
International  Journal  of

Environmental Research

and Public Health

Article

Priority of a Hesitant Fuzzy Linguistic Preference
Relation with a Normal Distribution in
Meteorological Disaster Risk Assessment

Lihong Wang and Zaiwu Gong * ID

Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters,
College of Economics and Management, Nanjing University of Information Science and Technology,
Nanjing 210044, China; gongzilihong@163.com
* Correspondence: zwgong26@163.com; Tel.: +86-25-5869-5651

Received: 8 September 2017; Accepted: 6 October 2017; Published: 10 October 2017

Abstract: As meteorological disaster systems are large complex systems, disaster reduction programs
must be based on risk analysis. Consequently, judgment by an expert based on his or her experience
(also known as qualitative evaluation) is an important link in meteorological disaster risk assessment.
In some complex and non-procedural meteorological disaster risk assessments, a hesitant fuzzy
linguistic preference relation (HFLPR) is often used to deal with a situation in which experts may
be hesitant while providing preference information of a pairwise comparison of alternatives, that is,
the degree of preference of one alternative over another. This study explores hesitation from the
perspective of statistical distributions, and obtains an optimal ranking of an HFLPR based on
chance-restricted programming, which provides a new approach for hesitant fuzzy optimisation of
decision-making in meteorological disaster risk assessments.

Keywords: meteorological disaster risk assessment; hesitant fuzzy linguistic preference relation
(HFLPR); additive consistency; normal distribution; chance-restricted programming; priority

1. Introduction

China is one of the countries that are most susceptible to meteorological disasters. The loss from
meteorological disasters accounts for more than 70% of the total loss from all natural disasters, resulting
in an economic loss equivalent to 1–3% of gross domestic product. A meteorological disaster system
is a large complex system. Disaster mitigation plans must be based on a risk analysis. Research on
and construction of an optimal scheduling model for an expert system to be used for meteorological
disaster assessment not only provide the basis for a meteorological disaster risk assessment and
decision service, but also play a key role in the construction of an expert system for meteorological
disaster assessment.

At present, researchers have carried out a considerable amount of work in the field of
meteorological disaster risk assessment. Based on the grey cluster model, Xie et al. [1] analysed
regional meteorological disaster loss in China. Considering disaster mitigation and management
in the Chishan Basin, Taiwan, Lee et al. [2] studied the development of a meteorological risk map.
Using the desertification in the Horqin Sand Land of China as an example, Wang et al. [3] developed
a fuzzy comprehensive evaluation-based disaster risk assessment method. Xu et al. [4] carried out
an assessment of the casualty risk of multiple meteorological hazards in China. Based on grey system
theory, Gong and Forrest [5] published a special issue on meteorological disaster risk analysis and
assessment. However, the existing meteorological disaster risk assessment methods correspond to
specific disasters using specific instruments, and there is still a significant lack of relevant research on
the development of a generic expert evaluation system for meteorological disaster assessment.
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A meteorological disaster risk assessment [6–9] includes an analysis of objective data and
a subjective evaluation by decision-making experts. Judgments by an expert based on their experience
(also known as qualitative evaluation) is an important part of meteorological disaster risk assessment.
In most cases, owing to the limited experience of the experts and the uncertainty of the decision-making
environment, experts are more inclined to use ambiguous language to express their risk assessment of
a specific hazard (such as drought or waterlogging).

In a meteorological disaster risk assessment, considering a finite set of alternatives, experts are
invited to give their preference relations (PRs) by a pairwise comparison of alternatives to obtain
an optimal ranking of alternatives. In all kinds of decision-making, consistency is a characterisation of
the degree of logic of the judgment of the decision maker (DM), which can reflect the state of mind
of the DM in a mathematical format. Consistency must be considered not only because it is a critical
index in recognising whether the PR is good, but also because it is a foundation for the modelling of
ranking and for obtaining priority weight.

The original study on consistency was proposed by Saaty [9] to obtain the priority weight of
a reciprocal PR. Then, Tanino [10] extended multiplicative consistency to fuzzy preference relations
(FPRs) and proposed a definition for additive consistency, using the correlation relation of elements
in an FPR. Liu et al. [11] proposed least square completion and inconsistency repair methods for
additively consistent FPRs. Zhang [12] studied a group decision-making (GDM) problem based on
an incomplete multiplicative PR and FPR, introduced a new characterisation by referring to the
multiplicative consistency condition, and further proposed a method to estimate unknown PRs in
an incomplete multiplicative PR. Lan et al. [13] proposed a method to derive interval weights from
an interval multiplicative consistency FPR.

Although a fuzzy (crisp) PR can express subjective judgment information from a DM more
clearly, it cannot provide an expression of uncertain information from the DM. Therefore, scholars
introduced the interval fuzzy preference relation (IFPR) [14] and the intuitionistic fuzzy preference
relation [15–19] to express the judgment range referring to the problem. Xu et al. [20] extended the
additive consistency of an FPR proposed by Herrera-Viedma et al. [21] to an IFPR. Krejčí [22] studied
the additive consistency of IFPRs, and proposed additive consistency and additive weak consistency
based on an interval extension of the additive-transitivity property by Tanino. Wang et al. [23] proposed
some programming models to derive priority weights from an additive IFPR. Meng et al. [24] carried
out a comparative study on multiplicative consistency analysis for IFPRs.

In some cases of complex decision-making, individuals may be hesitant when providing
assessments on the preference degree of one alternative over another, and may provide several
possible membership values to represent their PRs. With the hesitant FPR proposed by Torra [25],
individuals can provide assessments using several possible values. Based on this, Liao et al. [26]
studied multiplicative consistency and its application in a GDM problem. Liu et al. [27] proposed
a multiplicative consistency index for hesitant FPR. Considering DMs with difficulties in providing
complete consistent PRs, researchers tend to obtain the optimal ranking of PR from an optimisation
perspective by modelling the minimum deviation between the elements and the consistency condition.
Furthermore, based on interval hesitant fuzzy sets, Gitinavard et al. [28] modelled weight deriving
and alternative ranking.

As linguistic preferences are more intuitive and convenient in terms of expressing the preference
of a DM in decision-making, Rodriguez et al. [29] proposed a hesitant fuzzy linguistic term set (HFLTS)
to deal with comparisons between two alternatives. Herrera and Martinez [30] proposed a 2-tuple
fuzzy linguistic representation model for computing with words. Based on a 2-tuple fuzzy linguistic
representation and Analytic Hierarchy Process, Santos et al. [31] proposed a model for supplier
segmentation using qualitative and quantitative criteria. Zhang and Guo [32] proposed consistency
and consensus models for a GDM problem with uncertain 2-tuple linguistic preference relations.
Dong et al. [33] proposed a 2-tuple linguistic approach to measure the consistency of linguistic
preference relations. Considering subjective and objective weights, Liu et al. [34] proposed an interval
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2-tuple linguistic VIKOR method for material selection. Zhang and Wu [35] defined multiplicative
consistency for an HFLTS, and further developed a consistency improving process to adjust it into
an acceptable multiplicative one. Zhu and Xu [36] studied consistency measures for hesitant fuzzy
linguistic preference relations (HFLPRs) and developed two optimisation methods to improve the
consistency of HFLPRs with unacceptable consistency. In this field, Liao et al. [37,38] have made
several contributions. Using unbalanced fuzzy linguistic information, Cabrerizo et al. [39] put forward
soft consensus measures in group decision-making. For venture investment evaluation with risk
attitudes, Li and Dong [40] proposed an unbalanced linguistic approach. Xu et al. [41] proposed
a consensus model for hesitant fuzzy preference relations and studied its application in water
allocation management.

The chance-restricted programming method was proposed in 1959 by Charnes and Cooper [42].
It is renowned for realising optimisation under a certain probability. In some special situations,
chance-restricted programming can be equally transformed into determined mathematical
programming. In hesitant fuzzy decision-making, the situation in which multi-membership values
referring to a pairwise comparison of alternatives exist can be represented by a random distribution
referring to pairwise comparisons of alternatives, where each value of the hesitation fuzzy linguistic
preference relation presents a discrete characteristic, and the real value is presented as a kind of
randomness. In order to avoid potential information distortion caused by the principle of maximum
or minimum membership degrees and the process of language computation, we transform discrete
values into random variables, which obey normal distribution. This method can not only improve
evaluation accuracy, but also reflect human judgment processes more aptly. In this paper, we aim to
study the weight-obtaining problem of HFLPRs with random distributed preferences by using the
chance-restricted programming method, and obtain a priority weight with the help of its equivalent
deterministic model.

The remainder of this paper is organised as follows. In Section 2, we briefly review
some preliminary concepts of FPRs, IFPRs, HFLPRs, and their consistency. Then, we construct
a transformation relation between an HFLPR and an IFPR. In Section 3, we construct an optimal
weight-deriving model of an IFPR based on chance-restricted programming. In Section 4, we put
forward the steps of deriving the optimal weight of HFLPRs. In Section 5, a numerical example for
a meteorological disaster risk assessment is presented to illustrate and verify the proposed approaches.
Finally, in Section 6 we draw some conclusions and discuss the future research possibilities.

2. Preliminaries

2.1. Definitions of FPR, IFPR, and Their Weight-Deriving Methods

For a decision-making problem, let X = {x1, x2, · · · , xn} be a finite set of alternatives, and we
denote N = {1, 2, · · · , n}. According to their respective experiences and knowledge, the DMs make
pairwise judgments on any two alternatives over the set of X to construct a PR in order to obtain
an optimal weight and ranking of alternatives. In an FPR, each element represents a crisp preference
membership degree [43] of one alternative over another, and the values of all elements are within the
interval [0, 1].

Definition 1. FPR [44]. If the non- negative PR R =
(
rij
)

n×n satisfies rii = 0.5, rij + rji = 1, i, j ∈ N,
we call R (crisp) FPR. Here, rij indicates a crisp preference degree of the alternative xi over xj, i, j ∈ N, which is
between 0 and 1. Specifically, rij = 0.5 indicates no difference between xi and xj; rij > 0.5 indicates that xi is
preferred over xj and rij < 0.5 indicates that xj is preferred over xi.

Definition 2. Additively Consistent FPR [45]. Assuming that ω = (ω1, ω2, · · · , ωn)
T is the weight vector

of an FPR R, we call R an additively consistent FPR if it satisfies rij =
1
2
(
ωi −ωj + 1

)
, ωi ≥ 0, i, j ∈ N.
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Considering the complexity of the decision-making environment, due to incomplete information
and judgment limitation, the DMs tend to provide an interval value to ensure a more effective judgment
expression of any two alternatives, xi and xj(i, j ∈ N), over the set of X.

Definition 3. IFPR. If the non-negative PR R =
(
rij
)

n×n =
([

rijl , riju

])
n×n

satisfies rii = [0.5, 0.5],

rijl + rjiu = riju + rjil = 1, i, j ∈ N, we call R an IFPR. Here, the continuous interval value rij =
[
rijl , riju

]
indicates the range of preference degree of alternative xi over that of xj(i, j ∈ N). rij = [0.5, 0.5] indicates no
difference between xi and xj; rij > [0.5, 0.5] indicates that xi is preferred over xj and rij < [0.5, 0.5] indicates
that xj is preferred over xi.

Definition 4. Additively Consistent IFPR [45]. We regard the element in the IFPR R =
(
rij
)

n×n as
a deterministic value and introduce the parameter γij

(
0 ≤ γij ≤ 1

)
. Then, any value of γij within the interval

[0, 1] associates with a deterministic value of
[
rijl , riju

]
, i.e.,

[
rijl , riju

]
= γijrijl + (1− γij)riju. In that way,

the PR R can be regarded as a (crisp) FPR.

We still assume that ω = (ω1, ω2, · · · , ωn)
T is the priority weight vector of the PR R, and if R

satisfies the additive consistency property, apparently, 1
2
(
ωi −ωj + 1

)
= rij, i, j ∈ N holds for some

γij
(
0 ≤ γij ≤ 1

)
.

If the PR R is non-additive consistent, the smaller the deviation between the ideal value
1
2
(
ωi −ωj + 1

)
and γijrijl + (1− γij)riju the better, therefore, the optimal ranking model of an IFPR

can be constructed as follows:

min ∑
i,j∈N,i 6=j

εij

s.t.


∣∣∣ 1

2
(
ωi −ωj + 1

)
−
[
γijrijl + (1− γij)riju

]∣∣∣ ≤ εij, i, j ∈ N

0 ≤ γij ≤ 1, i, j ∈ N
n
∑

i=1
wi = 1, wi ≥ 0, i ∈ N

(1)

Remark: Some scholars give a more relaxed additive consistency definition for IFPRs [20,21].
We still assume that ω = (ω1, ω2, · · · , ωn)

T is the ranking vector of the IFPR R =
(
rij
)

n×n, and we

call R an additively consistent IFPR if and only if rijl ≤ 1
2
(
ωi −ωj + 1

)
≤ riju. If R is a non-additively

consistent FPR, we can obtain a priority weight vector of alternatives by constructing a weight-deriving
model based on the goal programming method.

2.2. HFLPR and Its Weight-Deriving Method

2.2.1. Linguistic Term Sets

For a decision-making problem, DMs want to select the best alternative or to rank the alternatives
over the finite alternative set X = {xi, i ∈ N}, where xi indicates the i-th alternative. In alternative
optimisation selection, the pre-defined linguistic term set S = {si, i ∈ {0, 1, · · · , g}} is employed to
express the preference information of DMs, where 2 ≤ g ≤ 14 and the value of g is even. Considering
the comparison between alternative xi and xj(i, j ∈ N), DMs use an element si, i ∈ {0, 1, · · · , g} in the
linguistic term set S to express their preference degree [29,46].

The linguistic term set S has the following properties:
An ordered structure: si < sj or sj > si if i < j, indicating that si is inferior to sj or sj is superior to si;
A negation operator neg: neg(si) = sj, j = g− i;
A maximisation operator: max

{
si, sj

}
= si if si ≥ sj;

A minimisation operator: min
{

si, sj
}
= si if si ≤ sj.
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Linguistic terms are usually represented in a quantitative way with a triangular fuzzy number,
i.e., si = (ai, bi, ci), where

ai =
i−1

g (1 ≤ i ≤ g), a0 = 0, bi =
i
g (0 ≤ i ≤ g), ci =

i+1
g (0 ≤ i ≤ g− 1), cg = 1.

For example, as shown in Figure 1, the linguistic term set S for g = 6 can be described as

S = {s0 = n = neither = (0, 0, 0.17), s1 = vl = very low = (0, 0.17, 0.33), s2 = l = low = (0.17, 0.33, 0.5),
s3 = m = medium = (0.33, 0.5, 0.67), s4 = h = high = (0.5, 0.67, 0.83), s5 = vh = very high = (0.67, 0.83, 1),
s6 = a = absolutely = (0.83, 1, 1)}.
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In the process of linguistic information aggregation, we use β to represent the result of a linguistic
term aggregation. For the case of β ∈ [0, g], β /∈ {0, 1, 2, · · · , g}, the general approach is to assign
an integer number to β by rounding, which is likely to result in inaccurate decision-making. In such
situations, Herrera proposed 2-tuple linguistic and corresponding aggregation operators, which can
resolve these drawbacks better. The 2-tuple linguistic is a method to represent linguistic information
by means of 2-tuples (si, α), where si indicates the i-th linguistic term in the pre-defined linguistic term
set, α indicates the deviation between the calculated linguistic term and the initial linguistic term that
is the closest to the former, and α is within [−0.5, 0.5). In the following, some definitions of operators
referring to 2-tuple linguistics are given.

2.2.2. The Representation Value of a 2-Tuple Linguistic

Definition 5. Transforming a Linguistic Term into a 2-tuple Linguistic. Let si ∈ S be a linguistic term,
then the 2-tuple linguistic associated with si can be obtained by means of the following conversion function θ:

θ : S→ S× [−0.5, 0.5)
θ(si) = (si, 0), si ∈ S

Definition 6. Transforming the Representation Value of a 2-tuple Linguistic into a 2-tuple Linguistic.
Let S = {si, i ∈ {0, 1, · · · , g}} be a set of linguistic terms and β ∈ [0, g] be the representation value of a 2-tuple
linguistic, which represents the aggregation results of linguistic term sets, then the 2-tuple linguistic associated
with β can be obtained by means of function ∆:

∆ : [0, g]→ S× [−0.5, 0.5)

∆(β) = (si, α) (2)

where i = round(β), α = β− i, α ∈ [−0.5, 0.5) and 'round' assigns β the integer number i ∈ {0, 1, · · · , g}
that is the closest to β.
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Definition 7. Transforming a 2-tuple Linguistic into the Representation Value of a 2-tuple Linguistic [47–52].
Let S = {si, i ∈ {0, 1, · · · , g}} be a linguistic term set and (si, α) be a 2-tuple. There is always an inverse
function ∆−1 such that it returns its equivalent numerical value β ∈ [0, g] from a 2-tuple (here we call β the
representation value of the 2-tuple linguistic), that is

∆−1 : S× [−0.5, 0.5)→ [0, g]
∆−1(si, α) = i + α = β.

2.2.3. The Transformation Relation between Fuzzy Numbers and a 2-Tuple Linguistic

Definition 8. Transforming Fuzzy Numbers into a 2-tuple Linguistic [52]. Assume that a fuzzy number
v ∈ [0, 1] and S = {si, i ∈ {0, 1, · · · , g}} is a linguistic term set, then the fuzzy number v can be transformed
into a 2-tuple linguistic term set by the following mapping function:

τ : [0, 1]→ F(S)

τ(v) =
{
(s0, w0), (s1, w1), · · · ,

(
sg, wg

)}
(3)

wi = Asi (v) =


0, i f v /∈ sup port(Asi (x))
v− ai
bi − ai

, i f ai ≤ v ≤ bi

ci − v
ci − bi

, i f bi ≤ v ≤ ci

(4)

where si ∈ S and wi ∈ [0, 1], and Asi (v) indicates the membership function of v, where sup port(Asi (x)) =
{x|Asi (x) > 0, x ∈ [0, 1]}.

Definition 9. Transforming a 2-tuple linguistic into the representation value of a 2-tuple linguistic [52].
Let τ(v) =

{
(s0, w0), (s1, w1), · · · ,

(
sg, wg

)}
be a 2-tuple linguistic term set corresponding to a fuzzy number

v; therefore, the 2-tuple linguistic term set τ(v) can be transformed into the representation value by the mapping
function χ, as

χ : F(S)→ [0, g]

χ(τ(v)) = χ
{(

sj, wj
)
, j = 0, 1, · · · , g

}
=

g

∑
j=0

jwj/
g

∑
j=0

wj = β (5)

Hence, according to Definition 6, the representation value β of a 2-tuple linguistic can be further
transformed into a 2-tuple linguistic, which expresses the equivalent information to β.

For example, as shown in Figure 2, let S = {s0, s1, · · · , s8} be a linguistic term set, then the
calculation process of translating the fuzzy numbers 0.2 and 0.8 to a 2-tuple linguistic is as follows:

τ(0.2) = {(s0, 0), (s1, 0.4), (s2, 0.6), (s3, 0), (s4, 0), (s5, 0), (s6, 0), (s7, 0), (s8, 0)}
χ(τ(0.2)) = 1× 0.4 + 2× 0.6 = 1.6

For ∆(1.6) = (s2,−0.4), the fuzzy number 0.2 is equivalent to the 2-tuple linguistic (s2,−0.4).
Similarly, the fuzzy number 0.8 is equivalent to the 2-tuple linguistic (s6, 0.4).
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According to Definitions 8 and 9, the fuzzy number information can be transformed into its
equivalent 2-tuple linguistic. Conversely to this, a 2-tuple linguistic can be transformed into its
equivalent fuzzy number through the following approach.

Definition 10. Transforming the Representation Value of a 2-tuple Linguistic into a Fuzzy Number.
Let (si, α) be a 2-tuple linguistic, the equivalent representation value of which is β = ∆−1(si, α) such that the
equivalent fuzzy representation value of the 2-tuple linguistic (si, α) is β

g .

For example, when g = 6, the equivalent fuzzy representation value of the 2-tuple linguistic

(s2, 0) is
1
3

and the equivalent interval fuzzy representation value of [(s2, 0.5), (s4,−0.4)] is
[

2.5
6

,
3.6
6

]
.

2.3. HFLPR and Its Envelope

Definition 11. HFLTS [46,47]. Let S = {si, i ∈ {0, 1, · · · , g}} be a linguistic term set. If HS is an ordered
finite subset of the consecutive linguistic terms of S, then we call HS a HFLTS on S.

Definition 12. The Envelope of the HFLTS [53]. The envelope of the HFLTS, env(HS), is a linguistic
interval whose limits are obtained through an upper bound (max) and a lower bound (min). Hence

H+
S = max{si|si ∈ HS },H−S = min{si|si ∈ HS }.

Definition 13. HFLPR [52]. Let HS be an ordered finite subset of the consecutive linguistic terms of S.
B =

(
bij
)

n×n is called an HFLPR if it satisfies

∆
(

∆−1
(

bρ(h)
ij

)
+ ∆−1

(
bρ(h)

ji

))
=
(
sg, 0

)
; bii =

(
sg/2, 0

)
; #bij = #bji,

bρ(h)
ij < bρ(h+1)

ij , bρ(h+1)
ji < bρ(h)

ji ,
(1)

where bij ∈ HS, bij is the hesitance degree when xi is preferred over xj, #bij is the cardinality of bij, and bρ(h)
ij is

the h-th linguistic term in bij.

Definition 14. The Envelope of HFLPR [54]. Let B =
(
bij
)

n×n be a HFLPR and env
(
bij
)
=

[
bρ(1)

ij , b
ρ(#bij)
ij

]
.

Then env(B) =
(
env
(
bij
))

n×n is called the envelope matrix of HFLPR if it satisfies

∆
(

∆−1
(

bρ(1)
ij

)
+ ∆−1

(
bρ(1)

ji

))
= ∆

(
∆−1

(
b

ρ(#bij)

ij

)
+ ∆−1

(
b

ρ(#bij)

ji

))
=
(
sg, 0

)
; bii =

(
sg/2, 0

)
; i, j ∈ N.
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2.4. Relationship between an HFLPR and an IFPR

According to Definitions 9 and 14, the relationship between an HFLPR and an IFPR can be
established similarly. Firstly, the envelope matrix of the HFLPR is obtained, then the element for which
it is essentially an interval 2-tuple linguistic is obtained. According to Definition 10, the interval 2-tuple
linguistic can be transformed into the interval fuzzy judgment value.

3. IFPR with Distribution Characteristics

3.1. Relationship between Interval Distribution and Normal Distribution

For a random variable X of normal distribution X ∼ N
(
µ, σ2), the density function is

f (x) =
1√
2πσ

e
−
(x− µ)2

2σ2 (as shown in Figure 3) and the distribution function is Φ(x). According

to the ‘3σ’ principle, the probability of X falling in the interval [µ− 3σ, µ + 3σ] is 99.73%, i.e.,
P{µ− 3σ ≤ X ≤ µ + 3σ}= Φ(3) − Φ(−3)= 99.73%. According to the principle of the small
probability event, the probability that X falls outside (µ− 3σ, µ + 3σ) is less than three thousandths,
and it is almost impossible for the corresponding event to occur in practical problems [55].
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The interval itself originates from the numerical results of fuzzy judgment or random sampling;
only the range of the interval numbers (upper and lower bounds) is known. However, it is difficult to
determine the real value of the interval number; i.e., the interval number can be handled as a fuzzy
number and can also be regarded as a random variable. Therefore, it is reasonable to use a random
variable instead of a particular interval. In the absence of a priori knowledge, these random variables
may be normally distributed, uniformly distributed, chi-squared distributed, etc. We consider the
advantageous properties of the normal distribution. According to the “3σ” principle, the probability
of X falling in the interval [µ− 3σ, µ + 3σ] is 99.73%. Hence, the interval number a = [a−, a+]
can be approximately equally replaced by a random variable ξ of the normal distribution N

(
µ, σ2).

The transformation relation between them is as follows:

[
a−, a+

]
= [µ− 3σ, µ + 3σ], µ =

a− + a+

2
, σ =

a+ − a−

6
(6)

For example, by using the ‘3σ’ law, the interval numbers I = [0.6, 0.9] can be approximately
replaced by a random variable ξ which satisfies ξ ∼ N

(
0.7500, 0.05002).
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3.2. IFPR with Normal Distribution

In actual decision-making, DMs provide their judgments by pairwise comparisons of alternatives.
Nevertheless, the crisp numbers of their preferences are difficult to determine. We can only determine
the approximate probability distribution of the judgment of a DM, such as the normal distribution.
In this section, we assume that the interval-valued judgment rij of the comparison between alternatives

xi and xj is normally distributed, that is, rij ∼ N
(

µij,
(
σij
)2
)

.

Let A =
(
aij
)

n×n =
([

aijl , aiju

])
n×n

be an IFPR with a normal distribution, and A is

approximately equal to a normal distribution PR Ã =
(
ãij
)

n×n where ãij ∼ N
(

µij,
(
σij
)2
)

, satisfying
µij + µji = 1, σij = σji, i, j ∈ N.

3.3. Ranking Model of an IFPR with a Normal Distribution

Referring to pairwise comparisons of alternatives, each value of a hesitation fuzzy linguistic
preference relation presents a discrete characteristic, and the real value is presented as a kind of
randomness. Therefore, it is necessary to describe the decision value of the decision-maker by a random
variable obeying a certain distribution. The constructed model is based on the chance-constrained
programming method to obtain an optimal ordering of the scheme.

3.3.1. Chance-Restricted Ranking Model of an IFPR

Let us consider an IFPR A with a normal distribution and its corresponding normally distributed
PR Ã, then for any value of ãij in Ã, it corresponds to the preference information of a DM about
alternative xi over xj. Here, we still assume that ω = (ω1, ω2, · · · , ωn)

T is the weight vector of Ã,
and the ideal decision (objective function) is the minimum value of the deviation between the ideal
judgment 1

2
(
ωi −ωj + 1

)
and the random variable ãij. The chance constraint is the possibility of an

event occurring, in which the deviation between 1
2
(
ωi −ωj + 1

)
and ãij is no more than threshold

ξij exceeding the confidence level αij. Hence, based on chance-restricted programming, the optimal
ranking model of an IFPR with a normal distribution, which is approximately equal to the initial
HFLPR, can be constructed as follows:

min ∑
i 6=j,i,j∈N

ξij

s.t.



Pr

{∣∣∣ 1
2
(
ωi −ωj + 1

)
− ãij

∣∣∣ ≤ ξij

}
≥ αij, i, j ∈ N

ãij ∼ N
(

µij, σ2
ij

)
, i, j ∈ N

n
∑

i=1
ωi = 1, i ∈ N

ωi, ξij ≥ 0, i, j ∈ N

(7)

Here, αij, 0 ≤ αij ≤ 1 is the confidence level,
∣∣∣∣12(ωi −ωj + 1

)
− ãij

∣∣∣∣ is the deviation between the

real variable ãij and the ideal judgment 1
2
(
ωi −ωj + 1

)
, and we assume that this deviation is no more

than the threshold ξij. The objective function indicates the minimum value of all ξij under a confidence
level of αij.

With the help of random optimisation-based genetic algorithm, the approximate value of the
weight vector can be obtained using Model (7). Nevertheless, Model (7) can be improved by the
assistance of the goal programming method, which means we can get a deterministic nonlinear model
characterised by a lower calculation cost.
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3.3.2. Chance-Restricted Ranking Model Based on Goal Programming for an IFPR

Based on goal programming, for a membership PR Ã with a normal distribution, we can rewrite
the deviation constraint of 1

2
(
ωi −ωj + 1

)
and ãij in Model (7) in the following way:∣∣∣∣12(ωi −ωj + 1

)
− ãij

∣∣∣∣ ≤ ξij⇔ −ξij ≤
1
2
(
ωi −ωj + 1

)
− ãij ≤ ξij

If 1
2
(
ωi −ωj + 1

)
− ãij is larger than ξij, then the smaller deviation variable d+ij is better. Similarly,

if 1
2
(
ωi −ωj + 1

)
− ãij is less than ξij, then the smaller deviation variable d−ij is better, where d+ij , d−ij ≥ 0.

For a membership PR with a normal distribution, the goal programming-based optimal ranking model
with a chance constraint can be constructed as follows:

min ∑
i 6=j,i,j∈N

d+ij + d−ij + ξij

s.t.



Pr

{
1
2
(
ωi −ωj + 1

)
− ãij − ξij ≤ d+ij

}
≥ αij

Pr

{
− 1

2
(
ωi −ωj + 1

)
+ ãij − ξij ≤ d−ij

}
≥ αij

ãij ∼ N
(

µij,
(
σij
)2
)

, i, j ∈ N
n
∑

i=1
ωi = 1

ωi ≥ 0, i ∈ N
d+ij , d−ij , ξij ≥ 0, i, j ∈ N

(8)

Theorem 1. For a membership PR with a normal distribution, the goal programming-based optimal ranking
Model (8) can be transformed into the following equivalent format:

min ∑
i 6=j,i,j∈N

d+ij + d−ij + ξij

s.t.



−d+ij − ξij +
1
2
(
ωi −ωj + 1

)
− µij + σijΦ−1(αij

)
≤ 0

−d−ij − ξij − 1
2
(
ωi −ωj + 1

)
+ µij + σijΦ−1(αij

)
≤ 0

n
∑

i=1
ωi = 1, ωi ≥ 0, i ∈ N

d+ij , d−ij ξ,ij≥ 0, i, j ∈ N

(9)

Proof of Theorem 1. We only need to prove that equation

Pr

{
1
2
(
ωi −ωj + 1

)
− ãij − ξij ≤ d+ij

}
≥ αij

is equivalent to equation

− d+ij − ξij +
1
2
(
ωi −ωj + 1

)
− µij + σijΦ−1(αij

)
≤ 0

For
ãij ∼

(
µij, σ2

ij

)
,

we have

Pr

{
1
2
(
ωi −ωj + 1

)
− ãij − ξij ≤ d+ij

}
≥ αij

⇔ Pr

{
−ãij ≤ d+ij −

1
2
(
ωi −ωj + 1

)
+ ξij

}
≥ αij
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⇔ 1− Pr

{
ãij ≤ −d+ij +

1
2
(
ωi −ωj + 1

)
− ξij

}
≥ αij

⇔ Pr

{
ãij ≤ −d+ij +

1
2
(
ωi −ωj + 1

)
− ξij

}
≤ 1− αij

⇔ Pr

{
ãij − µij

σij
≤
−d+ij +

1
2
(
ωi −ωj + 1

)
− ξij − µij

σij

}
≤ 1− αij

⇔ Φ

(
−d+ij +

1
2
(
ωi −ωj + 1

)
− ξij − µij

σij

)
≤ 1− αij

⇔
−d+ij +

1
2
(
ωi −ωj + 1

)
− ξij − µij

σij
≤ Φ−1(1− αij

)
⇔ 1

2
(
ωi −ωj + 1

)
− µij ≤ σijΦ−1(1− αij

)
+ d+ij + ξij

⇔ 1
2
(
ωi −ωj + 1

)
− µij ≤ −σijΦ−1(αij

)
+ d+ij + ξij

⇔ −d+ij − ξij +
1
2
(
ωi −ωj + 1

)
− µij + σijΦ−1(αij

)
≤ 0 .

The equivalent relationship between

Pr

{
−1

2
(
ωi −ωj + 1

)
+ ãij − ξij ≤ d−ij

}
≥ αij

and
− d−ij − ξij −

1
2
(
ωi −ωj + 1

)
+ µij + σijΦ−1(αij

)
≤ 0

can be proved in the same way.

4. Procedure of Ranking Model for an HFLPR with a Normal Distribution

Referring to the pairwise comparison of alternatives by a DM, uncertainty is represented with
several membership degrees in an HFLPR, which can be understood as a random characteristic.
Assuming that the HFLPR provided by the DM has a normal distribution characteristic, the steps of
the ranking model are given as follows.

Step 1: Construct the HFLPR, based on Section 2.2.1, Definitions 11 and 13.
Step 2: Derive the envelope matrix of the HFLPR, according to Definition 14.
Step 3: Derive the equivalent representation PR of the envelope matrix of the 2-tuple linguistic,

based on Definition 9.
Step 4: Derive the equivalent IFPR of the envelope matrix of the 2-tuple linguistic, according to

Definition 10.
Step 5: According to the transformation relation (6) between an interval distribution and a normal

distribution, replace the equivalent IFPR by the normally distributed PR.
Step 6: Based on the chance-restricted Model (9) of the normally distributed membership PR, by

the help of MATLAB R2014a, we can obtain the ranking vector and the objective value of alternatives,
and this ranking is also the ranking of the HFLPR.
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5. Examples and Applications

In developing a corresponding disaster response plan based on different disaster risks for four
potentially affected areas X = {x1, x2, x3, x4}, experts assess the meteorological disaster risk using
existing experience, and give their HFLPR B based on the linguistic term sets S = {s0, s1, · · · , s8}:

B =


{s4} {s1, s2, s3} {s2, s3} {s5, s6, s7}

{s7, s6, s5} {s4} {s6, s7, s8} {s4, s5}
{s6, s5} {s2, s1, s0} {s4} {s2, s3, s4}
{s3, s2, s1} {s4, s3} {s6, s5, s4} {s4}

.

The envelope matrix of B is

env(B) =


[s4, s4] [s1, s3] [s2, s3] [s5, s7]

[s5, s7] [s4, s4] [s6, s8] [s4, s5]

[s5, s6] [s0, s2] [s4, s4] [s2, s4]

[s1, s3] [s3, s4] [s4, s6] [s4, s4]


The representation PR of the envelope matrix env(B) is

Br =


[4, 4] [1, 3] [2, 3] [5, 7]
[5, 7] [4, 4] [6, 8] [4, 5]
[5, 6] [1, 2] [4, 4] [2, 4]
[1, 3] [3, 4] [4, 6] [4, 4]


The equivalent IFPR of the representation PR Br is

B =


[0.5000, 0.5000] [0.1250, 0.3750] [0.2500, 0.3750] [0.6250, 0.8750]
[0.6250, 0.8750] [0.5000, 0.5000] [0.7500, 1.0000] [0.5000, 0.6250]
[0.6250, 0.7500] [0.1250, 0.2500] [0.5000, 0.5000] [0.2500, 0.5000]
[0.1250, 0.3750] [0.3750, 0.5000] [0.5000, 0.7500] [0.5000, 0.5000]

;

The approximate replacement N(B) of the equivalent IFPR B using the PR with a normal
distribution is

N(B) =


N
(
0.5000, 0.00002) N

(
0.2500, 0.04172) N

(
0.3125, 0.02082) N

(
0.7500, 0.04172)

N
(
0.7500, 0.04172) N

(
0.5000, 0.00002) N

(
0.8750, 0.04172) N

(
0.5625, 0.02082)

N
(
0.6875, 0.02082) N

(
0.1875, 0.02082) N

(
0.5000, 0.00002) N

(
0.3750, 0.04172)

N
(
0.2500, 0.04172) N

(
0.4375, 0.02082) N

(
0.6250, 0.04172) N

(
0.5000, 0.00002)

;

Based on goal programming, we can construct an optimal ranking model with a chance constraint
using the membership matrix with a normal distribution to obtain the weight vector and the objective
value of the membership matrix of alternatives.

Model (9) can be written as:

minZ = d+12 + d+13 + d+14 + d+23 + d+24 + d+34 + d−12 + d−13 + d−14 + d−23 + d−24 + d−34 + ξ12 + ξ13 + ξ14 + ξ23 + ξ24 + ξ34

s.t.



−d+12 − ξ12 +
1
2 (ω1 −ω2 + 1)− µ12 + σ12Φ−1(α12) ≤ 0, −d+13 − ξ13 +

1
2 (ω1 −ω3 + 1)− µ13 + σ13Φ−1(α13) ≤ 0,

−d+14 − ξ14 +
1
2 (ω1 −ω4 + 1)− µ14 + σ14Φ−1(α14) ≤ 0, −d+23 − ξ23 +

1
2 (ω2 −ω3 + 1)− µ23 + σ23Φ−1(α23) ≤ 0,

−d+24 − ξ24 +
1
2 (ω2 −ω4 + 1)− µ24 + σ24Φ−1(α24) ≤ 0, −d+34 − ξ34 +

1
2 (ω3 −ω4 + 1)− µ34 + σ34Φ−1(α34) ≤ 0

−d−12 − ξ12 − 1
2 (ω1 −ω2 + 1) + µ12 + σ12Φ−1(α12) ≤ 0, −d−13 − ξ13 − 1

2 (ω1 −ω3 + 1) + µ13 + σ13Φ−1(α13) ≤ 0,
−d−14 − ξ14 − 1

2 (ω1 −ω4 + 1) + µ14 + σ14Φ−1(α14) ≤ 0, −d−23 − ξ23 − 1
2 (ω2 −ω3 + 1) + µ23 + σ23Φ−1(α23) ≤ 0,

−d−24 − ξ24 − 1
2 (ω2 −ω4 + 1) + µ24 + σ24Φ−1(α24) ≤ 0, −d−34 − ξ34 − 1

2 (ω3 −ω4 + 1) + µ34 + σ34Φ−1(α34) ≤ 0
ω1 + ω2 + ω3 + ω4 = 1
d+12, d+13, d+14, d+23, d+24, d+34, d−12, d−13, d−14, d−23, d−24, d−34, ξ12, ξ13, ξ14, ξ23, ξ24, ξ34, ω1, ω2, ω3, ω4 ≥ 0

(10)
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Let ωi, i ∈ N respectively be the priority weights of the normally distributed PR N(B).
Table 1 summarizes the results for the weight vectors and optimal objective values (obtained by
Model (10)) of the normally distributed PR under the chance constraint with probabilities
α = 0.9973, 0.9015, 0.8023, 0.7017, 0.6026, where Φ−1(0.9973) = 2.78, Φ−1(0.9015) = 1.29,
Φ−1(0.8023) = 0.85, Φ−1(0.7017) = 0.53, Φ−1(0.6026) = 0.26.

Table 1. Weights of the normally distributed preference relation (PR) N(B)

ωi/α 0.9973 0.9015 0.8023 0.7017 0.6026

ω1 0.0823 0.0830 0.0829 0.0831 0.0832
ω2 0.5823 0.5830 0.5829 0.5831 0.5832
ω3 0.0427 0.0420 0.0421 0.0419 0.0418
ω4 0.2927 0.2920 0.2921 0.2919 0.2918
Z∗ 1.3292 1.0188 0.9270 0.8604 0.8040

From Table 1, although the probabilities in the chance constraint are different, the ranking of
optimal solutions of the normally distributed PR obtained by Model (10) is the same. The priority
ranking of N(B) for different probabilities is x2 � x4 � x1 � x3, where “�” indicates “superior to”.

If we only consider the equivalent IFPR B, then the weight vector of B referring to alternatives
x1, x2, x3 and x4 can be obtained through Model (11).

The Model (1) can be written as:

minε12 + ε13 + ε14 + ε23 + ε24 + ε34

s.t.



−ε12 − 1
2 (ω1 −ω2 + 1) + [γ12 × 0.1250 + (1− γ12)× 0.3750] ≤ 0, 1

2 (ω1 −ω2 + 1)− [γ12 × 0.1250 + (1− γ12)× 0.3750]− ε12 ≤ 0,
−ε13 − 1

2 (ω1 −ω3 + 1) + [γ13 × 0.2500 + (1− γ13)× 0.3750] ≤ 0, 1
2 (ω1 −ω3 + 1)− [γ13 × 0.2500 + (1− γ13)× 0.3750]− ε13 ≤ 0,

−ε14 − 1
2 (ω1 −ω4 + 1) + [γ14 × 0.6250 + (1− γ14)× 0.8750] ≤ 0, 1

2 (ω1 −ω4 + 1)− [γ14 × 0.6250 + (1− γ14)× 0.8750]− ε14 ≤ 0,
−ε23 − 1

2 (ω2 −ω3 + 1) + [γ23 × 0.7500 + (1− γ23)× 1.0000] ≤ 0, 1
2 (ω2 −ω3 + 1)− [γ23 × 0.7500 + (1− γ23)× 1.0000]− ε23 ≤ 0,

−ε24 − 1
2 (ω2 −ω4 + 1) + [γ24 × 0.5000 + (1− γ24)× 0.6250] ≤ 0, 1

2 (ω2 −ω4 + 1)− [γ24 × 0.5000 + (1− γ24)× 0.6250]− ε24 ≤ 0,
−ε34 − 1

2 (ω3 −ω4 + 1) + [γ34 × 0.2500 + (1− γ34)× 0.5000] ≤ 0, 1
2 (ω3 −ω4 + 1)− [γ34 × 0.2500 + (1− γ34)× 0.5000]− ε34 ≤ 0

w1 + w2 + w3 + w4 = 1
0 ≤ γ12, γ13, γ14, γ23, γ24, γ34, w1, w2, w3, w4 ≤ 1

(11)

With the help of MATLAB R2014a, we can obtain the weight vector of the equivalent IFPR B
referring to alternatives x1, x2, x3 and x4:

ω1 = 0.0142, ω2 = 0.3122, ω3 = 0.2989, ω4 = 0.3748.
The ranking of disaster risk in four possible disaster areas is: x4 � x2 � x3 � x1.
Referring to HFLPR B, the results obtained by Model (10) are better than Model (11).

6. Conclusions

In order to effectively reduce loss from meteorological disasters and mitigate their socio-economic
impact, experts need to make scientific assessments of the risk of meteorological disasters based on their
personal experience. This study proposed the use of an HFLPR for describing the uncertainty in the
assessment process of the expert. We assumed that the membership degree is characterised by a random
distribution. As it is difficult to define consistency in an HFLPR, we first constructed an envelope
matrix of an HFLPR, and with the help of a transformation relation between a 2-tuple linguistic
term and a fuzzy number, we further constructed an equivalent IFPR with a normal distribution
that is approximately equivalent to the initial HFLPR. Based on the definitions of FPR and IFPR
and their additive consistency, the interval PR of a DM can approximately be replaced by a random
variable that obeys a normal distribution. Thus, a chance-restricted programming-based optimal
ranking model of an IFPR with a normal distribution can be constructed. Based on the properties
of chance-restricted optimisation, the chance-restricted programming-based ranking model can be
transformed into a deterministic nonlinear optimisation model, and the ranking of alternatives obtained
by this model is not only the ranking of the IFPR, but also the ranking of the initial HFLPR.
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This paper assumes that the transformed linguistic preferences of decision-makers are subject
to a normal distribution. However, a model of preference relations of decision-makers with multiple
distributions has not been considered [56,57]. This limitation of the current method needs to be
addressed in future research.
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