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Abstract: Public health risks from urban flooding are a global concern. Contaminated floodwater
may expose residents living in cities as they are in direct contact with the water. However, the recent
literature does not provide much information about this issue, especially for developing countries.
In this paper, the health risk due to a flood event occurred in Can Tho City (Mekong Delta, Vietnam)
on 7 October 2013 was investigated. The Quantitative Microbial Risk Assessment method was
used in this study. The data showed that the pathogen concentrations were highly variable during
the flood event and exceeded water standards for surface water. Per 10,000 people in contact
with the floodwater, we found Salmonella caused the highest number of infections to adults and
children (137 and 374, respectively), while E. coli caused 4 and 12 cases, per single event, respectively.
The results show that further investigations on health risk related to flood issues in Can Tho City
are required, especially because of climate change and urbanization. In addition, activities to raise
awareness- about floods, e.g., “living with floods”, in the Mekong Delta should also consider health
risk issues.

Keywords: health risk assessment; quantitative microbial risk assessment; urban flooding;
water pollution

1. Introduction

Cities in developing countries, faced with rapid urbanization, encounter a number of problems
that are connected to their development process. Among these, urban flooding and water quality
pollution are among the major ones [1]. Increased imperviousness due to rapid urban densification,
under-developed sewer systems, upstream flooding and tidal effects (in delta cities) are regular causes
of urban flooding. Surface water pollution in urban areas comes from both point and diffuse sources [2].
Non or partially treated wastewater from domestic (and industrial) activities are clear pollution sources
(i.e., point sources) discharging directly into receiving water bodies e.g., rivers and canals. A source of
diffuse pollution is contaminated urban runoff, which increases along with the urbanization progress
in developing countries [3].

Polluted water in the rivers, drainage canals and sewer systems can be mixed with floodwater
on the streets, pavements, etc. during flood episodes and thus likely impact human health [4-6].
Infectious diseases are common issues for urban poor populations after flood events [1]. For example,
people are exposed to microbial contaminants while walking through flooded roads, or playing with
flooded water (kids) [7]. Different diseases are normally found related to flood events such as fecal-oral
diseases, vector-borne diseases, rodent-borne diseases, acute asthma and skin rashes [8-10].
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The risk of microbial contaminant has been investigated in Vietnam. For example, high microbial
concentrations were observed in fertilizer and wastewater reused in agriculture [11]. In another
example, total coliforms, E. coli and Salmonella spp. in wastewater for irrigation were 110-fold above
Vietnamese agriculture standards and 260-fold above the World Health Organization (WHO)'s tolerable
safety limits for unrestricted agriculture [12]. These pathogens have been considered potential diarrhea
risk to farmers and consumers [13,14]. While a number of previous studies have highlighted human
health risk in exposure to wastewater in agriculture, only limited studies have been made on the
exposure to floodwater in urban areas.

Can Tho is located at the heart of the Mekong Delta and 75 km from the East Sea. It has a low
and flat topography along the Hau River—a downstream branch of the Mekong River. Can Tho is
the fourth most populous city in Vietnam, with a surface area of around 1389 km? and more than
1.23 million inhabitants. This city is identified as one of the major social-economic, cultural, religious,
educational regions of Vietnam, as well as the Mekong Delta. However, floods due to seasonal high
river discharges upstream, high tides and high rainfall intensity are a significant issue that Can Tho is
facing [15,16]. In addition, water pollution from untreated wastewater and illegal garbage discharge is
another problem of this city [17]. During flooding time, polluted water causes some health-related
issues to local people, for example diarrhea. As a 2015 local social-economic survey indicated, diarrhea
and related gastrointestinal diseases are the third common diseases that people get infected with [18].
It will be even worse in the future e.g., due to climate change [8,10]. Moreover, there is evidence that
fast population growth and urbanization process have led to increased flooding and decreasing water
quality in Can Tho City [15,16].

Several studies have assessed the public health risks due to waterborne pathogen exposure
cases from flooding events. Epidemiology approaches have been applied to analyze the health
outcomes of flood risks. For instance, the epidemiological evidence of diarrhea was found out due
to flood events at a global scale [19]. Some others suggest using the Disability Adjusted Life Years
(DALYs) method to estimate the total disease burdens related to waterborne pathogens, for example:
exposure to contaminated drinking water in poor urban areas in Uganda [20] or Ghana [9]. DALYs are
used quite commonly by the World Health Organization (WHO) to calculate the burden of diseases
regarding to hazard exposures, especially microbial hazards. Fewtrell et al. [7] determined DALYs
due to flooding events for some case studies in the UK, which included deaths, serious injuries,
other physical symptoms and mental health symptoms [7]. Another approache like Haas et al.” [21]
apply quantitative microbial risk assessment method (QMRA) to estimate the health risk associated
to microorganism exposure. QMRA helps to predict the potential risk of diseases at a low level of
concentrations, which are not easy to identify by epidemiological studies. For example, during flooding
related to sewage overflows and heavy rainfall in The Hague (The Netherlands), people may get
infected by Cryptosporidium and Giardia with an annual infection risk of around 5 x 107 and 3 x 1072,
respectively [22]. In urban areas, children playing in floodwater and swimming/rowing in river can
get the highest infection probability related to gastrointestinal and Legionnaires’ diseases during
flooding time [23]. Besides, infection risks are also due to flooding related to combined river water and
sewage overflow [7]. The origins of floodwater, for example: fluvial, pluvial or a combination of them,
affect the pathogen concentrations which is the main cause of waterborne diseases. The quantitative
risk assessment, therefore, needs more considerations in order to understand the relationship between
polluted floodwater and health risk.

This paper aims at providing an analysis of health risk related for a typical urban flood event in
the center of Can Tho City. The analysis is a successor of a recent report on an extensive monitoring
campaign of water quality dynamics during a flood event that occurred on 3 October 2013 [24]. In this
study, the pathogen data of that campaign were used.
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2. Materials and Methods

2.1. Study Site

Ninh Kieu is the most urbanized and centralized district of Can Tho City. The area is a typical
urban flooding site in the Mekong Delta [15]. Both pluvial and fluvial flows often occur in the city.
The pluvial floods occur because the drainage network has been degraded and its capacity to deal
with heavy rainfall events is limited, although in recent years, the network has been upgraded to deal
with urban pluvial flooding issues [25]. In addition, the areas also suffer from fluvial floods, especially
during high tide. The high tides cause inundations either because they are going through poor drainage
systems where the check-valves operate improperly or because of overtopping of the river band. Both
types of flooding are increasingly happening in the area. Floods happen at different places in the area.
It can be either near to rivers (if the dyke is low) or inside the city through drainage/sewage networks.
In this study, a monitoring campaign for a flooding event on 7 October 2013 was implemented [24].
It was one of the highest tidal—induced floods in the city in the past fifty years.

2.2. Flooded Water Sampling and Analysis

Water samples were taken at different locations during the flood event as shown in Figure 1.
The characteristics of the these five sites were different from each other. F1, F3 and F4 were more
affected by overloading from drainage/sewage systems while F2 and F5 were affected because of
water overtopping from the rivers. During the flood event 3-5 samples were taken at each site.

Microbiological parameters such as E. coli, total coliforms and Salmonella, among other were
analyzed using the Most Probable Number (MPN) method (http:/ /www.who.int/water_sanitation_
health/resourcesquality /wqmchap10.pdf). Other water quality parameters like pH, COD, BODs,
nitrate (NO3 ~-N), ammonium (NH4*-N), phosphate (PO4>~-P), total P, total N and total suspended
solids as well as hydraulic parameter such as water levels were also considered. However, as in this
paper we mainly consider pathogens related to health risk issues, those parameters are omitted here
and interested readers may find them in Nguyen et al. [24].
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Figure 1. Locations of flooded sampling sites in Can Tho City.
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2.3. Quantitative Microbial Risk Assessment (QMRA)

The Quantitative Microbial Risk Assessment (QMRA) can be used to evaluate urban flood
health risk, among other methods such as epidemiological population studies and comparison of the
floodwater quality with the EU water standard [23]. QMRA is a technique that has been developed for
calculating the burden of disease from a particular pathogen [21]. The calculation procedure consists
of four successive steps: (1) hazard identification; (2) exposure assessment; (3) dose-response relations;
(4) risk characterization [21].

2.3.1. Hazard Identification

Identifying possible hazards in QMRA is to select possible factors that affect human health. In this
study the selected pathogens were: E. coli, Salmonella, Campylobacter, Cryptosporidium and Rotavirus.
While E. coli and Salmonella were measured in the samples, the other pathogen concentrations were
calculated based on other studies. e.g., the ratio between E. coli and Campylobacter, Cryptosporidium is
reported as 10°; and between E. coli and Rotavirus as 10 [9,26].

The data on pathogens in floodwater was used to identify the hazard. Because of relatively large
variation in pathogen concentrations and the non-linearity of QMRA models, it is preferable to use
average values with a probability distribution as inputs, rather than crisp values. For this, we had to
define probability distributions of these parameters. Based on observed data of E. coli and Salmonella,
a fitting function (distribution) was obtained by input of all measurement data of E. coli and Salmonella
in the Easyfit software (www.mathwave.com/help/easyfit/index.html). After the distribution was
obtained, a Monte-Carlo simulation of 10,000 iterations was applied, using the Risk AMP add-in for
Excel software (Microsoft, Redmond, WA, USA), to generate the variations of pathogen concentrations.

2.3.2. Exposure Assessment

The purpose of the exposure assessment was to determine the amount, or number, of organisms
that correspond to a single exposure (termed the dose), or the total amount or number of organisms
that constitute a set of exposures. We are interested in both the expected dose and the distribution
of doses [27]. The exposure assessment includes identifying the ingested volume and expected dose.
In this study we considered two cases: (1) adults on the street and (2) children playing with floodwater.
According to ten Veldhuis [9], the mean ingested volume for a flooding event is 10 mL for adults and
30 mL for children. The dose is calculated using the following formula:

cC X0

H= T 1000 &

where ¢ is the concentration of a pathogen in water (number of pathogens/L), from “Hazard
identification”, v is the ingested volume (ingested volume for adults is 10 mL and for children it
is 30 mL for a flooding event) and d is the dilution factor (1 in this case as we did not dilute the
floodwater). Given the concentration distribution ¢ obtained after the Monte—Carlo iteration, we can
also determine the dose distribution.

2.3.3. Dose-Response Relations and Risk Identification

The dose—response relation was used to calculate the infection probability. We used the 3-Poisson
dose—response model for E. coli, Salmonella, Campylobacter and Rotavirus and an exponential model for
Cryptosporidium [21] to calculate the probability of infection (Pyy¢) for one event as follows.

The (3-Poisson dose—response model is:

Emzl—(1+§;@%—nr“ @)
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where: 1 is the dose of the pathogen (MPN), « is a parameter that characterizes the dose—response
function relationship and N5 is the median infection dose. The value of the dose—response parameters
(o and N5) for each pathogen are shown in Table 1.

Table 1. p and N5 of E. coli, Salmonella, Campylobacter and Rotavirus [21].

Pathogens 18 N5
E. coli 0.1952 3.01x 107
Salmonella 0.3126 2.36 x 10*

Campylobacter 0.1450 896

Rotavirus 0.2531 6.17

The exponential function is:
Pipp=1—e™ ®)

where p is the dose of the pathogen (MPN), r is a parameter that characterizes the dose-response
function relationship, and equal to 4.005 x 1073.

From Equations (2) and (3) we can calculate the Average infection probability (Pyy¢) using average
concentrations of the measured and calculated data. In addition one can derive the Infection probability
distribution using the estimated Pathogen concentration probability with the help of a Monte Carlo
simulation (i.e., 10,000 iterations).

3. Results and Discussion
3.1. Quantitative Microbial Risk Assessment

3.1.1. Hazard Identification

A total of 20 water samples at five flooded sites were analyzed. From these 20 results, the measured
E. coli and Salmonella distribution was fitted with a geometric function (with p value of 0.000055 and
0.00075 for E. coli and Salmonella, respectively). A summary of pathogen variations from measured and
simulated data is shown in Table 2. E. coli varies from 0.0016 to 0.0007 MPN /100 mL while Salmonella
ranges from 0.014 to 0.0091 MPN /100 mL. The differences between the measured and simulated data
were not large. The mean differences were about 1 percent while the median was about 20 percent for
both E. coli and Salmonella.

Table 2. Differences between simulated (10,000 times) and observed (20 samples) E. coli and
Salmonella concentration.

n Mean SD Median

E. coli (measured) MPN/100 mL 20 1.84 x 104 2.09 x 10% 1.00 x 10*

E. coli (simulated) MPN/100mL 10,000  1.83 x 10* 1.83 x 10* 1.26 x 10*
Difference (%) 0.37 14.31 20.52

Salmonella (measured) ~ MPN/100 mL 20 1.33 x 100 203 x 10>  7.00 x 102
Salmonella (simulated) ~ MPN/100mL 10,000  1.34 x 10° 1.35 x 10° 9.23 x 102

Difference (%) 1.18 50.44 24.16

3.1.2. Exposure Assessment

According to ten Veldhuis [9], the mean ingested volume for adults is 10 mL and children is 30 mL
for a flooding event. The mean dose was calculated using Equation (1), with 10,000 iterations, and results
are shown in Table 3. We can see that the average (and standard deviation—SD) dose of E. coli for
adults as well as children is about ten times higher than Salmonella and about 1 x 103-5 x 10> MPN
while the dose of E. coli is tenth power five, six times to Rotaviruses, Campylobacter, Cryptosporidium.
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Table 3. Average dose of pathogens per event (MPN).
Mean SD Max 95 Percentile
Adu. Chi. Adu. Chi. Adu. Chi. Adu. Chi.
E. coli 1.8 x 103 55 x 10% 1.8 x 10° 5.5 x 103 22 x 10 6.5 x 10* 55 x 103 1.7 x 104
Salmonella 1.3 x 102 4.0 x 102 1.3 x 102 3.9 x 102 1.3 x 10° 4.0 x 10° 3.9 x 102 1.2 x 103

Rotaviruses 18x1072 55x102 18x1072 55x102 22x101 65x107! 55x102 17x10°1
Campylobacter 1.8 x 1072 55x 1072 18 x 1072 55x1072 22x107! 65x1071 55x 1072

1.7 x 1071
Cryptosporidium 1.8 x 1073 55x107% 18x107% 55x10% 22x1072 65x102 55x107% 1.7x 1072
Note: Adu.: Adults; and Chi.: Children; the mean, SD, Max 95 percentile was calculated based on results of

10,000 iterations.

3.1.3. Dose-Response Relations and Risk Identification

The infection probability distributions caused by E. coli, Salmonella, Campylobacter, Rotavirus and
Cryptosporidium for adults and children were estimated by running 10,000 Monte Carlo simulations.
The distribution of E. coli, Salmonella are shown in Figure 1 while a summary of all parameters is shown
in Table 4.

It can be seen in Figure 2 that the infection probability (Pj,¢) that children will get an infection
is 2-3 times higher than for adults. This is because children ingest higher volumes of floodwater.
For example, at the probability from 20% to 40% there are about five adults but about 10 children

infected by E. coli and about 100 adults and 200 children infected by Salmonella (when over 10,000 people
come into contact with the floodwater).
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Figure 2. Infection probability distribution of (a) E. coli and (b) Salmonella.

Table 4. Summary of infection probability of Salmonella, E. coli, Rotavirus, Campylobacter and Cryptosporidium
(over 10,000 people in contact with the floodwater).

Mean SD Max 95 Percentile
Adu. Chi. Adu. Chi. Adu. Chi. Adu. Chi.
E. coli 4 12 4 12 36 105 12 35
Salmonella 137 374 131 329 1005 2196 402 1040
Rotaviruses 103 284 98 252 793 1769 299 786
Campylobacter 3 10 3 10 31 91 10 31

Cryptosporidium 0.08 0.25 0.08 0.25 0.74 2.22 0.24 0.73

Note: Adu.: Adults; and Chi.: Children; the mean, SD, Max 95 percentile was calculated based on results of
10,000 iterations.
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Though the dose of E. coli people receive is much higher than for other pathogens, the infection
probability is lower. The mean infection probability per flood event is 4 and 12 for adults and children,
respectively, with E. coli but it is about 137 and 374 with Salmonella. The infection probabilities
between E. coli and Campylobacter were similar, as well as between Salmonella and Rotaviruses. However,
the chance of infection of Cryptosporidium was low. Given 10,000 people contact to water, the maximum
infected people are about 1 adult and 2 children.

4. Discussion

In Vietnam, there is no standard to assess health risk when people come into contact with water.
We will consider some other regulations from the Ministry of Health (MoH), Ministry of Natural
Resources and Environment (MoNRE) as well as from the European Union (EU) about the water
quality for different water use purposes and different ways that people may come into contact with
water, as shown in Table 5. Given the range from 1.6 x 10* to 7.0 x 10* MPN/100 mL and from
9.1 x 10* to 2.2 x 10° MPN /100 mL of E. coli and coliform found in floodwaters, the water quality
was much worse than existing water standards. It can be implied that possibly there could be serious
consequences to human health. Results from this study can be considered as a first reference for
Vietnamese ministries to develop such kind of flood related health risk assessment.

Table 5. Water quality standard for different purposes (MPN/100 mL).

QCVN QCVN QCVN EU Directive
01/2009/BYT 08/2008/BTNMT  10/2008/BTNMT 2006/7/EC
Coliform 50-150 2500-5000 1000 -
E. coli 0-20 20-50 - 200-500 (*)

QCVN 01/2009/BYT: Domestic water for e.g., washing, bathing (but not for drinking); QCVN 08/2008/BTNMT:
Inland surface water quality for domestic use, A1-A2; QCVN 10/2008/BTNMT: Coastal water quality for bathing;
EU Directive 2006/7/EC: Bathing water quality [28]. (*): Converted from CFU/100 mL to MPN /100 mL by In(MPN)
=1Ina + b x In(CFU), with “Ina” equals to 1.27; —0.51; —1.23; 2.09 and “b” equal to 0.8; 1.04; 1.36; 0.36 for spring,
summer, autumn and winter, respectively [29].

The exposure of local people varied strongly during the flooding period. As observed from an
interview conducted in a previous study at 34 households located near flooded areas (Figure S1 in
the Supplementary Materials) [30], two thirds of the interviewees ingested floodwater while traveling
on flooded streets and/or cleaning up flooded houses(Figure S2a in the Supplementary Materials).
There were even some other cases where children were playing in floodwater (Figure S2b in the
Supplementary Materials). Thus, cases of exposure were common in the Ninh Kieu district and a high
potential for infections was found during the flood event.

It has been observed that diarrhea outbreaks increased during flooding months in Ninh Kieu
district. According to Can Tho's joint water supply—sewer company, flood events often occur from
May to July and from September to November. In addition, the Can Tho Preventive Medical Center
reported that diarrhea cases in Ninh Kieu district were higher from July to October (Figure S3 in the
Supplementary Materials). A similar pattern was also shown in another study in the Mekong Delta,
which indicated that there was a significant association between diarrhea and cumulative rainfall [31].
Furthermore, the increased health risk during flooding time in Ninh Kieu district may impact the
social-economic conditions. As determined by a socio-economic survey of more than 2000 households
in Can Tho City determined [32], in Ninh Kieu district only about 71% of the households have a
sewer connection, and the remaining households discharge directly to the environment, e.g., a river,
lake, or canal, that could be the main sources of microbial pollutants. Around 50% of households
indicated that the surrounding environment has been polluted, which was related to inundation and
insufficient wastewater and solid waste collection. Therefore, local people face high health risks during
flooding time.
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In this study, the risk characterization was assessed for a single event. This can be quantified in
more detail, e.g., how many people may be infected per year or how this will change in the future.
Information of population exposed to the event as well as frequency of flood events are needed. There
are some studies on e.g., the exposure pathway; flooding frequencies; exposed population, that can
provide more information to answer these questions [23]. In addition, epidemiological data from local
health services should be exploited to assess flood-related illness information (e.g., in [33]).

Mathematical frameworks such as QMRA are being used to estimate the infection risk from
exposure to flooding in urban areas. In spite of the reliability and accuracy of this method, the infection
probability of this method could be an underestimate or an overestimate given the wide range of
pathogen concentrations. In most of the cases the pathogen concentration of floodwater is estimated
by applying a dilution factor to the pathogen concentration at the source or sources of flooding,
(e.g., in [22]). As the pathogen concentration used in such method does not consider the flood
dynamics, the infection probability should be applied with care. In addition, there is an issue of
parameter uncertainty. For example, the ingested volume could be a-case-specific parameter, though it
was close to those reported in Fewtrell and Smith [34]. However, it should be noticed that the flood
duration and transportation culture in Can Tho could be different from other places. For example,
while walking and cycling are common in The Netherlands, travelling by motorbike is more popular
in Vietnam. Thus, this input is still subject to uncertainty. It should be further investigated either by
using distributed functions, (e.g., in [23]) or by social surveying [35].

“Living with floods” was a very common slogan in the Mekong Delta. It could be because people
were not aware about the health risk problem or it was not really a problem in the past. The surface
water has increasingly been polluted by the development of industry and urbanization. This becomes
even worse if floods occur. The findings from this study may be a reference for raising awareness on
health risk issues during flood events in Can Tho City as well as other similar cities in the countries of
the global South.

5. Conclusions

In this paper, an initial assessment is presented on flood related health risk issues in Can Tho City,
based on an extensive monitoring campaign. Floodwater samples were taken before, during and
after flooding events at typical flooded locations in Can Tho city. By implementing the Quantitative
Microbiological Risk Assessment and assuming 10,000 people come into contact with the floodwater,
we found Salmonella is the pathogen that would cause the highest number of infections, which is about
137 and 374 in adults and children, respectively. The next most important pathogens are Rotaviruses
(103 and 284); E. coli (4 and 12) and Campylobacter (3 and 10) per single event. Cryptosporidium caused
the lowest infection risk with a maximum of 2 children. These values are very alarming, especially
to local people, regarding health risk issues. Health risk assessment, thus, should be on the agenda
of urban flood management policy. This study is the one of the first initiatives on this flood health
risk in Vietnam. There should be more focus on it in the future. Besides the topic of uncertainty
(e.g., the ingested volume), other aspects should also be considered, for example, pluvial flood events,
advanced in-situ flood monitoring and health risk warning systems.

Supplementary Materials: The following are available online at www.mdpi.com/1660-4601/14/12/1485/s1,
Figure S1: Locations of the 34 households interviewed, Figure S2: Ingested flood water while (a) walking in a
flooded street; (b) playing on a flooded street, Figure S3: Number of diarrhea cases during 2014, 2015 (Source:
Report of Can Tho Preventive Health Care).
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