metal pollution in soil
deteriorates air and water quality, causes a decline in the yield and quality of crops, and threatens
human health through the food chain [2]. HM pollution is difficult to identify because of the range of
different contaminants and attempts to conceal pollution events, and difficult to remediate owing to
the complex chemical behavior of HMs and their ecological effects [3]. The main detection methods of
HMs in soil involve the use of strong acid to digest soil samples, which are then tested by methods
such as atomic absorption spectroscopy (AAS) [4], inductively coupled plasma atomic emission
spectrometry (ICP-AES) [5], and inductively coupled plasma mass spectrometry (ICP-MS) (ICP-MS) [6].
These methods are highly accurate and have good precision; however, the pre-processing steps are
tedious, time-consuming, expensive, and the strong acid used in the experiments may also contribute
to contamination. A rapid detection method with simple pre-processing and accurate detection results
is needed. X-ray fluorescence (XRF) spectroscopy has the potential to meet these requirements, owing
to its ability to rapidly analyze samples, the simplicity of its sample pre-treatment and operation, its
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high sensitivity, the wide range of elements analyzed, its low cost, and its ability to perform in-situ
testing [7–9]. Furthermore, chemical methods have much lower detection limits, but also require that
the digestion is complete and that there are no errors in the dilutions, which leads them to sometimes
become more imprecise and inaccurate than the spectrometry of XRF, which requires virtually no
pretreatment of the sample.

Some researchers have studied the factors influencing modeling results with portable XRF
spectrometers [10–13]. XRF has been applied to the detection of HM concentration in many studies [14–18];
however, little attention has been paid to modeling and pre-processing of the spectral data, which is
required in order to improve the accuracy of XRF test results. The composition of soil is complex, resulting
in matrix effects when using XRF for analysis. Variations of the sample composition and physical/chemical
properties will affect the fluorescence enhancement effect, the intensity of XRF, the limits of detection and
the absorption of primary X-rays and XRF [19,20]. Thus, it is necessary for the instrument developers to
remove and optimize the matrix effects, and improve the accuracy and precision of instruments. For these
purposes, it is essential to establish accurate models for calibration curves. This paper concerns the testing
and processing of large numbers of soil samples to obtain a regression model for HMs. Eight kinds of
toxic HMs in soil—cadmium, chromium, copper, zinc, lead, arsenic, nickel and mercury—have had
their limited concentration specified by the Environmental Quality Standard for Soils, GB15618-1995.
It’s difficult to quantify the concentration of cadmium, nickel and mercury with XRF due to their
unique characteristics; the modeling is not satisfactory. So the other five kinds of HMs were chosen to
be analyzed in this paper.

Measured spectra are often accompanied by high-frequency noise and low-frequency baseline
interference, which are the main factors affecting spectral identification. Denoising and baseline
removal directly affect the quality of spectral analysis. The wavelet transform (WT) [21] developed in
recent years is a signal analysis tool based on the time-frequency domain that has advantages including
good time-frequency localization, flexibility of base choice, and decorrelation, making it a superior
method for filtering noise and removing the baseline of spectral data.

In this paper, a denoising and baseline correction method using discrete wavelet transform (DWT)
is proposed to achieve more accurate detection results before data analysis. This is the first time that
DWT has been used as a pre-processing algorithm in XRF spectroscopy for soil detection. Both the raw
spectral data and processed data under DWT were used in modeling the HMs. Our results show that
the determination coefficients (R2) were improved, and the detection limits were reduced, meaning
that the accuracy of the modeling was successfully improved. Thus, we show that DWT is an efficient
method for processing XRF spectral data before modeling.

2. Materials and Methods

2.1. Collection of Soil Samples, Equipment and Measurement Conditions

All measurements were made with a portable XRF spectrometer (SX-100S, Beijing Research Center
for Agricultural Standards and Testing, Beijing, China) fitted with an Ag anode X-ray tube, Al + Mo
filter, and silicon drift detectors (Figure 1). The instrument was operated at a voltage of 30 kV, current
of 30 µA, and detection time of 100 s. Soil samples were placed into an ethylene sample cup (D × H:
30 mm × 10 mm, NCS Testing Technology Co., Beijing, China) with a fixed Mylar film (Premier Lab
Supply Co., Woburn, MA, USA; special film for X-ray analysis, thickness: 6 µm) collar.

A total of 111 samples were collected, including 46 national standard soil samples (National
Standard Material Research Center, Beijing, China), 30 standard addition soil samples (collected from
Heilongjiang, Yunnan, Jiangsu and Xinjiang provinces from typical soil, namely, black soil, paddy
soil, red soil, and brown soil), and 35 natural soil samples (collected from around Beijing) from the
soil surface of farmland at a depth of 0–20 cm. The samples were preserved after air-drying, ground,
and sieved with a nylon mesh indoors. The standard additional soil samples were mixed with the
appropriate metal salts over a range of concentrations by serial dilution. All the tools used during the
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processing were made of ceramic or agate to ensure no interfering XRF signals at the tested heavy
metal peak energies. Analysis of the HMs in the soil samples was performed in accordance with
national standards, including the national standard soil samples (GSS-4) for quality control; three
spectra were collected for each sample. The content of chromium (Cr), copper (Cu), zinc (Zn), lead
(Pb) were determined with a Solaar-M (Thermo Fisher Scientific Inc., Waltham, MA, USA) atomic
absorption graphite furnace. Arsenic (As) content was tested with a AFS-830 (Jitian Instrument Inc.,
Beijing, China) atomic fluorescence analyzer.
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Figure 1. XRF spectrometer and sample cup used for detection in this study: (a) XRF spectrometer;
(b) sample cup. The spectrometer can be used both in laboratory and in the field, linked with a laptop.

2.2. Spectra Processing

2.2.1. Wavelet Transform

Wavelet transform [22] is a localized analysis of time (space) frequency by stretching shift operation
on the signal (function) multiscale refined gradually, and ultimately achieves time segmentation
at high frequencies and frequency segmentation at low frequencies [23,24]. Since most signals in
nature are non-stationary, the characteristics of WT make it superior for signal analysis compared to
Fourier transform and short-time Fourier transform. Fourier transform can only capture the frequency
components contained in a signal, but cannot calculate when the components appear, so it is inherently
defective for dealing with non-stationary signals. Short-time Fourier transform (STFT) adds windows
during the decomposition process to obtain time components, but it is hard to find the appropriate
width of the window when dealing with non-stationary signals. The narrow window has a high time
resolution and a low frequency resolution, the wide window has a low time resolution and a high
frequency resolution. For time-varying non-steady signals, high frequencies are suitable for small
windows, low frequencies are suitable for large windows. However, the STFT window is fixed and the
width does not change during one STFT calculation. So STFT is still unable to meet the need to analyze
the frequency change of an unsteady signal. The WT can automatically adapt to the requirements of
time-frequency signal analysis, and thus to focus on any details of a signal. The wavelet is a function
family produced by panning or stretching a form function ψ(t) that satisfy certain conditions [25]:

ψa,b(t) =
1√
a

ψ

(
t− b

a

)
(1)

where ψ(t) is the wavelet basis (WB), and a and b are the scale and translation parameters, respectively.
Many wavelets have been developed, including Haar, Daubechies, Coiflet, Symlets, Mexican Hat. The
DWT is often used instead of WT in computation by Equation (2) [26].

ψj,k(t) = 2−
j
2 ψ
(

2−jt− k
)

(2)
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where j, k ∈ Z. The discrete wavelet coefficients of a function f (t) or a signal are computed according
to Equation (3) [27].

Cj,k = < f , ψj,k > =
∫ ∞

−∞
f (t)ψ∗j,k(t)dt (3)

2.2.2. Mallat Algorithm

The Mallat [28] algorithm is often performed for DWT. Combined with multi-resolution
analysis, Mallat proposes a method with a sub-band structure to achieve a DWT algorithm, unified
computing sub-band filter and WT. The L2(R) space produces two subspaces with multi-resolution
analysis (MRA)—scale space {Vj}j∈Z and wavelet space {Wj}j∈Z—and {ϕj,k}j,k∈Z and {ψj,k}j,k∈Z are the
orthonormal bases of the two spaces, respectively. The process of the Mallat decomposition and
reconstruction algorithm is shown in Figure 2. It is assumed that a conjugate mirror filter is produced
by the orthogonal scaling function and wavelet function [29,30]. The scaling coefficients and wavelet
coefficients of the WT as cj,k and dj,k, and the recursive formulas are shown in Equations (4) and (5),
which enable the calculation {cj,k, dj,k} [31]. Thus, with the initial sequence {cj,k}k∈Z in space Vj, we
can calculate all the scale coefficients and wavelet coefficients of any spaces Vj (j < J). Equations (4)
and (5) are known as the DWT decomposition formula. The Mallat reconstruction formula is given in
Equation (6):

cj,k = < f (t),ϕj,k > =
1√
2

∑
n∈Z

hncj+1,n+2k (4)

dj,k = < f (t), ψj,k > =
1√
2

∑
n∈Z

gncj+1,n+2k (5)

cj+1,k =< f (t),ϕj+1,k ≥=
1√
2

∑
n∈Z

(
hn−2kcj,k + gn−2kdj,k

)
(6)
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Figure 2. Mallat decomposition and reconstruction algorithm. Directions of blue and red arrows
indicate the decomposition and reconstruction algorithms, respectively.

2.2.3. Wavelet Transform Processing

Wavelet denoising mainly includes three steps: Signal decomposition, high-frequency coefficient
threshold quantization and signal reconstruction. The most critical step in the process is how to select
and quantify the threshold, which directly relates to the quality of denoising.

2.3. Determination and Validation of Calibration Curves

The characteristic Kα X-ray line, peak position and absorption band of five HMs are listed in
Table 1. After processed by DWT, calibration curves were constructed with mean values of counts and
standard values. The measured spectra were re-transferred back to the software to obtain detection
values calculated from the calibration curves. Detection values and standard values were contrasted
to verify the accuracy of the instrument. To determine the detection limits of the instrument and
investigate the reproducibility and accuracy further, soil samples with different compositions together
with silicon dioxide (blank, Aladdin industrial Co., Shanghai, China) were chosen for retesting. Each
sample was tested 11 times.
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Table 1. Characteristic X-ray line, peak position and absorption band of five HMs.

HMs X-ray Line for Analysis Peak Position/keV Corresponding Channel Absorption Band/keV

Cr Kα 5.414 836 5.399–5.429
Cu Kα 8.047 1243 8.032–8.062
Zn Kα 8.638 1334 8.623–8.653
As Kα 10.543 1628 10.528–10.598
Pb Lβ 12.611 1948 12.595–12.625

3. Results and Discussion

3.1. WT Processing Results

3.1.1. Evaluation Criteria of Denoising Results

To ensure the consistency between the denoising and original spectrum, we examined the signal
to noise ratio (SNR, Equation (7)), mean square error (MSE, Equation (8)) and information entropy (H,
Equation (9)) [32,33]. For SNR and H, a larger value is better, for MSE a lower value is better.

SNR = 10× log
N

∑
1

y2
i

(xi − yi)
2 (7)

MSE =
1
N

N

∑
i=1

(yi − xi)
2 (8)

H = −
N

∑
1

p(xi)× log(2, p(xi)) (9)

where N is the channel number, yi is the original value, xi is the noise-free value after processing, p(xi)
is the probability of information appears at a certain point. To comprehensively evaluate the effect of
denoising, the coefficient αwas created, which is proportional to the denoising effect:

α =
SNR× H

MSE
(10)

3.1.2. Selection of WB

All the signal processes were performed on a desktop (Hewlett-Packard, P6-1499CN, Palo Alto,
CA, USA) using MATLAB version 2014a software (MathWorks Inc., Natick, MA, USA). All programs
for noise reduction and baseline correction were written locally in the lab. Some commonly used
wavelets were chosen to denoise the XRF signal at a decomposition level of 4 with soft thresholding
mode (Table 2, Coiflet (coif) 2–5, Daubechies (db) 5–10, Symmlet (sym) 5–8). Coif 3 was chosen as the
optimized wavelet and given the lowest value of α. The optimal decomposition level was determined
by coif 3 from level 3 to 10 (Table 3). Level 3 proved to be the optimum.

Table 2. Denoising effects evaluated with different WBs.

WB SNR MSE H α

coif2 103.85 528.59 0.1120 45.46
coif3 110.57 519.53 0.1241 37.85
coif4 110.09 519.36 0.1207 39.09
coif5 98.66 516.30 0.1170 44.72
db5 99.46 531.07 0.1185 45.05
db6 100.62 524.08 0.1232 42.53
db7 99.65 517.64 0.1140 45.58
db8 111.44 518.96 0.1218 38.25
db9 104.54 516.39 0.1076 45.93

db10 103.59 520.54 0.1172 42.87
sym5 105.45 520.84 0.1136 43.37
sym6 107.66 519.21 0.1099 43.88
sym7 95.79 517.49 0.1183 45.68
sym8 97.53 519.33 0.1121 47.49
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Table 3. Results of different decomposition levels with coif 3.

Decomposition Level SNR MSE H α

3 110.57 519.53 0.1241 37.85
4 107.46 603.68 0.1044 53.81
5 104.98 686.08 0.0584 111.84
6 97.52 743.46 0.0487 156.68
7 113.44 779.65 0.0237 290.31
8 98.06 798.07 0.0280 290.83
9 141.54 807.36 0.0313 182.44

10 92.70 815.65 0.0349 252.04

The detected spectra of 111 samples were processed by DWT. To show the results clearly,
a representative spectrum is shown in Figure 3. The denoising results in the figure in the channel range
700–2000 are expanded to enable observation of signal processing effects on the HMs peaks. The peaks
of Cr, Cu, Zn, As, and Pb appear around the channels 816–856, 1224–1264, 1315–1355, 1609–1649, and
1926–1969, respectively. Figure 3c,d show that with coif 3 at level 3, the noise level was successfully
reduced without affecting the peak shape.
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Figure 3. Denoising results with coif 3 at level 3: (a) Original signal; (b) Enlarged view of (a);
(c) Denoised signal; (d) Enlarged view of (c).

To effectively resolve the spectrum and improve the operation speed of the algorithm, a “speed-up”
method of peeling peaks was used. The wavelet decomposition was used for the XRF spectrum f 0(n)
to extract the approximate part fj(n) from a higher scale; if f 0(n) > fj(n), then f 0(n) = fj(n). In this way,
peak pealing was accelerated; the same process was then applied to the new f 0(n), and the cycle was
repeated several times, in order to obtain a relatively gentle curve. Wavelet decomposition was used
on the relatively flat curve, and extracted an appropriate level as an approximation of the XRF spectra
baseline to achieve better results.

Through many experiments, the optimized decomposition level was 9, which achieved a
good approximation of the baseline (Figure 4), and the decomposition result was shown in a9.
The spectrum between 1500–4000 channels was intercepted to show the result of calculation by
DWT clearly. The signal at a9 was regarded to be the baseline, and was used for background deduction.
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Baseline corrections (coif 3 at level 9) were performed based on denoising (coif 3 at level 3). The
baseline was successfully removed without losing peak information (Figure 5). The spectrum between
800–2000 channels was magnified to show the calculation’s effects on the HM peaks more clearly; the
baseline and peak positions were unaffected by the processing.
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3.2. Instrument Calibration Curves

The concentration ranges of Cr, Cu, Zn, As, and Pb were 32–749, 11.4–577, 31–680, 4.4–806, and
13.4–644 mg/Kg. The calibration curves were drawn with the raw spectral data and processed spectral
data, which were obtained from each of the processed lines by the wavelet analysis using the method
described in 2.3. Comparisons were made between the modeling results with the data before and after
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processing. The values of R2 for Cr, Cu, Zn, As, and Pb based on the raw spectral data were 0.9886,
0.9836, 0.9833, 0.9846 and 0.9846, respectively. These values were lower than the R2 values processed
with DWT (Figure 6), indicating that the calibration curves fit better after the DWT processing. Thus,
the data obtained after processing were better suited to quantitative analysis, with the DWT method
also improving the stability and accuracy of the data. A high degree of linearity was found between the
HM contents in the soil and the XRF spectral characteristic peak intensities from measurements within
the appropriate range. A model was established to determine a calibration curve for the instrument.
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Figure 6. Calibration curves for Cr (a), Cu (b), Zn (c), As (d) and Pb (e). Spectral data were pre-processed
with DWT.

3.3. Detection Results and Detection Limits

The standard values of HMs in soil samples were tested by chemical methods, the results were
compared to the XRF testing results with original data and processed data using DWT (Figure 7).
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This showed that, within their standard deviation range, the detected values were closer to the standard
values, indicating that the calibration line was sufficiently accurate. A confirmatory test was performed
according to the method described in 2.3. The instrument’s qualitative detection limit (QDL) is three
times the standard deviation of the silicon dioxide (blank), while the quantitative detection limit
(QNDL) is ten times the standard deviation of the blank. The detection limits of the raw spectra and
the spectra processed by DWT were calculated. The results are shown in Table 4. The table shows that
both the QDL and QNDL values were considerably reduced. Thus, the DWT method has potential for
practical applications.
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Figure 7. Relationship between standard values measured by chemical analysis and predictive values
detected by XRF spectrometer for Cr (a), Cu (b), Zn (c), As (d) and Pb (e). Spectral data were
pre-processed with DWT.
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Table 4. Instrument detection limits (n = 11).

Detection Limits Cr Cu Zn As Pb

QDL 11.34 9.33 7.59 7.25 11.67
QNDL 37.80 31.10 25.31 24.16 38.91

WT-QDL 2.22 6.13 3.87 4.52 5.28
WT-QNDL 7.39 20.43 12.90 15.08 17.61

National level 90 35 100 20 35

4. Conclusions

Denoising and baseline correction by the DWT method as a pre-processing procedure show good
effectiveness for handling results of XRF spectroscopy. The Coiflet 3 wavelet base was chosen as
an optimized filter for DWT. Good denoising effects were achieved at decomposition level 3 and an
approximation of the baseline was achieved at decomposition level 9. A comparison of the calibration
curves and detection limits between the raw spectral data and processed spectral data with DWT was
performed. The results show that the accuracy is higher and the detection limits are lower for the
processed data, which means that better modeling results can be obtained using DWT. The portable XRF
spectrometer is capable of rapid detection of Cr, Cu, Zn, As, and Pb in soil within 100 s. The detection
limits of the instrument were below the national secondary standard level (Environmental Quality
Standard for Soils, GB15618-1995) in processed spectra, and the instrument showed good precision
and accuracy, indicating potential for use in rapid in-situ screening of HM contamination in soil.
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