## Burden of Mortality and Disease Attributable to Multiple Air Pollutants in Warsaw, Poland

Table S1. Primary and secondary pollutants considered

| Primary pollutants | Secondary pollutants |
| :---: | :---: |
| $\mathrm{SO}_{2}$ - sulfur dioxide | $\mathrm{SO}_{4}^{2-}$ - sulfate aerosol |
| NOx - nitrogen oxides | $\mathrm{NO}_{3}^{-}$- nitrate aerosol |
| PPM10- primary PM, $\Phi \leq 10 \mu \mathrm{~m}$ |  |
| PPM10_R - re-suspended PPM10 |  |
| $\mathrm{PPM}_{2.5}$ - primary PM, $\Phi \leq 2.5 \mu \mathrm{~m}$ |  |
| PPM ${ }_{2.5}$ _R - re-suspended PPM2.5 |  |
| CO - carbon monoxide |  |
| $\mathrm{C}_{6} \mathrm{H}_{6}$ - benzene |  |
| Pb - lead |  |
| As - arsenic |  |
| Cd-cadmium |  |
| Ni - nickel |  |
| BaP - benzo(a)pyrene |  |
| Particulate matter |  |
| $\mathrm{PM}_{10}=\mathrm{PPM}_{10}+\mathrm{PPM}_{10 \_\mathrm{R}}+\mathrm{SO}_{4}^{2-}+\mathrm{NO}_{3}^{-}$ |  |
| $\mathrm{PM}_{2.5}=\mathrm{PPM}_{2.5}+\mathrm{PPM}_{2.5}{ }^{\text {R }}+\mathrm{SO}_{4}^{2-}+\mathrm{NO}_{3}^{-}$ |  |

Table S2. Population of Warsaw and Poland by age and sex. Population data for Poland was calculated from Global Burden of Disease 2013 country data for Poland, and population for Warsaw was based on the EEA (2016) and Central Statistical Office of Poland.

|  | Warsaw |  |  | Poland |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Age group | Males | Female <br> s | Males and <br> Females | Males | Females | Males and <br> Females |
| Under 5 <br> years | 49,564 | 46,771 | 96,335 | $1,038,348$ | 980,613 | $2,018,961$ |
| $5-9$ years | 39,347 | 37,521 | 76,868 | 858,840 | 810,173 | $1,669,013$ |
| $10-14$ years | 36,900 | 35,199 | 72,098 | 906,055 | 856,835 | $1,762,890$ |
| $15-19$ years | 42,936 | 41,488 | 84,424 | $1,146,896$ | $1,098,475$ | $2,245,371$ |
| $20-24$ years | 55,704 | 55,284 | 110,987 | $1,316,457$ | $1,261,049$ | $2,577,507$ |
| $25-29$ years | 72,428 | 75,220 | 147,648 | $1,768,330$ | $1,717,835$ | $3,486,165$ |
| $30-34$ years | 75,336 | 79,689 | 155,025 | $1,647,587$ | $1,606,209$ | $3,253,795$ |
| $35-39$ years | 65,739 | 68,741 | 134,480 | $1,486,777$ | $1,455,461$ | $2,942,238$ |
| $40-44$ years | 49,911 | 51,882 | 101,793 | $1,129,578$ | $1,111,889$ | $2,241,467$ |
| $45-49$ years | 46,691 | 51,168 | 97,858 | $1,080,145$ | $1,085,429$ | $2,165,573$ |
| $50-54$ years | 57,617 | 67,431 | 125,048 | $1,440,683$ | $1,506,341$ | $2,947,024$ |
| $55-59$ years | 62,915 | 76,582 | 139,497 | $1,432,517$ | $1,591,721$ | $3,024,238$ |
| $60-64$ years | 50,245 | 64,015 | 114,261 | $1,378,466$ | $1,607,523$ | $2,985,988$ |
| $65-69$ years | 28,989 | 40,471 | 69,461 | 546,339 | 709,920 | $1,256,259$ |
| $70-74$ years | 24,608 | 38,989 | 63,597 | 543,561 | 815,406 | $1,358,967$ |
| $75-79$ years | 20,892 | 35,949 | 56,841 | 426,206 | 719,273 | $1,145,479$ |
| $80+$ years | 22,167 | 47,129 | 69,296 | 459,182 | $1,045,488$ | $1,504,671$ |
| All age | 801,988 | 913,529 | $1,715,517$ | $18,605,966$ | $19,979,639$ | $38,585,605$ |
| groups |  |  |  |  |  |  |

## Details on burden of disease calculation

Table S3. Disability weights and duration data.

| Disease | Disability <br> weight | Reference | Average <br> duration <br> (years) | Reference |
| :--- | :--- | :--- | :--- | :--- |
| Chronic <br> bronchitis <br> (new cases) | 0.05 | Based on <br> Hofstetter (1998). | 40 | Based on <br> Hofstetter <br> (1998). |
| Restricted <br> activity days <br> (RAD) | 0.099 | Lower respiratory <br> infections (chronic <br> sequelae) (World <br> Health <br> Organization, n.d.). | 0.00274 | Based on EboDe <br> (Hänninen and <br> Knol 2011). |
| LRS symptoms <br> days (school <br> children) | 0.099 | Lower respiratory <br> infections, chronic <br> sequelae (World <br> Health <br> Organization, n.d.). | 0.00274 | One day. Based <br> on EboDe <br> (Hänninen and <br> Knol 2011). |
| LRS symptom <br> days (adult) | 0.279 (0.279- <br> $0.280)$ | Lower respiratory <br> infections, chronic <br> sequelae. (World <br> Health <br> Organization, n.d.). | 0.00274 | One day. Based <br> on EboDe <br> (Hänninen and <br> Knol 2011). |
| Mild Mental <br> Retardation <br> (MMR) for <br> children | 0.36 | EboDE (Hänninen <br> and Knol 2011). | 77.6 | EboDE <br> (Hänninen and <br> Knol 2011). |

Table S4. Summary of exposure-response functions (ERFs) used in the study. For details see text below.

| Pollutant | Health <br> endpoint | Age <br> group | Type of <br> ERF | ERF | References |
| :--- | :--- | :--- | :--- | :--- | :--- |
| PM2.5 | Natural-cause <br> mortality | $30+$ | RR <br> (relative <br> risk) | $1.062(95 \%$ CI <br> $1.040-1.083)$ | Héroux et al. 2015. |
| PM2.5, <br> PM2.5-10 | New cases of <br> chronic <br> bronchitis | $30+$ | UR (unit <br> risk) | $5.33 \times 10-5(-$ <br> $0.17 \times 10-5-11.3$ <br> x 10-5) | Hurley et al., 2005. |
| PM2.5 | Restricted <br> activity days <br> (RADs) | $15-64$ | UR | $0.09(0.079-$ <br> $1.013)$ | Hurley et al., 2005. |
| PM2.5, <br> PM2.5-10 | LRS days for <br> school children | May-14 | UR | $0.186(0.186-$ <br> $0.277)$ | Hurley et al., 2005. |
| PM2.5, <br> PM2.5-10 | LRS days for <br> adults | $15+$ | UR | $0.13(0.015-$ <br> $0.243)$ | Hurley et al., 2005. |
| NOx | Natural-cause <br> mortality | $30+$ | HR <br> (hazard <br> rate) | $1.02(95 \%$ CI <br> $1.00-1.04)$ | Beelen et al. 2013. |
| SO2 | Lung cancer | All | RR | $1.01(0.94-1.08)$ | Nafstad et al., 2003. |
| BaP | Lung Cancer | All | UR | $8.7 \times 10-5(1.0 \times$ <br> $10-5-10 \times 10-$ | World Health <br> Organization, 2000; <br> Bostrom et al., 2002 |
| Cd | Lung Cancer | All | UR | $1.8 \times 10-3(1.0 \times$ <br> $10-3-1.8 \times 10-$ <br> $3)$ | Bickel and Friedrich <br> $2005 ; ~ T a k e n a k a ~ e t ~ a l ., ~$ |
| 1983. |  |  |  |  |  |

Table S5. Background burden in the study area.

| Disease | $\begin{gathered} \text { Age } \\ \text { group } \end{gathered}$ | Burden measure | \# | Factor | Details |
| :---: | :---: | :---: | :---: | :---: | :---: |
| All causes | All | DALY | 536,529 | - | Total (All causes). |
| All causes | All | Deaths | 18,254 | - | Total (All causes). |
| Non-accidental mortality | 30+ | YLL | 267,244 | PM2.5 | Communicable, maternal, neonatal, and nutritional disorders; Non-communicable diseases |
|  |  |  |  | NOx |  |
| Non-accidental mortality | 30+ | Deaths | 17,016 | PM2.5 | Communicable, maternal, neonatal, and nutritional disorders; Non-communicable diseases |
|  |  |  |  | NOx |  |
| Lung cancer | All | DALY | 23,373 | SO2 | Trachea, bronchus, and lung cancer. |
| Lung cancer | All | Deaths | 1,081 | SO2 | Trachea, bronchus, and lung cancer. |
| Ischemic heart disease | All | DALY | 52,377 | CO | Ischemic heart disease. |
| Ischemic heart disease | All | Deaths | 3,487 | CO | Ischemic heart disease. |
| Ischemic heart disease | 15-79 | DALY | 40,456 | Pb | Ischemic heart disease. |
| Ischemic heart disease | 15-79 | Deaths | 1,759 | Pb | Ischemic heart disease. |
| Cerebrovascular disease | 15-79 | DALY | 27,732 | Pb | Cerebrovascular disease. |
| Cerebrovascular disease | 15-79 | Deaths | 1,350 | Pb | Cerebrovascular disease. |
| Hypertensive heart disease | 15-79 | DALY | 4,427 | Pb | Hypertensive heart disease. |
| Hypertensive heart disease | 15-79 | Deaths | 188 | Pb | Hypertensive heart disease. |
| Other cardiac diseases | 15-79 | DALY | 13,097 | Pb | * |
| Other cardiac diseases | 15-79 | Deaths | 481 | Pb | * |

*) Cardiomyopathy and myocarditis; Atrial fibrillation and flutter; Aortic aneurysm, Peripheral vascular disease; Endocarditis, Other cardiovascular and circulatory diseases.

## Particulate matter (PM2.5, PM2.5-10)

Natural-cause mortality. The Years of Life Lost (YLLs) due to PM2.5 were estimated with the following equation:

$$
\begin{gather*}
\mathrm{PAF}=(\mathrm{RR} \wedge(1 / \mathrm{Eb}))^{\wedge} \mathrm{E}  \tag{S1}\\
\mathrm{YLL}=\mathrm{PAF} \times \mathrm{YLL} \text { Natural-cause mortality } \tag{S2}
\end{gather*}
$$

Where PAF is the population attributable fraction, $R R$ is the relative risk for natural-cause mortality per $10 \mu \mathrm{~g} / \mathrm{m} 3$ change in PM2.5 exposure, E is the exposure for PM2.5 (unit $\mu \mathrm{g} / \mathrm{m} 3$ ), Eb is the PM2.5 exposure increment to which the RR is related ( $10 \mu \mathrm{~g} / \mathrm{m} 3$ ), YLLNatural-couse mortality is the background YLLs due to natural-cause mortality, and the YLL is the disease burden caused by PM2.5 related mortality.

For the RR a value of 1.062 ( $95 \%$ confidence interval (CI) 1.040-1.083) was used, based on the recommendation of the World Health Organization (WHO) project "Health risks of air pollution in Europe-HRAPIE" (Héroux et al. 2015).

The background YLL data included YLLs caused by the communicable, maternal, neonatal, and nutritional disorders, and non-communicable diseases (Table S4, Supplementary material). In Héroux et al. (2015) the health outcomes for this recommended RR were defined to be all-cause mortality (natural) for age 30+. Therefore we excluded injuries and other accidents from the background YLLs and we assumed that PM2.5 will increase mortality for the age group 30 , or older.

New cases of chronic bronchitis, RADs, LRS symptoms days for school children and LRS symptoms days for adults. The Years Lost due to Disabilities (YLDs) for morbidity outcomes were estimated with equations:

$$
\begin{gather*}
\mathrm{AI}_{\mathrm{k}}=\mathrm{E}_{\mathrm{k}} \times \mathrm{UR}_{\mathrm{k}}  \tag{S3}\\
\mathrm{DALYk}=\mathrm{AI}_{\mathrm{k}} \times \mathrm{DW}_{\mathrm{k}} \times \mathrm{D}_{\mathrm{k}} \tag{S4}
\end{gather*}
$$

Where $U R_{k}$ is the unit risk for disease $k, \mathrm{AI}_{\mathrm{k}}$ is the Attributable Incidence (number of new cases per year) for disease k , E is the exposure level ( PM 2.5 or $\mathrm{PM} 2.5-10$ ), $\mathrm{DW}_{\mathrm{k}}$ is the Disability Weight for disease $k$, and $D_{k}$ is the duration of condition in years for disease $k$.

The unit risk values for different morbidity outcomes were adopted from the Clean Air for Europe (CAFE) program report (Hurley et al., 2005). The URs are summarized in Table S3 (Supplementary material) and the DWs and Ds in the Table S2 (Supplementary material). The UR uncertainty was quantified with triangular distributions and based on the values from the CAFE report. For the LRS days for adults, $30 \%$ of the adult population was estimated to have chronic respiratory symptoms, with uncertainty range from $20 \%$ to $50 \%$ (Hurley et al., 2005).

## Nitrogen oxides (NOx)

The YLLs due to exposure to NOx was estimated with equations S1 and S2 by using the HR value of 1.02 ( $95 \%$ CI 1.00-1.04) per $20 \mu \mathrm{~g} / \mathrm{m} 3$ change in NOx concentration. The HR was based on Beelen et al. (2013) cohort study and the YLL impact was calculated using equations S1 and S2.

## Sulfur dioxide (SO2)

The DALYs due to SO 2 related lung cancers were estimated with following equations:

$$
\begin{array}{r}
\mathrm{RR}=\exp (\mathrm{E} \times \ln (\mathrm{RR}) / \mathrm{Eb}) \\
\mathrm{PAF}=(\mathrm{RR}-1) / \mathrm{RR} \tag{S6}
\end{array}
$$

$$
\begin{equation*}
\text { DALY }=\text { PAF } \times \text { DALY }_{\text {Lung cancer }}(S 7) \tag{S7}
\end{equation*}
$$

Where RR is relative risk per $10 \mu \mathrm{~g} / \mathrm{m} 3$ changes in SO2 exposure, E is the exposure for SO2, Eb is the exposure increment to which the RR is related ( $10 \mu \mathrm{~g} / \mathrm{m} 3$ ), PAF is population attributable fraction and DALY Lung cancer $^{\text {is the background lung cancer DALY in the study }}$ area. The RR was adopted from Nafstad et al. (2003) study that followed a cohort of 16209 Norwegian men with 27 year follow up time. The resulting RR associated to $10 \mu \mathrm{~g} / \mathrm{m} 3$ change in SO2 concentration was 1.01 ( $95 \%$ CI 0.94-1.08) (Nafstad et al., 2003).

## Benzo(a)pyrene (BaP)

The DALYs due to lung cancer caused by BaP was calculated with following equations:

$$
\begin{equation*}
\mathrm{AI}=\mathrm{E} \times \mathrm{UR} \times \mathrm{Pop} \tag{S8}
\end{equation*}
$$

$$
\begin{equation*}
\text { DALY }=(\mathrm{AI} / 75)^{*} \mathrm{DALY}_{\mathrm{b}} / \text { death }_{\mathrm{b}} \tag{S9}
\end{equation*}
$$

Where E is exposure to BaP (unit $\mathrm{ng} / \mathrm{m} 3$ ), UR is a life time cancer risk of lung cancer, Pop is the size of the study population and AI is the Attributable Incidence (number of new cases per year). The life time cancer risk of the population was divided with the 75 years to estimate new cases of cancers per year by assuming the average life span of 75 years. The number of new cancer cases per year was converted to DALYs by multiplying the number of cases with the mean DALY loss of one lung cancer (21.6 DALYs per lung cancer death), estimated from the GBD 2013 data for Poland (Global Burden of Disease Study 2013).

For the UR a value of $8.7 \times 10-5$ cancers per ng/m3 exposure to BaP was used, based on the WHO Air Quality guidelines for Europe (World Health Organization, 2000). The upper and lower bound values of $10 \times 10-5 \mathrm{per} \mathrm{ng} / \mathrm{m} 3$ and $1.0 \times 10-5$ per ng $/ \mathrm{m} 3$, respectively, were used based on the summary of risk estimates for BaP from Bostrom et al. (2002) review.

## Cadmium (Cd)

The DALYs due to lung cancer caused by lifetime exposure to Cd were estimated with UR approach by adopting the equations S 8 and S9. For UR a value of $1.8 \times 10-3$ cancers per $\mu \mathrm{g} / \mathrm{m} 3$ was used. The same unit risk value was used in the ExternE year 2005 update (Bickel and Friedrich, 2005). For upper and lower band values of $9.2 \times 10-2$ and $1.0 \times 10-3$ were used, based on the Takenaka et al. (1983) and author judgment, respectively.

## Nickel (Ni)

The DALYs due to lung cancer cases caused by lifetime exposure to Ni were estimated with UR approach by adopting the equations S8 and S9. For UR a value of $2.4 \times 10-4$ cancers per $\mu \mathrm{g} / \mathrm{m} 3$ was used. The same UR was used in ExternE (Bickel and Friedrich, 2005) and it is based on the inhalation UR value from United States Environmental Protection Agency (US EPA) Integrated Risk Information System (IRIS) database (United States Environmental Protection Agency, n.d.). For upper and lower bounds values of $4.6 \times 10-4$ and $1.1 \times 10-5$ were used, based on Peto et al. (1984) and Chovil et al. (1981), respectively.

## Arsenic (AS)

The DALYs due to lung cancer cases caused by lifetime exposure to As were estimated with UR approach by adopting the equations S8 and S9. For UR a value of 0.00015 cancers per $\mu \mathrm{g} / \mathrm{m} 3$ was used based on a combined analysis of three epidemiological studies (Erraguntla et al. 2012).

## Lead (Pb)

The adverse health effects of Pb exposure were estimated by following the WHO burden of disease guidelines for lead (Fewtrell et al., 2003). Due to the non-linear nature of the doseresponse relationship between Pb and the associated health effects, the total health burden due to Pb in the study area was first calculated and then the fraction of that burden due to air pollution related Pb was estimated.

The average Pb concentrations in the air were converted to blood Pb levels by assuming that $1.0 \mu \mathrm{~g} / \mathrm{m} 3$ increase of Pb in the air leads to $50 \mu \mathrm{~g} / \mathrm{L}$ increase in blood level Pb levels, following a similar approach taken in the ExternE (Bickel and Friedrich, 2005). For the sensitivity analysis $+/-25 \%$ uncertainty around this conversation factor was estimated. The background blood Pb levels for children and adults were estimated based on the local exposure study and to WHO recommended values, respectively (see below for details).

Mild Mental Retardation (MMR). The exposure to Pb in early childhood has been associated with the decreased intelligence (Lanphear et al., 2005). For some individuals the decrease in the intelligence quotient (IQ) due to Pb leads to MMR. In (Fewtrell et al., 2003) mental retardation was estimated to be mild when IQ drops below 70 points.

Table S6. Calculation of Mild Mental Retardation (MMR) due to Pb . The calculations follows the methods presented in the (Fewtrell et al., 2003).

| Blood <br> lead level <br> intervals | Proportio <br> n of <br> children <br> at risk <br> $(\mathrm{H})$ | Fraction <br> of <br> populatio <br> n in IQ <br> interval <br> (I) | Fraction of <br> population <br> at risk with <br> exposure <br> (H x I) | Adjust <br> ment <br> factor <br> for <br> EUR-B <br> area | Number <br> of 0-1 <br> year old <br> children <br> in <br> Warsaw, | Number <br> of new <br> cases of <br> MMRs per <br> year <br> (J x K x L) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $<5 \mu \mathrm{~g} / \mathrm{dl}$ | 0.737 | - | - | - | - | - |
| $5-10$ <br> $\mu \mathrm{~g} / \mathrm{dl}$ | 0.253 | 0.24 | 0.00061 | - | - | - |
| $10-15$ <br> $\mu \mathrm{~g} / \mathrm{dl}$ | 0.01 | 0.8 | 0.00008 | - | - | - |
| $15-20$ <br> $\mu \mathrm{~g} / \mathrm{dl}$ | 0 | 1.45 | 0 | - | - | - |
| $20>\mu \mathrm{g} / \mathrm{dl}$ | 0 | 1.59 | 0 | - | - | - |
| Total | - |  | $\mathbf{0 . 0 0 0 6 9}$ | $\mathbf{1 . 5 3}$ | $\mathbf{1 8 5 6 6}$ | $\mathbf{1 9 . 5 2}$ |

The background blood level Pb concentrations in children were estimated from the Barton (2011). In that study the Pb and Cd levels in blood, hair and teeth were measured for 300 preschool age children in Southern Poland. The geometric mean blood level Pb concentrations were $42 \mu \mathrm{~g} / \mathrm{l}$ and geometric standard deviation 1.5 for children living in urban area ( $\mathrm{n}=99$ ). This is close to the regional blood level of $58 \mu \mathrm{~g} / \mathrm{l}$ for children in Poland, Turkey and Yugoslavia, presented in the appendix of the (Fewtrell et al., 2003).

By assuming the blood level geometric mean concentration of $42 \mu \mathrm{~g} / \mathrm{l}$ and variation with the geometric standard deviation of 1.5 , the children were divided into five different exposure groups based on the lead levels in their blood (Table S5, Supplementary material). The proportion of children at risk in each exposure group was then multiplied with the fraction of population in each IQ interval (based on Table 2 in Fewtrell et al. (2003) and the review by Schwartz (1994)). The IQ intervals represent the fraction of population that could potentially develop MMR if their IQ would decrease as a result of Pb exposure. For example, with the exposure group of $5-10 \mu \mathrm{~g} / \mathrm{dl}$, the background IQ interval in risk is in between 70.00 and 70.65 IQ points, and these children would develop MMR if their IQ would drop due to Pb more than 0.65 IQ points.

The fraction of the population at risk of developing MMR in the study area was calculated by first summing at risk population in each exposure intervals and then multiplying the fraction with the regional adjustment factors. Regional adjustment factors are used to take into account that several other stressors are causing MMR and by using the adjustment factor the combined effect of Pb and these other stressors can be estimated. For Poland the adjustment factor is 1.53 (EurB-group in Table 3, (Fewtrell et al., 2003)). The number of new

MMR cases per year is then calculated by multiplying the adjusted at-risk population with the number of 0-1 year old children in the study area. To calculate the DALYs, the number of new MMR cases per year was multiplied with the disability weight of 0.36 and with the average duration of 77.6 years (Table S2, Supplementary material).

By converting the annual average Pb concentration in the air to blood level concentration by using the conversation factor from ExternE (Bickel and Friedrich, 2005) study (see details earlier), $2.4 \%$ of total burden of Pb for children was estimated to be due to air pollution emissions from local transport.

Cardiovascular disease. The calculation of new cases of cardiovascular diseases due to Pb followed similar pattern as the calculation of MMRs for children. For the background blood level concentrations, the regional blood level of $9.2 \mu \mathrm{~g} / \mathrm{dl}$ was used with the standard deviation of 3 for adults in Poland, Turkey and Yugoslavia, as presented in the appendix of the Fewtrell et al. (2003). Based on this background exposure, population was divided into five exposure groups using the same method as was used in the MMR calculations (Table S5, Supplementary material).

Table S7. Relative risk values for cardiovascular disease for different blood level $\mathrm{Pb}^{\prime}$ s. Adopted from (Fewtrell et al., 2003) and based on (Pruss-Ustun et al., 2004).

| Gender, disease | Age group |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Male, <5 $\mu \mathrm{g} / \mathrm{dl}$ | 15-29 | 30-44 | 45-59 | 60-69 | 70-79 |
| Ischaemic heart disease | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Cerebrovascular disease | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Hypertensive disease | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Other cardiac diseases | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Male, 5-10 $\mu \mathrm{g} / \mathrm{dl}$ |  |  |  |  |  |
| Ischaemic heart disease | 1.041 | 1.041 | 1.032 | 1.018 | 1.014 |
| Cerebrovascular disease | 1.056 | 1.056 | 1.044 | 1.029 | 1.020 |
| Hypertensive disease | 1.122 | 1.122 | 1.059 | 1.036 | 1.027 |
| Other cardiac diseases | 1.013 | 1.013 | 1.009 | 1.006 | 1.003 |
| Male, 10-15 $\mu \mathrm{g} / \mathrm{dl}$ |  |  |  |  |  |
| Ischaemic heart disease | 1.130 | 1.130 | 1.100 | 1.055 | 1.043 |
| Cerebrovascular disease | 1.177 | 1.177 | 1.137 | 1.089 | 1.061 |
| Hypertensive disease | 1.413 | 1.413 | 1.189 | 1.111 | 1.083 |
| Other cardiac diseases | 1.039 | 1.039 | 1.026 | 1.017 | 1.010 |
| Male, 15-20 $\mu \mathrm{g} / \mathrm{dl}$ |  |  |  |  |  |
| Ischaemic heart disease | 1.225 | 1.225 | 1.172 | 1.093 | 1.072 |
| Cerebrovascular disease | 1.312 | 1.312 | 1.239 | 1.152 | 1.104 |
| Hypertensive disease | 1.779 | 1.779 | 1.334 | 1.192 | 1.142 |
| Other cardiac diseases | 1.067 | 1.067 | 1.044 | 1.029 | 1.017 |
| Male, 20> $\mu \mathrm{g} / \mathrm{dl}$ |  |  |  |  |  |
| Ischaemic heart disease | 1.276 | 1.276 | 1.210 | 1.112 | 1.087 |
| Cerebrovascular disease | 1.385 | 1.385 | 1.293 | 1.185 | 1.126 |
| Hypertensive disease | 1.996 | 1.996 | 1.413 | 1.235 | 1.172 |


| Other cardiac diseases | 1.081 | 1.081 | 1.053 | 1.035 | 1.02 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Female $<5 \mu \mathrm{~g} / \mathrm{dl}$ | 15-29 | 30-44 | 45-59 | 60-69 | 70-79 |
| Ischaemic heart disease | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Cerebrovascular disease | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Hypertensive disease | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Other cardiac diseases | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Female, 5-10 $\mu \mathrm{g} / \mathrm{dl}$ |  |  |  |  |  |
| Ischaemic heart disease | 1.026 | 1.026 | 1.021 | 1.011 | 1.009 |
| Cerebrovascular disease | 1.035 | 1.035 | 1.028 | 1.018 | 1.013 |
| Hypertensive disease | 1.076 | 1.076 | 1.038 | 1.023 | 1.017 |
| Other cardiac diseases | 1.008 | 1.008 | 1.005 | 1.004 | 1.002 |
| Female, 10-15 $\mu \mathrm{g} / \mathrm{dl}$ |  |  |  |  |  |
| Ischaemic heart disease | 1.081 | 1.081 | 1.063 | 1.035 | 1.027 |
| Cerebrovascular disease | 1.11 | 1.11 | 1.086 | 1.056 | 1.039 |
| Hypertensive disease | 1.247 | 1.247 | 1.117 | 1.07 | 1.052 |
| Other cardiac diseases | 1.025 | 1.025 | 1.017 | 1.011 | 1.006 |
| Female, 15-20 $\mu \mathrm{g} / \mathrm{dl}$ |  |  |  |  |  |
| Ischaemic heart disease | 1.139 | 1.139 | 1.107 | 1.058 | 1.046 |
| Cerebrovascular disease | 1.19 | 1.19 | 1.147 | 1.095 | 1.065 |
| Hypertensive disease | 1.446 | 1.446 | 1.203 | 1.119 | 1.088 |
| Other cardiac diseases | 1.042 | 1.042 | 1.028 | 1.018 | 1.011 |
| Female, 20> $\mu \mathrm{g} / \mathrm{dl}$ |  |  |  |  |  |
| Ischaemic heart disease | 1.169 | 1.169 | 1.13 | 1.07 | 1.055 |
| Cerebrovascular disease | 1.232 | 1.232 | 1.179 | 1.115 | 1.079 |
| Hypertensive disease | 1.556 | 1.556 | 1.248 | 1.145 | 1.107 |
| Other cardiac diseases | 1.051 | 1.051 | 1.033 | 1.022 | 1.013 |

Increased systolic blood pressure is associated with an increase in four different diseases: ischemic heart disease, cerebrovascular disease, hypertensive disease and other cardiac diseases. The RRs for each disease, exposure interval, age group and gender were obtained from Fewtrell et al. (2003) (Table S6, Supplementary material). By combining the exposure data with the RRs DALYs were calculated with the following equations:

$$
\begin{align*}
& \mathrm{PAF}_{\mathrm{j}, \mathrm{k}}=\left(\sum_{\mathrm{l}}\left(\mathrm{P}_{\mathrm{ix}} \mathrm{RR}_{\mathrm{l}, \mathrm{j}, \mathrm{k}}-1\right) / \sum_{\mathrm{l}}\left(\mathrm{P}_{\mathrm{i}} R R_{\mathrm{l}}\right)\right.  \tag{S10}\\
& \text { DALY }=\text { DALY }_{k} \times \sum j\left(\text { PAF }_{j, k}\right) \tag{S11}
\end{align*}
$$

Where $P_{1}$ is the fraction of population in at exposure interval $1, R R_{1, j, k}$ is the relative risk at exposure interval $l$, gender $j$ and disease $k$, and DALY ${ }_{k}$ is the background DALY for disease k. By converting the annual average Pb concentration in the air to blood level concentration by using the conversation factor from the ExternE (Bickel and Friedrich, 2005) study (see details earlier), $10.2 \%$ of the total burden of Pb for adults was estimated to be due to air pollution emissions from local transport.

## Carbon monoxide (CO)

The change in ischemic heart disease due to chronic exposure to CO was estimated based on the RR from the Hosseinpoor et al. (2005) study that estimated RR between CO and angina pectoris admissions in Tehran, Iran. The resulting RR was 1.00934 with $95 \%$ CI from 1.00359 to 1.01512 per $1000 \mu \mathrm{~g} / \mathrm{m} 3$ change in CO concentration. The calculation was done using equations S 1 an S 2 .

## Benzene (C6H6)

For C6H6 we adopted the unit risk value for leukemia from Hänninen and Knol (2011) study that estimate the burden of disease due to environmental stressors in Europe. The mean UR was $6 \times 10-6$ cases of leukaemia per $1 \mu \mathrm{~g} \mathrm{~m}-3$ in life time and the uncertainty from $2.2 \times 10-6$ to $7.8 \times 10-6$ per $1 \mu \mathrm{gm}-3$. The DALYs were calculated by assuming that one death due to leukaemia will cause 22.3 DALYs, based on the Global Burden of Disease 2013 data for Poland.


Figure S1. Exposure of the selected pollutants attributed to the individual emission sources. X-axis - the number of the source, Y -axis - the exposure in logarithmic scale. Left panels - 7285 line sources, Right panels - 6962 area sources. Positions of the sources and the related grid resolution are explained below the X -axis description.

