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Abstract: A native, highly efficient microcystin-LR (MC-LR)-degrading bacterium named a7 was
isolated from Lake Taihu and identified as Sphingopyxis sp. by 16S rDNA sequence analysis. The strain
a7 could totally degrade MC-LR at a rate of 3.33 mg/(L·h), as detected by high-performance liquid
chromatography (HPLC). The mlrA, mlrC, and mlrD genes were detected in the strain a7 by sequence
analysis. Tetrapeptide and Adda—which are the middle metabolites of MC-LR—were analyzed
via liquid chromatography time-of-flight mass spectrometry (LC-TOF-MS) during degradation.
These metabolites were degraded completely, which suggested that the native Sphingopyxis sp. a7 was
highly efficient in MC-LR degradation under bench conditions. Thus, strain a7 exhibited a significant
potential application for bioremediation in water bodies contaminated by MC-LR produced by
harmful cyanobacterial blooms.

Keywords: microcystin; biodegradation; Sphingopyxis sp.; Lake Taihu

1. Introduction

Microcystins (MCs) are cyclic heptapeptides with seven amino acids, and are considered one
of the most hazardous groups of toxins produced by harmful cyanobacterial blooms (HCBs) [1,2].
These toxins are cyclic heptapeptide hepatotoxins and tumor-promoting substances [3,4]. All MCs
consist of the generalized structure cyclo-D-Ala1-X2-D-MeAsp3-Z4-Adda5-D-Glu6-Mdha7 (Figure 1) [5].
MC-LR, which has leucine (L) at position 2 and arginine (R) at position 4, is the most toxic among
MCs [6]. Degradation products probably are linearized MC-LR, tetrapeptide, Adda, and other small
molecules resulting from cleavage [7,8].
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Figure 1. Chemical structure of microcystins (MCs). X and Z are variable L-amino acids [5]. Figure 1. Chemical structure of microcystins (MCs). X and Z are variable L-amino acids [5].
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Various aquatic organisms, including molluscs, shrimp, and fish, accumulate MCs in their
tissues [9–11]. Moreover, algal toxins in drinking water may exceed the standard amount during the
bloom, which might increase the risk of cancers [11,12]. With the potential health risks, further studies
should be conducted regarding the methods of MC removal.

MC toxins are nonvolatile, hydrophilic, and stable in sunlight over a wide temperature and pH
range [13]. Consequently, they are difficult to remove by using the conventional water treatment of
chlorine, chlorine dioxide, ozone, and permanganate [14,15]. The specific bacteria appearing along
with cyanobacterial blooms can both lower and assimilate the algal toxins and their degradation
products [16]. As one of the most important mechanisms for the removal of MCs from the natural
environment, microbial degradation is an alternative strategy for physical and chemical water
treatment programs [17,18].

Since the first isolation of the bacteria degrading MC in natural waters in 1994, a growing
number of MC-degrading bacteria have been isolated in waters of Japan, China, and other parts of the
world [19–26].

Lake Taihu, located in the delta of Yangtze River in Eastern China, is the third largest lake in
China and offers a resource which supplies water to almost 2 million people for fishery, agriculture,
industry, and household drinking. HCBs producing MCs have occurred regularly during the summer
in a large part of Lake Taihu in the last three decades [17,22,27].

In previous research from our laboratory, the strain MC-LTH1 of Bordetella sp. and LTH2
of Sarratiamarcesens sp. can totally degrade MC-LR around the rates of 3.0 mg/(L·d) [22,28].
This study aimed to isolate a highly efficient native bacterium that can degrade MC-LR from
Lake Taihu, and investigate the possible mechanism of MC degradation to bioremediate the local
water environment.

2. Experimental Section

2.1. Collection, Domestication, Isolation, and Culture of MC-Degrading Bacteria

Sludge and water samples were collected from cyanobacteria-salvaged yards in the Guji district
in Lake Taihu, China. The sludge (10 g, wet weight) was mixed with 90 mL of phosphate-buffered
saline (PBS) by shaking at 30 ◦C for 30 min at 120 rpm. Subsequently, 0.5 mL of the supernatant
was transferred to 4.5 mL of mineral salt medium (MSM) containing crude MC-LR (14.3 mg/L) and
incubated with shaking at 30 ◦C [22]. MC-LR was detected during incubation every 5 days. The mineral
salt medium (MSM, pH = 7.0) used for the bacterial isolation and culture contained (g/L) MgSO4·7H2O
1.0, KH2PO4 0.5, K2HPO4 4.0, NaCl 1.0, CaCl2 0.02, FeSO4 0.005, MnCl2·4H2O 0.005, ZnCl2 0.005,
and CuCl2 0.0005 [18].

The samples that could degrade MC-LR were selected and treated as follows: MC-LR degradable
bacteria taxa was serially diluted (1:10) with MSM containing crude MC-LR from 10−2 to 10−10.
These diluted bacteria samples were cultured at 30 ◦C at 120 rpm for 5 days to degrade MC-LR
completely. High-performance liquid chromatography (HPLC) was used to determine the MC-LR
concentrations in different bacterial dilutions [28]. Bacterial colonies were selected from the highly
efficient degradation sample with the highest dilution.

The selected bacteria (100 µL) were serially-diluted (1:10) with sterile PBS from 10−2 to 10−10.
Afterward, 50 µL of diluted solution was spread out on the LB agar plates (2% agar) and cultured for
3 days at 30 ◦C. Every single colony with differing morphologies was selected and inoculated into
MSM containing crude MCs to evaluate their degradation ability [29]. The colonies of MC-degrading
bacteria were purified by plate-streaking technology on LB agar plates [30]. The bacterial culture
and algal toxin liquid plate were crossed to determine the inbred strains. The inbred strains were
transferred for the second verification.
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2.2. Identification of 16S rDNA from MC-Degrading Bacteria

2.2.1. Amplification of 16S rDNA

DNA extraction kit (Tiangen, Beijing, China) was used to extract the DNA of MC-degrading
bacteria. The PCR reaction system was 50 µL, including 100 ng of template DNA, 1 × PCR
Buffer (Mg2+ Free), 1.5 mM MgCl2, 0.2 mM dNTP mixture, 1.25 units of Taq DNA polymerase,
and 400 nM of each of the following primers: 27F 5′-AGAGTTTGATCMTGGCTCAG-3′, 1492R
5′-TACGGYTACCTTGTTACGACTT-3′ [31]. The primers were synthesized by Shanghai Invitrogen.

The PCR condition included the initial denaturation at 98 ◦C for 5 min; 94 ◦C for 30 s, annealing
for 30 s at 60 ◦C, 30 cycles of extension for 90 s at 72 ◦C; and a final elongation for 10 min at 72 ◦C.
The PCR products were electrophoresed by agar gel with 2% agarose at 100 V for 40 min [31].

2.2.2. Determination of 16S rDNA Sequence and Construction of Phylogenetic Tree

The PCR products of 16S rDNA were sent to the BGI Company (Shanghai, China) in
4 ◦C then sequenced. The sequencing results were submitted to the United States National
Center for Biotechnology Information Website (NCBI) to obtain the corresponding registration
number. Furthermore, nucleotide sequences were searched in GenBank for BLAST comparison,
and the homology was analyzed. Sequence similarity search was conducted using the NCBI
BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi) network service [29]. Afterward, multiple sequence
alignment and a phylogenetic tree were constructed using the software MEGA5 [32].

2.3. Cloning of Degrading Enzyme Genes from MC-Degrading Bacteria a7

mlrA, mlrB, mlrC, and mlrD specific primers were used to amplify the DNA of strain a7 according
to the literature. The primer sequences are shown in Table 1. The PCR reaction system was 50 µL,
which included 100 ng of template DNA, 1 × PCR buffer (Mg2+ Free), 1.5 mM MgCl2, 0.2 mM dNTP
mixture, 0.4 mM of each primer, and 1.25 units of Taq DNA polymerase. The PCR condition included
the initial denaturation at 95 ◦C for 5 min; 98 ◦C for 10 s, annealing for 30 s at 56 ◦C, 30 cycles of
extension for 30 s at 72 ◦C; and a final elongation for 5 min at 72 ◦C and held at 4 ◦C. The PCR products
were detected by the agarose gel electrophoresis and subsequently sequenced same with 16S rDNA.

The amino acid sequences of degrading enzyme genes were translated by the nucleotide sequences
using the Sixpack program of EMBOSS (http://www.ebi.ac.uk/Tools/st/) [25]. The mlr genes were
blasted by BLASTx program on the NCBI, and corresponding amino acid sequences were retrieved.
Amino acid phylogenetic trees were constructed by MEGA5 software using the neighbor-joining
algorithm based on distances calculated by Clustalw method [25].

Table 1. Specific primer sequences.

Primers Sequence References

mlrA-Forward 5′-GACCCGATGTTCAAGATACT-3′
[33]mlrA-Reverse 5′-CTCCTCCCACAAATCAGGAC-3′

mlrB-Forward 5′-CTCGATGCGGTATTTGCTG-3′
[34]mlrB-Reverse 5′-TCCAACGACCATCCCTTCTG-3′

mlrC-Forward 5′-CGAAGGCGAAAGGTGCAAC-3′
[35]mlrC-Reverse 5′-GAGCGCTTGTGATAGTGACG-3′

mlrD-Forward 5′-GTTCCTCGGCGTAGCCT-3′
[24]mlrD-Reverse 5′-GCGACGAAGATCGTTGCT-3′

2.4. Collection, Domestication, Isolation, and Culture of MC-Degrading Bacteria

The standard MC-LR was diluted with deionized water and MSM. The initial concentration of
MC-LR was 20 mg/L. To investigate the degradation rate of standard MC-LR, the bacterial strain a7

https://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.ebi.ac.uk/Tools/st/
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was cultured on an orbital shaker at 120 rpm in MC-LR at 30 ◦C for 48 h in MSM containing crude
MCs. The bacterial cells were centrifuged (5000× g, 15 min, 4 ◦C) and washed with PBS (Beyotime,
Shanghai, China) twice. The bacterial strain a7 which was resuspended into MSM containing standard
MC-LR was cultured at a constant condition (120 rpm, 30 ◦C) and analyzed by HPLC every 1 h [22].

MC-LR was measured by HPLC system (Agilent 1100, Santa Clara, CA, USA) with a Zorbax
Extend C18 column (4.6 × 50 mm, 5 µm, Agilent, Santa Clara, CA, USA), which was kept at 40 ◦C.
A mixture of methanol and 0.05% trifluoroacetic acid aqueous solution (53:47, v/v) was used as mobile
phase. The flow rate was 1 mL/min, and the injection volume was 20 µL with 238 nm of variable
wavelength detector [28].

The main degradation products of MC-LR were identified by a liquid chromatography
time-of-flight mass spectrometry (LC-TOF-MS, Agilent 1200-6224, Santa Clara, CA,) in positive
electrospray ionization (ESI) mode. A Zorbax Extend C18 column (2.1 × 50 mm, 1.8 µm, Agilent,
Santa Clara, CA, USA) was used at 40 ◦C, and the injection volume was 2 µL. The mobile phase was a
mixture of methanol and 0.1% formic acid aqueous solution (55:45, v/v) at a flow rate of 0.08 mL/min.
The ESI-TOF-MS parameters were as follows: capillary voltage, 3500 V; gas temperature, 325 ◦C;
flow of drying gas, 9 L/min; nebulizer pressure, 40 psi; and fragmentor voltage, 175 V. The flow rate
was 0.1 mL/min [28].

3. Results

3.1. Isolation of MC-LR-Degrading Bacterium

According to the process of collection, domestication, isolation, and culture of MC-degrading
bacteria, only one bacterium strain with high MC-degrading activities, named as a7, was obtained.
In the selection of degrading bacteria, eight different colony types could survive in MC-LR media but
could not degrade MC-LR.

3.2. Identification of MC-Degrading Bacterium by 16S rDNA Sequence Analysis

The PCR products of the 16S rDNA were sequenced by the BGI Company, and the accession
number in the NCBI is KU954525. The phylogenetic tree was constructed with the homology of 97%.
The nucleotide sequence of 16S rDNA from a7 was mostly similar to that of Sphingopyxis macrogoltabida
strain NBRC 15033 (99% similarity, accession number: NR_113720.1). It suggested that strain a7 belongs
to genus Sphingopyxis. The phylogenetic tree was constructed using a neighbor-joining analysis with
1000 bootstrap replication, as shown in Figure 2.
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Figure 2. A phylogenetic tree based on the bacterial 16S rDNA sequence from the isolated strain a7
and the closely related species. The numbers at the nodes are the levels of bootstrap support (%) based
on the neighbor-joining analyses of 1000 resampled datasets. The scale bar represents 0.02 nucleotide
substitutions per position.

3.3. Cloning and Sequencing of the Key Genes of Degrading Enzyme from MC-Degrading Bacterium a7

The mlrA, mlrB, mlrC, and mlrD specific primers were used for PCR amplification of a7, and the
agarose gel electrophoresis of the PCR products is shown in Figure 3. Three bright DNA bands
were observed after amplification, except for mlrB gene, and the fragment size was about 750, 1300,
and 1000 bp. Thus, strain a7 contained the key enzyme gene mlrA, mlrC, and mlrD, which might
be involved in the process of MC degradation. The PCR fragments were subsequently sequenced.
The sequences of mlrA, mlrC, and mlrD from a7 were 99%, 100%, and 98% similar to the genes obtained
from Sphingomonas sp. USTB-05, Sphingomonas sp. USTB-05, and Sphingopyxis sp. C-1, respectively.
The amino acid phylogenetic trees of mlrA, mlrC, and mlrD genes were constructed based on the
comparison with amino acid sequences of high-homology bacteria (MEGA5, Figure 4).
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Figure 4. Amino acid sequences phylogenetic trees of mlrA, mlrC, and mlrD. The numbers at the
nodes are the levels of bootstrap support (%) based on the neighbor-joining analyses of 1000 resampled
datasets. The scale bar represents 0.01 estimated distance per position. (a) mlrA gene; (b) mlrC gene;
(c) mlrD gene.

3.4. Biodegradation of MC-LR by Strain a7 and Analysis of Main Degradation Products

About 20 mg/L MC-LR was completely degraded by strain a7 within 6 h, and the average
degradation rate was 3.33 mg/(L·h) (Figure 5). MC-LR was degraded immediately without any lag
phase, and more than 80% MC-LR was decomposed in the first two hours. Moreover, with the increase
of time, degradation rate was progressively slower and eventually halted at 6h. Two major intermediate
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degradation products—namely, peaks A and B—were detected in 6 h using HPLC (Figure 6b). Strain a7
decomposed peaks A and B completely in 12 h (Figure 6c).
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Figure 6. Degradation of standard microcystin LR using strain a7. High-performance liquid
chromatography chromatogram at (a) 0, (b) 6 h, and (c) 12 h. Peaks A and B show two intermediate
products of MC-LR.

Peaks A and B in 6 h samples were further detected by LC-TOF-MS (Figure 7). The intermediate
degradation product B exhibited a protonated molecular ion at m/z 615.3398 (C32H46N4O8), which was
considered as tetrapeptide (Adda-Glu-Mdha-Ala) (Figure 7a). The intermediate product A exhibited
several accompanying ions at m/z 315.1955 ([M+H−NH3]+) and 283.1700 ([M+H−NH3−MeOH]+),
which were identified as Adda and its fragment, respectively (Figure 7b).
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Figure 7. Electrospray ionization time-of-flight mass spectrometry (ESI-TOF-MS) spectrum of
MC-LR degradation product. (a) MC-LR degradation product peak B with a molecular weight of
615.3398 ([M+H]+). (b) MC-LR degradation product peak A with a molecular weight of 283.1700
([M+H−NH3−MeOH]+).

4. Discussion

In this study, an efficient and novel MC-degrading bacterium a7 was isolated from the bacterial
communities of a lake. Moreover, 16srDNA of this a7 was characterized and identified as Sphingopyxis.
Sphingopyxis sp. is a group of homogeneous microorganisms in the α-Proteobacteria class and has
been isolated from nature samples before [16,19,26,35,36]. Sphingopyxis can tolerate the conditions of
extreme poor nutrition, utilize various simple molecules, and decompose complex organic matter [26].

The degrading rate of MC by a7 was around 3.33 mg/(L·h). Compared with that of the
previous studies, the degrading rate was six times greater than Sphingomonas sp. ACM-3962, 14 times
of Sphingomonas sp. Y2, and hundredfolds of Sphingopyxis sp. LH21 which were designated as
notable microorganisms with highly efficient of MC-degradation from natural waterbody [16,24,37,38].
The degradation rates varied from 0.06 µg/(L·d) to 101.52 mg/(L·d) in different research studies,
probably caused by the different bacterial strains or other physical and chemical conditions utilized
in the laboratory. Some studies have reported that MC-degrading bacteria had the most efficient
degradation activity within 25–30 ◦C. The degrading enzymes were most probably inhibited when
temperature was up 30 ◦C or below 25 ◦C [37,39,40]. So, in this study, the degrading rate was tested
on 30 ◦C.

The discovery of bacteria that degrade MC-LR may indicate that these functional bacteria are
prevalent in the natural environment [41]. Application of bacteria which are capable of decreasing
microcystins dramatically during the outbreak of cyanobacterial-dominated harmful algal blooms is
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considered to be an important biological method toward diminishing the potential adverse effects of
microcystins [28]. Table 2 shows the MC-degrading rates of bacteria isolated in individual research
and different areas in the world.

The MC-degrading capability was attributed to mlrA, mlrB, mlrC, and mlrD genes in the bacteria
reported by Kormas and et al. [6,7,25,37]. Based on the results of the presented study, microcystinase
(MlrA) hydrolyzes cyclic MC-LR into a linear intermediate (Adda-Glu-Mdha-Ala-Leu-MeAsp-Arg)
by undermining the peptide bond connecting Adda and arginine [25]. Further decomposition of
linearized MC-LR by MlrB to generated a tetrapeptide (Adda-Glu-Mdha-Ala, 614, C32H46N4O8) [16].
MlrC exhibited a double-degrading activity, which was decomposing both linear MC-LR and the
tetrapeptide into Adda (331, C20H29NO3) and other small molecular substances [7]. MlrD is predicted
to transport MC-LR and its degradation products across the bacterial cell wall [37]. In our study, the ion
of degradation product B presented a similar molecular weight (615.3398) with tetrapeptide. Therefore,
degradation product B was determined as tetrapeptide. The protonated ion A (m/z 332.2208) was
consistent with Adda. Ions at m/z 315.1955 (consistent with [adda+H-NH3]+) and 283.1700 (consistent
with [adda+H−NH3−MeOH]+) were fragments of Adda. So, the degradation product A can be
determined as Adda generally. Furthermore, mlrA, mlrC, and mlrD were detected in Sphingopyxis a7.
Therefore, the possible degradation pathway of MC-LR might be shown in Figure 8 and MC-LR can
be degraded by Sphingopyxis sp. a7 completely. To our knowledge, this study is the first report that
MC-LR and Adda which is the main active structure of MC-LR can be decomposed simultaneously
using single bacterial strain Sphingopyxis sp. [7,16,34]. MC-degrading and detoxication properties
of strain a7 can potentially be applied for bioremediation in the harmful cyanobacterial blooms and
contribute to improve water quality.
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Table 2. Microcystin-degrading bacteria isolated in different areas and degradation rates.

Bacteria Source 16S rRNA GenBank
Accession Number

Degradable Microcystin
Analogues

Degradation Rate
µg/(L·d) References

α-Proteobacteria

Sphingopyxis sp. USTB-05 - EF607053 MC-RR; MC-YR 101,520; 35,520 [35,36,42]

Sphingopyxis sp. LH21 Torrens Lake in South Australia DQ112242 MC-LR; MC-LA 2.08; 2.50 [24]

Sphingomonas sp. CBA4 San Roque reservoir AY920497 MC-RR 130 [43]

Sphingomonas sp. 7CY Surface water sample of Lake Suwa AB076083 MC-LR; MC-RR 1500; 1000 [44]

Sphingomonas sp. Y2 A hypertrophic lake NR_040927/AB084247 MC-LR; MC-RR; MC-YR 5400; 13,000; - [37]

Sphingomonas sp. ACM-3962 Surface water, Australia AF411072 MC-LR; MC-RR 12,100 #; 12,100 # [16,38]

Sphingomonas sp. B9 Tsukui lake AB159609 MC-LR; MC-RR 25; 75 [45]

Sphingomonas stygia Natural lakes - MC-LR; MC-RR; MC-YR 660; 1900; 1250 [15]

Novosphingobium sp. THN1 Lake Taihu HQ664117 MC-LR 2700 [46]

β-Proteobacteria

Bordetella sp. MCYF11 Lake Taihu KC734882 MC-LR; MC-RR 7440;4080 [22]

Methylobacillus sp. J10 Lake Taihu FJ4185 MC-LR; MC-RR 4940; 6350 [47]

Burkholderia sp. UPC-BI05 A South Brazilian coastal lagoon
surface water DQ459360 MC-LR 50 [48]

γ-Proteobacteria

Pseudomonas aeruginosa. DMxS Patos Lagoon estuary HQ890467 MC-LR 0.06 [49]

Stenotrophomonas acidaminiphila YF-S2 Lake Taihu KF305533 MC-LR; MC-RR 3000; 5600 [28]

Escherichia coli - - MC-LR 5270 [50]

Pseudomonas aeruginosa Reservoir surface water - MC-LR 2500 [51]

Morganella morganii C25216 Las Vegas Bay of Lake Mead - MC-LR 4.75 [42]

Stenotrophomonas sp. EMS Lake Taihu - MC-LR; MC-RR 700; 1700 [30]

Firmicutes

Bacillus sp. JZ-2013 Lake Chaohu KF841622 MC-LR 1330 [52]

Bacillus sp. EMB Lake Taihu FJ526332 MC-LR; MC-RR 2150; 2990 [53]

Lactobacillus rhamnosus GG and LC-705 Probiotic strains - MC-LR 65 and 55 [54]

Bacillus flexus SSZ01 a Saudi eutrophic lake - MC-RR 2500 [55]

Actinobacteria

Microbacterium sp. DC8 Lake Okeechobee - MC-LR 8.60 [56]

Bifidobacterium longum 46 Probiotic strains - MC-LR 70 [54]

Rhodococcus sp. C1,C3 Scottish water bodies FN392688, FN392689 MC-LR 4,000 [57]

Arthrobacter sp. C6, F7, F10, R1, R1, R6
and R9 Scottish water bodies FN392690,

FN392692-FN392697 MC-LR 5000, 5000, 4000, 5000,
5000, 5000, and 5000 [57]

Brevibacterium sp. F10 Scottish water bodies FN392691 MC-LR 5000 [57]

-: no detection /no mention. #: Degradation rate of this strain calculated by Eleuterio and Batista.
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5. Conclusions

A native and highly efficient MC-LR-degrading bacterium was isolated from Lake Taihu and
identified as Sphingopyxis sp., according to the 16S rDNA sequence. The MC-LR degrading rate was
3.33 mg/(L·h) at bench conditions. Strain a7 contained the key enzyme genes mlrA, mlrC, and mlrD,
which might be involved in MC degradation. The degradation products included tetrapeptide and
Adda, which were the metabolites of MC-LR catalyzed by microcystinases. This is the first report
finding that MC-LR and Adda can be decomposed totally by Sphingopyxis sp.

Therefore, isolated Sphingopyxis sp. a7 may be used to solve the problem of MC-LR pollution.
Further studies should apply a7 to an actual environmental bioremediation project.
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