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Abstract: Dengue fever (DF) is a common and rapidly spreading vector-borne viral disease in tropical
and subtropical regions. In recent years, this imported disease has posed an increasing threat to
public health in China, especially in many southern cities. Although the severity of DF outbreaks in
these cities is generally associated with known risk factors at various administrative levels, spatial
heterogeneities of these associations remain little understood on a finer scale. In this study, the
neighboring Guangzhou and Foshan (GF) cities were considered as a joint area for characterizing
the spatial variations in the 2014 DF epidemic at various grid levels from 1 × 1 km2 to 6 × 6 km2.
On an appropriate scale, geographically weighted regression (GWR) models were employed to
interpret the influences of socioeconomic and environmental factors on this epidemic across the GF
area. DF transmissions in Guangzhou and Foshan cities presented synchronous temporal changes
and spatial expansions during the main epidemic months. Across the GF area, this epidemic was
obviously spatially featured at various grid levels, especially on the 2 × 2 km2 scale. Its spatial
variations were relatively sufficiently explained by population size, road density, and economic status
integrated in the GWR model with the lowest Akaike Information Criterion (AICc = 5227.97) and
highest adjusted R square (0.732) values. These results indicated that these three socioeconomic
factors acted as geographical determinants of spatial variability of the 2014 DF epidemic across the
joint GF area, although some other potential factors should be added to improve the explaining
the spatial variations in the central zones. This work improves our understanding of the effects
of socioeconomic conditions on the spatial variations in this epidemic and helps local hygienic
authorities to make targeted joint interventions for preventing and controlling this epidemic across
the GF area.
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1. Introduction

Dengue is a vector-borne tropical disease caused by the four dengue virus serotypes (DENV 1–4)
that is mainly transmitted by Aedes aegypti and Aedes albopicuts mosquitoes. Dengue is an endemic
infectious disease in most of the tropical and subtropical regions, especially in Southeast Asia,
the Western Pacific, Latin America, and Eastern Mediterranean regions [1]. With increased geographical
extension, number of cases, and disease severity, dengue has become a worldwide public health issue
due to the unprecedented growth and migration of the population, excessive urbanization, and the
spread of mosquito vectors [2,3].

There was no dengue fever (DF) case documented in China from 1949 to 1977 until an outbreak
emerged in Guangdong Province in 1978. DF is still believed to be an imported infection in China,
although the threat of DF outbreaks has become more and more serious over the past 15 years,
especially in areas of Southern China including Guangdong, Zhejiang, Yunan, Fujian, and Guangxi
Provinces [4–7]. In these non-endemic regions, the imported cases from the infected areas commonly
trigger and even determine the size of the DF outbreaks, especially when coupled with abnormal
meteorological conditions (e.g., extreme rainfall) [8–10].

Once the DF outbreaks occur in the non-endemic regions, local DF transmission likely depends
on the interactions between host, viruses, mosquitoes, and environmental factors [1,5]. Given that
the range of a mosquito’s flying distance is restricted (commonly 512 m or less [11,12]), local DF
transmission is commonly affected by the spatially differentiated density and movement of the local
population on broad (national or international) or finer (regional, county, community, or neighborhood)
spatial scales [11,13–15]. In highly urbanized regions, the population tends to be more crowded and
more likely to be bitten by Aedes albopictus mosquitoes (dominant species in the Pearl River Delta
(PRD)) due to the suitable settings [16–19]. In addition to an effective early warning system, which
is urgently demanded to predict the possible DF outbreaks in the non-endemic areas [20], revealing
the influencing factors of spatial patterns of the DF incidence rates is seemingly more important for
sufficiently making and implementing targeted prevention and control measures.

As one of the most economically developed regions, the Pearl River Delta (PRD) is frequently
confronted with a serious situation of DF prevention and control because it has the most
cases—accounting for more than 90%—in China [21,22]. DF epidemics in the Guangzhou City and
Foshan City in the PRD core area have commonly been affected by each other [5,23,24] due to the
increasingly indistinguishable boundary between these two cities caused by parallel socioeconomic
development and the closer and closer relationship of citizens’ living, working, and communicating
during the “Guangzhou and Foshan (GF) to be One” project.

Previous studies that focused on the causes and influencing factors of the DF epidemic have
improved our understanding of the causes of the increasingly serious infection situation in the
south of China [5,10,22]. However, spatial patterns of DF epidemics and their determinants remain
little understood for these two cities as an integral (joint GF) area. Therefore, this study aimed to
(1) characterize spatial patterns of the 2014 local DF epidemic on an appropriate scale in this joint
area, and to (2) explore their responses to spatially homogeneous socioeconomic factors using the
geographically weighted regression (GWR) model. This study provides helpful clues for local public
health authorities in establishing effective measures for DF prevention and control.

2. Methods and Materials

2.1. Study Area

Guangzhou City (112◦57′~114◦0′ E, 22◦34′~23◦57′ N) and Foshan City (112◦23′~113◦23′ E,
22◦38′~23◦35′ N) have become more closely bound as a core zone and arelabeled the joint GF area
in the central region of Guangdong Province (Figure 1) due to the “Guangzhou and Foshan to be One”
project. The area, which has a population of about 21 million and had the economic level of gross
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domestic product (GDP) per capita of about 125,000 yuan in 2015, is featured by warm, humid, and
rainy meteorological conditions of the maritime monsoon climate.
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Figure 1. Illustration of the joint Guangzhao–Foshan (GF) area with five core urban districts highlighted
by different colors.

Compared with the county, town, village, or district scale used as basic geographic units in
previous spatial epidemiology studies, the instability of calculating or processing research objects
is subject to disturbances caused by the irregularity and nonconformity of constantly changing
administrative divisions [4,5,22,25]. This phenomenon can be efficiently avoided by using regular
spatial grid analysis [26]. In this study, a series of spatial grids including 1 × 1 km2, 2 × 2 km2,
3 × 3 km2, 4 × 4 km2, 5 × 5 km2, and 6 × 6 km2 were created with the Fishnet Tool in ArcGIS 10.0
(ESRI, Redlands, CA, USA).

2.2. Data Collection

2.2.1. DF Incidence Data

The 2014 epidemic data of confirmed dengue cases, such as hospital information, patient addresses,
and recent trip records on overseas and domestic travel, in the joint GF area was obtained from the
China Notifiable Disease Surveillance System. Using a geocoding technique (http://www.gpsspg.
com/xGeocoding/), all of the local cases without recent travel experience were spatially positioned
according to their addresses (Figure 2A). The 2014 dengue cases at various grid scales were counted
based on the above-mentioned data. Then, the ratio of the DF cases to the population (noted as the
incidence rates of DF at these gridded scales) was calculated and smoothed by the spatially empirical
Bayes (SEB) method in GeoDa (OpenGeoDa 1.2.0, Spatial Analysis Laboratory, Urbana, IL, USA, 2012)
to decrease the spatial instability of the gridded DF incidence rates. Natural logarithm values of the
SEB-smoothed DF incidence rates were also calculated for further spatial analysis and modeling as
shown in Figure 2B.

http://www.gpsspg.com/xGeocoding/
http://www.gpsspg.com/xGeocoding/
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Figure 2. Spatial distribution and temporal variations in the 2014 dengue fever (DF) epidemic (A):
reported cases; (B): Natural logarithm of the spatially empirical Bayes (SEB)-smoothed DF incidence
rates; (C): monthly changes).

2.2.2. Socioeconomic and Environmental Data

Since the specific impacts on the host and vector mosquitoes during the DF transmission [27],
four socioeconomic variables (land urbanization level (LUL), population size, road density, and gross
domestic product (GDP)) and four environmental factors (normalized difference of vegetation index
(NDVI), mean temperature (MT), mean precipitation (MP), and mean relative humidity (MRH)) were
obtained from some open nonprofit data sources and the data treatments were described in detail
in Table 1.

Table 1. Data sources and processing of socioeconomic and environmental factors in this study.

Variables/Description Data Processing The Source of Data

Population size Summing the population (persons) for each grid
based on the 2010 population density data

Data Center of Resources and
Environmental Science, Chinese
Academy of Sciences (RESDC,
www.resdc.cn)

Land urbanization level (LUL)
Calculating the area ratio of urbanized land to the
grid based on the 2010 data of land use and
coverage change

Economic conditions Summing the gross domestic product (GDP) values
(RMB) for each grid based on the 2010 GDP data

Road density
Calculating the ratio of total length of relatively
low-level (town and/or district) roads to the grid
(km·per·km2) based on the road network data
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means that grids with high incidence rate lie next to grids with low incidence rate. A more complete
description is provided by Anselin and Getis [31].

2.4. Geographically Weighted Regression Modeling

Given the spatiotemporal heterogeneity of dengue fever incidence rates, the related factors may
affect the epidemic in different ways and to various degrees, which is appropriate to analyze using
a geographically weighted regression (GWR) model. As an extension of the traditional multiple linear
regression (i.e., ordinary least square, OLS), a GWR model embeds the attributes’ spatial location
into the regression parameter, yielding a local regression together with local estimates of regression
coefficients [32]. The local estimation of the parameters with GWR is expressed by Equation (1)
as below:

yi = β0(ui, vi) +
n

∑
k=1

βk(ui, vi)xik + εi (i = 1, 2, . . . , m) (1)

where i = 1, 2, . . . , m denotes the number of spatial grids in the joint GF area; yi is the dependent
variable (dengue fever incidence rate) at location i; independent variable xik is the value of the
k parameter at location i, xik referred to the value of an affecting factor k (such as LUL, economic
condition, meteorological factors, and so on) at spatial grid i, which is specific for every spatial grid;
β0 is the intercept; βik is the correlation coefficient for the independent predictor variable xik, which is
to be estimated; and εi represents random error. Then, every spatial grid has a set of specific parameters
to reflect the relationship between dengue fever incidence rate and influencing factors. Finally, all
the parameters derived from both GWR and OLS will be compared in terms of the corrected Akaike
Information Criterion (AICc) and adjusted R square, on which the performance of these two models
could be evaluated.

In this study, Pearson correlation analysis was chosen to explore the relationships between DF
incidences and all of the potential variables (climatic, socioeconomic, and vegetation conditions) at the
significance level of 0.05 and 0.01, by which some appropriate potential variables could be accordingly
considered into the GWR and/or OLS models.

All of the above spatial analysis and modeling were completed in ArcGIS 10.0 software
(ESRI, Redlands, CA, USA). Typical correlation analysis was achieved using SPSS 14.0 (SPSS Inc.,
Chicago, IL, USA).

3. Results

3.1. Temporal and Spatial Distribution of Local DF Epidemic

In total, there were 40,450 locally infected patients confirmed by laboratory diagnosis in
Guangzhou City and Foshan City. Their local DF epidemic presented similar temporal changes
(Figure 2C). The overwhelming majority of local DF cases in these two cities appeared in the main
epidemic months with a typical increasing in August, an obvious peaking in September–October, and
a sudden decreasing toward November 2014. Moreover, the distribution of local DF cases displayed
clear spatial expansion during these main epidemic months and contraction (Figure 3A–D). When the
DF epidemic in each city was individually focused, these synchronous features of this epidemic in these
two cities would not be exactly achieved due to the artificially isolated distributions of DF epidemics
caused by administrative boundary (Figure 3E–H). This means that taking these two cities as a joint
area was conducive to characterizing the real temporal and spatial patterns of the DF epidemics in the
core DF epidemic area across China.
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Figure 3. Comparison of monthly reported DF cases in the joint GF area (A–D) and Guangzhou City,
Foshan City (E–H) from August to November.

At the spatial levels from 1 km × 1 km to 6 km × 6 km, the natural logarithm values of
SEB-smoothed incidence rates presented obvious spatial clustering across the GF area, especially
on the 2 km × 2 km scale, due to relatively high Morans’ I and larger z-score values (Table 2).
On this scale, the spatial distribution of the 2014 local DF epidemic in these two cities was further
clearly characterized through spatial analysis. The grids with higher natural logarithm values of
the SEB-smoothed DF incidence rates were mainly distributed in the central and boundary districts,
like Chancheng and Nanhai in Foshan City, Yuexiu, Haizhu, Tianhe, Liwan, Baiyun, and Panyu in
Guangzhou City (Figure 2B).

Table 2. Spatial autocorrelation of the natural logarithm values of SEB-smoothed monthly DF
incidence rates.

Gridded Scales 1 km × 1 km 2 km × 2 km 3 km × 3 km 4 km × 4 km 5 km × 5 km 6 km × 6 km

Z scores 38.78 42.89 33.83 28.23 21.73 18.64
Morans’ I 0.40 ‡ 0.72 ‡ 0.75 ‡ 0.78 ‡ 0.68 ‡ 0.67 ‡

p values <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
‡ denote the spatially clustering significance at the level of 0.01.

3.2. Spatial Variability of Socioeconomic and Environmental Factors

In comparison, spatial differentiations of socioeconomic variables (Figure 4A–D) were more
obvious than those of environmental factors (Figure 4E–H) across the GF area. The coefficients of
variation (CV) of the socioeconomic variables were larger than those of environmental factors (Table 3).
Among the four socioeconomic and four environmental variables, LUL and NDVI respectively
possessed the highest CV. In addition, the natural logarithm values of SEB-smoothed DF incidence
rates tended to be more closely associated with the socioeconomic variables (Table 3). These results
displayed that the socioeconomic conditions and vegetation index could be preferentially considered
as potential explanatory variables of the 2014 DF epidemic across the GF area.
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Table 3. Descriptive statistics and correlation analysis results for the dependent and
independent variables.

Parameters DF Incidence
Rates * LUL GDP Road

Density
Population

Size MRH MT MP NDVI

Mean 3.46 0.20 39,980.19 14,178.97 5590.28 85.41 25.49 311.31 0.52

Standard deviation 1.72 0.32 36,549.65 13,029.02 4461.10 12.05 3.62 44.22 0.17

Coefficients of
variation (CVs, %) 49.61 156.87 91.42 91.89 79.80 14.11 14.20 14.20 31.72

DF incidence rates * / 0.56 ‡ 0.18 ‡ 0.53 ‡ 0.28 ‡ 0.04 0.04 0.04 −0.18

* denotes the natural logarithm values of SEB-smoothed DF incidence rates; ‡ means the significance level (0.01) in
the correlation analysis. MT: mean temperature; MP: mean precipitation; MRH: mean relative humidity.

3.3. Spatial Modeling

Based on the selected explanatory variables (NDVI, LUL, GDP, population size, and road density)
at the 2 km × 2 km level, the GWR models accounted for larger proportion of the spatial variations in
the 2014 DF incidence rates than that of OLS models in terms of the values of higher adjusted R square
and lower AICc (Table 4).

Table 4. Key parameters derived from the geographically weighted regression (GWR) models with
single explanatory variable or their combinations.

Models
Selected Explanatory Variables OLS GWR

NDVI LUL GDP Population
Size

Road
Density

Adj
R-Squared AICc Adj

R-Squared AICc Local
R-Square

A Yes Yes Yes Yes Yes 0.346 6643.83 0.505 6127.77 0.16–0.48
B No Yes Yes Yes Yes 0.345 6644.54 0.649 5518.15 0.06–0.63
C No No Yes Yes Yes 0.289 6798.45 0.732 5227.87 0.01–0.74
D No Yes No Yes Yes 0.327 6695.05 0.643 5535.84 0.01–0.63
E No Yes Yes No Yes 0.346 6642.59 0.628 5614.32 0.03–0.58
F No Yes Yes Yes No 0.321 6712.95 0.623 5634.48 0.01–0.57

Note: NDVI, normalized differences of vegetation index; LUL, land urbanization level; GDP, gross domestic product;
AICc, Akaike information criterion.
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The interpreting abilities of GWR models tended to be different from each other due to various
combinations of these selected variables. When discarding NDVI, the GWR models (B–F) possessed
better capacity (0.623 < Adjusted R square < 0.732) of simulating the spatial variations. While GDP,
population size, or road density was further deleted respectively, the performances of the GWR models
(D–F) were obviously decreased. In comparison, the GWR model C displayed the best performance
(Adjusted R square = 0.732) of interpreting the spatial variations while only LUL was further discarded.
In addition to the highest adjusted R square and the lowest AICc values, the range of local R square
values derived from the GWR model C was the widest as shown in Table 4.

The 2014 DF incidence rates were spatially interpreted in the districts such as Nanhai and
Chancheng in Foshan City and Baiyun, Liwan, Tianhe, and Haizhu in Guangzhou City due to
the clustering grids with relatively higher local R square than 0.4 (Figure 5A). The grids with the
standardized residual (StdResid) values in the range of −2 to 2 accounted for 95.10% of the GF area
although some unusually high or low StdResid values were still observed (Figure 5B). The results
implied that a stable and reliable relationship was achieved in the GWR model C by integrating GDP,
Population size, and road density for the explanation of spatial variations in the 2014 DF epidemic
across the GF area.Int. J. Environ. Res. Public Health 2017, 14, x 8 of 12 
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model C integrating GDP, population size, and road density.

In addition, the strength of the local correlation between population size, road density, economic
status, and this epidemic was spatially differentiated across the GF area (Figure 6). Population size
possessed strongly positive effects in this epidemic, especially on the boundary zones between
Guangzhou City and Foshan City (Figure 6A). Similarly, road density had strongly positive impacts on
this epidemic, which resulted in an inverse U-shaped belt covering the grids with higher coefficients
(Figure 6B). By contrast, the effects of the economic level (GDP) on this epidemic tended to be protective
in some central zones and be threatening in most of the rest zones across the GF area, although both of
them were relatively feebler (Figure 6C).
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4. Discussion

In this study, we analyzed the influences of socioeconomic and environmental factors on the
spatial variations on the grid scale in the 2014 DF epidemic in the joint GF (both Guangzhou City
and Foshan City) for the first time in China. GWR models were employed to effectively explore
the determinants of spatial variability of this epidemic. Several notable findings were achieved and
could provide meaningful clues for public health authorities implementing effective interventions on
this infection.

In our study, the monthly DF epidemics in Guangzhou City and Foshan City presented similar
features of temporal changes and spatial expansion. One explanation for this phenomenon is
that neighboring Guangzhou City and Foshan City possessed similar meteorological conditions,
approximate population density, large commuting population (working in one city and residing
in the other one) by increasingly maturing integrative traffic system, common floricultural habits,
and so on. These common crucial factors determined that these two cities were confronted with
a DF outbreak risk at similar levels and their epidemics tended to be affected by each other [5,23,24].
Accordingly, considering these two cities as a joint area is an effective choice to understand this
epidemic and to establish a joint intervention system in this region. Furthermore, our study showed
that the 2 km × 2 km grid was the most suitable scale for characterizing the spatial variability of the
2014 DF epidemic across the GF area. We cautiously and optimistically speculate that the joint DF
intervention system could be effectively implemented on this scale for preventing and controlling this
disease across the GF area, especially during the continuously promoted “Guangzhou and Foshan to
be One” project.

The outbreak size and peaks of the 2014 DF epidemic in Guangzhou City were mainly determined
by the increasing imported DF cases and much heavier rainfall in May and August [10]. After the
main inducements of this epidemic were clearly revealed, the next important concern is to explore
the determinants of the spatial variations in this epidemic in a special region, so as to make
effective interventions for preventing and controlling this disease. Using generalized additive model,
Qi, et al. [22] found that the 2013 DF epidemic (a small-scale) across the PRD area in Southern China
was spatially affected by road density, population density, and GDP per capita at the township level.
It was similar to our finding, but the results derived from the GWR models applied in this study
was more reasonable since the spatial correlation between this epidemic and the influencing factors
had been considered at a fine spatial scale. It was interesting that LUL was not included in the
best-performing GWR model C but the second-performing GWR model B, which may be related to the
collinearity between it and the other socioeconomic variables (Table S1). Nevertheless, these results
indicated that the spatial variations in this epidemic across the GF area were heavily determined by
socioeconomic factors, especially population size, road density, and economic level.

Besides the most serious DF epidemic being across the GF area, the central zones were also
obviously featured by higher road density, moderate economic status, and a more crowded population
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(Figure 4). According to the results derived from the GWR model C, the spatially differentiated
population size acted as a powerful risk factor for the 2014 DF epidemic, especially in the boundary
zones between Guangzhou and Foshan City (Figure 6A), which may be related to the increasing
probability of being bitten by Aedes albopictus mosquitoes due to crowded population [11,13,15,33].
Road density also had a risky impact on this epidemic along the inverse-U shaped belt around
the central zones (Figure 6B), which was probably associated with the better traffic accessibility
(high road density) for people commuting to and from affected areas and being infected by this
disease [13,24]. Together with larger population size, higher road density resulted in extensive
impervious surfaces in the central zones, which would easily form widely distributed plashes and
supply suitable settings for Aedes albopictus mosquitoes’ breeding, growth, and perching, especially
after a moderate rainfall [16–19,34]. In comparison, the protective and/or threatening effects of
economic status on this epidemic were relatively feeble across the GF area in this study (Figure 6C),
which is somewhat different from previous studies wherein high economic status means better health
conditions [22,35,36]. A reasonable explanation is that the widely distributed urban villages (Figure 7)
in the central districts were probably suitable for this epidemic due to a large floating population, dense
low buildings, and poor sanitation [37–40]. Although these explanatory variables made important
contributions for interpreting the spatial clustering DF epidemic, there were some variations in this
epidemic to be explained due to its relatively high intercept values in the central zones (Figure 6D).
Nevertheless, these results implied that the DF infection was more possibly prevalent in the central
zones of the joint GF area. In other words, the central zones tended to be heavily confronted with higher
risk of this epidemic. We accordingly suggest that some stronger and targeted interventions should be
implemented in these regions by local hygienic and environmental departments for preventing and
controlling this epidemic.Int. J. Environ. Res. Public Health 2017, 14, x 10 of 12 

 

 

Figure 7. Typical urban villages with numerous crowded and low-rise developments surrounded by 

high buildings. 

A few limitations of this study warrant mentioning. First, the suitability of the 2 km × 2 km 

scale for characterizing the DF epidemic during all of the other years should be further assessed, 

although it was the most appropriate for the most serious 2014 DF epidemic across the GF area. 

Second, remote sensing images should be adequately used to retrieve more information, such as 

more detailed and real ground temperature and humidity values and more widely distributed 

urban villages, by which the zones with relatively higher (>2) or lower (<−2) StdResid (Figure 5B) and 

high intercept (Figure 6D) values may be further and reasonably decreased; then the spatial 

variability of this epidemic in the joint GF area would be more sufficiently explained. Finally, more 

changeable or artificially controlled factors, such as vector density, effective local interventions, 

temporal interval during the onset to the diagnosis of each infected patient, and so on should also 

be included in the models to more closely approach the substances of the epidemic of this disease 

and make more targeted interventions in this non-endemic area.  

5. Conclusions 

In summary, our study proved that spatially differentiated road density, population size, and 

economic level were the main determinants of spatial variability of DF epidemic on the grid scale in 

the joint GF area (Guangzhou and Foshan). This work improves our understanding of the effects of 

socioeconomic conditions on the spatial variations in this epidemic and helps local hygienic and 

environmental authorities to make targeted joint interventions for preventing and controlling this 

epidemic across the GF area.  

Supplementary Materials: The following are available online at www.mdpi.com/1660-4601/14/xxx, Table S1: 

title: Correlation coefficients between LUL, economic level, road density, population size, and vegetation 

condition. 

Acknowledgement: This work was supported by the National Key Research and Development Program of 

China (No. 2016YFC1201305), the National Natural Science Foundation of China (No.41571158), the Innovation 

Project of LREIS (No. O8R8B6A0YA), and the National Program on Major Scientific Research Project granted 

by MOST of China (No. 2012CB955504).  

Figure 7. Typical urban villages with numerous crowded and low-rise developments surrounded by
high buildings.

A few limitations of this study warrant mentioning. First, the suitability of the 2 km × 2 km scale
for characterizing the DF epidemic during all of the other years should be further assessed, although it
was the most appropriate for the most serious 2014 DF epidemic across the GF area. Second, remote
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sensing images should be adequately used to retrieve more information, such as more detailed and real
ground temperature and humidity values and more widely distributed urban villages, by which the
zones with relatively higher (>2) or lower (<−2) StdResid (Figure 5B) and high intercept (Figure 6D)
values may be further and reasonably decreased; then the spatial variability of this epidemic in the
joint GF area would be more sufficiently explained. Finally, more changeable or artificially controlled
factors, such as vector density, effective local interventions, temporal interval during the onset to the
diagnosis of each infected patient, and so on should also be included in the models to more closely
approach the substances of the epidemic of this disease and make more targeted interventions in this
non-endemic area.

5. Conclusions

In summary, our study proved that spatially differentiated road density, population size, and
economic level were the main determinants of spatial variability of DF epidemic on the grid scale
in the joint GF area (Guangzhou and Foshan). This work improves our understanding of the effects
of socioeconomic conditions on the spatial variations in this epidemic and helps local hygienic and
environmental authorities to make targeted joint interventions for preventing and controlling this
epidemic across the GF area.

Supplementary Materials: The following are available online at www.mdpi.com/1660-4601/14/12/1518/s1,
Table S1: Correlation coefficients between LUL, economic level, road density, population size, and vegetation condition.

Acknowledgments: This work was supported by the National Key Research and Development Program of China
(No. 2016YFC1201305), the National Natural Science Foundation of China (No. 41571158), the Innovation Project
of LREIS (No. O8R8B6A0YA), and the National Program on Major Scientific Research Project granted by MOST of
China (No. 2012CB955504).

Author Contributions: Hongyan Ren and Liang Lu conceived and designed the experiments; Lan Zheng,
Qiaoxuan Li and Wu Yuan analyzed the data; Hongyan Ren wrote the paper. All authors read and approved the
final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Guzman, M.G.; Harris, E. Dengue. Lancet 2015, 385, 453–465. [CrossRef]
2. Kyle, J.L.; Harris, E. Global spread and persistence of dengue. Ann. Rev. Microbiol. 2008, 62, 71–92. [CrossRef]

[PubMed]
3. Bhatt, S.; Gething, P.W.; Brady, O.J.; Messina, J.P.; Farlow, A.W.; Moyes, C.L.; Drake, J.M.; Brownstein, J.S.;

Hoen, A.G.; Sankoh, O.; et al. The global distribution and burden of dengue. Nature 2013, 496, 504–507.
[CrossRef] [PubMed]

4. Wu, F. A Study on the Potential Distribution of Aedes albopictus and Risk Forecasting for Future Epidemics of Dengue
in China; National Institute for Communicable Disease Control and Prevention: Beijing, China, 2009.

5. Sang, S.; Wang, S.; Lu, L.; Bi, P.; Lv, M.; Liu, Q. The epidemiological characteristics and dynamic transmission
of dengue in China, 2013. PLoS Negl. Trop. Dis. 2016, 10, e005095. [CrossRef] [PubMed]

6. Wu, J.Y.; Lun, Z.R.; James, A.A.; Chen, X.G. Dengue fever in mainland China. Am. J. Trop. Med. Hyg. 2010,
83, 664–671. [CrossRef] [PubMed]

7. Sang, S.; Chen, B.; Wu, H.; Yang, Z.; Di, B.; Wang, L.; Tao, X.; Liu, X.; Liu, Q. Dengue is still an imported
disease in China: A case study in Guangzhou. Infect. Genet. Evolut. 2015, 32, 178–190. [CrossRef] [PubMed]

8. Shang, C.; Fang, C.; Liu, C.; Wen, T.; Tsai, K.; King, C. The role of imported cases and favorable meteorological
conditions in the onset of dengue epidemics. PLoS Negl. Trop. Dis. 2010, 4, e775. [CrossRef] [PubMed]

9. Sang, S.; Yin, W.; Bi, P.; Zhang, H.; Wang, C.; Liu, X.; Chen, B.; Yang, W.; Liu, Q. Predicting local dengue
transmission in Guangzhou, China, through the influence of imported cases, mosquito density and climate
variability. PLoS ONE 2014, 9, e102755. [CrossRef] [PubMed]

10. Cheng, Q.; Jing, Q.; Spear, R.C.; Marshall, J.M.; Yang, Z.; Gong, P. Climate and the timing of imported cases as
determinants of the dengue outbreak in Guangzhou, 2014: Evidence from a mathematical model. PLoS Negl.
Trop. Dis. 2016, 10. [CrossRef] [PubMed]

www.mdpi.com/1660-4601/14/12/1518/s1
http://dx.doi.org/10.1016/S0140-6736(14)60572-9
http://dx.doi.org/10.1146/annurev.micro.62.081307.163005
http://www.ncbi.nlm.nih.gov/pubmed/18429680
http://dx.doi.org/10.1038/nature12060
http://www.ncbi.nlm.nih.gov/pubmed/23563266
http://dx.doi.org/10.1371/journal.pntd.0005095
http://www.ncbi.nlm.nih.gov/pubmed/27820815
http://dx.doi.org/10.4269/ajtmh.2010.09-0755
http://www.ncbi.nlm.nih.gov/pubmed/20810836
http://dx.doi.org/10.1016/j.meegid.2015.03.005
http://www.ncbi.nlm.nih.gov/pubmed/25772205
http://dx.doi.org/10.1371/journal.pntd.0000775
http://www.ncbi.nlm.nih.gov/pubmed/20689820
http://dx.doi.org/10.1371/journal.pone.0102755
http://www.ncbi.nlm.nih.gov/pubmed/25019967
http://dx.doi.org/10.1371/journal.pntd.0004417
http://www.ncbi.nlm.nih.gov/pubmed/26863623


Int. J. Environ. Res. Public Health 2017, 14, 1518 12 of 13

11. Harrington, L.C.; Scott, T.W.; Lerdthusnee, K.; Coleman, R.C.; Costero, A.; Clark, G.G.; Jones, J.J.;
Kitthawee, S.; Kittayapong, P.; Sithiprasasna, R.; et al. Dispersal of the dengue vector Aedes aegypti within
and between rural communities. Am. J. Trop. Med. Hyg. 2005, 72, 209–220. [PubMed]

12. Maciel-de-Freitas, R.; Souza-Santos, R.; Codeco, C.T.; Lourenco-de-Oliveira, R. Influence of the spatial
distribution of human hosts and large size containers on the dispersal of the mosquito Aedes aegypti within
the first gonotrophic cycle. Med. Vet. Entomol. 2010, 24, 74–82. [CrossRef] [PubMed]

13. Stoddard, S.T.; Morrison, A.C.; Vazquez-Prokopec, G.M.; Paz Soldan, V.; Kochel, T.J.; Kitron, U.; Elder, J.P.;
Scott, T.W. The role of human movement in the transmission of vector-borne pathogens. PLoS Negl. Trop. Dis.
2009, 3, e481. [CrossRef] [PubMed]

14. Isabella, E.; Annette, K.; Thomas, J.; Paul, S.; Sung Sup, P.; Thomas, J. Dengue virus serotype 3 infection in
traveler returning from West Africa to Germany. Emerg. Infect. Dis. 2015, 21, 175. [CrossRef]

15. Stoddard, S.T.; Forshey, B.M.; Morrison, A.C.; Paz-Soldan, V.A.; Vazquez-Prokopec, G.M.; Astete, H.;
Reiner, R.C.; Vilcarromero, S.; Elder, J.P.; Halsey, E.S.; et al. House-to-house human movement drives dengue
virus transmission. Proc. Natl. Acad. Sci. USA 2013, 110, 994–999. [CrossRef] [PubMed]

16. Li, S.; Tao, H.Y.; Xu, Y. Study on spatial distribution modeling of dengue fever based on RS—GIS. Geomat. Spat.
Inf. Technol. 2008, 31, 56–59.

17. Khormi, H.M.; Kumar, L. Modeling dengue fever risk based on socioeconomic parameters, nationality and
age groups: GIS and remote sensing based case study. Sci. Total Environ. 2011, 409, 4713–4719. [CrossRef]
[PubMed]

18. Ibarra, A.M.S.; Ryan, S.J.; Beltrán, E.; Mejía, R.; Silva, M.; Muñoz, Á. Dengue vector dynamics (Aedes aegypti)
influenced by climate and social factors in ecuador: Implications for targeted control. PLoS ONE 2013, 8.
[CrossRef]

19. Wu, S.L.; Lin, L.; Liu, Q.; Zhang, Q.W.; Wang, D.Q. Application of GIS and RS for analysis of relationship
between mosquito density and landscape. Mod. Prev. Med. 2012, 1089–1091.

20. Tambo, E.; Chen, J.H.; Zhou, X.N.; Khater, E.I. Outwitting dengue threat and epidemics resurgence in
asia-pacific countries: Strengthening integrated dengue surveillance, monitoring and response systems.
Infect. Dis. Poverty 2016, 5, 56. [CrossRef] [PubMed]

21. Ren, H.; Ning, W.; Lu, L.; Zhuang, D.; Liu, Q. Characterization of dengue epidemics in mainland China over
the past decade. J. Infect. Dev. Ctries. 2015, 9, 970–976. [CrossRef] [PubMed]

22. Qi, X.; Wang, Y.; Li, Y.; Meng, Y.; Chen, Q.; Ma, J.; Gao, G.F. The effects of socioeconomic and environmental
factors on the incidence of dengue fever in the pearl river delta, China, 2013. PLoS Negl. Trop. Dis. 2015, 9,
e004159. [CrossRef] [PubMed]

23. Lu, L.; Lin, H.L.; Liu, Q.Y. Risk map for dengue fever outbreaks based on meteorologial factors. Adv. Clim.
Chang. Res. 2010, 6, 254–258.

24. Li, Q.; Ren, H.; Zheng, L.; Cao, W.; Zhang, A.; Zhuang, D.; Lu, L.; Jiang, H. Ecological niche modeling
identifies fine-scale areas at high risk of dengue fever in the pearl river delta, China. Int. J. Environ. Res.
Public Health 2017, 14, 619. [CrossRef] [PubMed]

25. Tsai, P.J.; Teng, H.J. Role of Aedes aegypti (linnaeus) and Aedes albopictus (skuse) in local dengue epidemics in
Taiwan. BMC Infect. Dis. 2016, 16, 662. [CrossRef] [PubMed]

26. Ren, H.; Xu, D.; Shi, X.; Xu, J.; Zhuang, D.; Yang, G. Characterisation of gastric cancer and its relation to
environmental factors: A case study in Shenqiu county, China. Int. J. Environ. Health Res. 2016, 26, 1–10.
[CrossRef] [PubMed]

27. Kuang, W.H.; Dou, Y.Y.; Zhang, C.; Chi, W.F.; Liu, A.L.; Liu, Y.; Zhang, R.H.; Liu, J.Y. Quantifying the heat
flux regulation of metropolitan land use/land cover components by coupling remote sensing modeling with
in situ measurement. J. Geophys. Res.-Atmos. 2015, 120, 113–130. [CrossRef]

28. Walter, S.D. Assessing spatial patterns in disease rates. Stat. Med. 1993, 12, 1885–1894. [CrossRef] [PubMed]
29. Antunes, J.L.; Biazevic, M.G.; de Araujo, M.E.; Tomita, N.E.; Chinellato, L.E.; Narvai, P.C. Trends and spatial

distribution of oral cancer mortality in Sao Paulo, Brazil, 1980–1998. Oral Oncol. 2001, 37, 345–350. [CrossRef]
30. Schafer, T.; Pritzkuleit, R.; Jeszenszky, C.; Malzahn, J.; Maier, W.; Gunther, K.P.; Niethard, E. Trends and

geographical variation of primary hip and knee joint replacement in Germany. Osteoarthr. Cartil. 2013, 21,
279–288. [CrossRef] [PubMed]

31. Anselin, L.; Getis, A. Spatial statistical analysis and geographic information systems. Ann. Reg. Sci. 1992, 26,
19–33. [CrossRef]

http://www.ncbi.nlm.nih.gov/pubmed/15741559
http://dx.doi.org/10.1111/j.1365-2915.2009.00851.x
http://www.ncbi.nlm.nih.gov/pubmed/20377734
http://dx.doi.org/10.1371/journal.pntd.0000481
http://www.ncbi.nlm.nih.gov/pubmed/19621090
http://dx.doi.org/10.3201/eid2101.141145
http://dx.doi.org/10.1073/pnas.1213349110
http://www.ncbi.nlm.nih.gov/pubmed/23277539
http://dx.doi.org/10.1016/j.scitotenv.2011.08.028
http://www.ncbi.nlm.nih.gov/pubmed/21906782
http://dx.doi.org/10.1371/journal.pone.0078263
http://dx.doi.org/10.1186/s40249-016-0148-3
http://www.ncbi.nlm.nih.gov/pubmed/27233238
http://dx.doi.org/10.3855/jidc.5998
http://www.ncbi.nlm.nih.gov/pubmed/26409738
http://dx.doi.org/10.1371/journal.pntd.0004159
http://www.ncbi.nlm.nih.gov/pubmed/26506616
http://dx.doi.org/10.3390/ijerph14060619
http://www.ncbi.nlm.nih.gov/pubmed/28598355
http://dx.doi.org/10.1186/s12879-016-2002-4
http://www.ncbi.nlm.nih.gov/pubmed/27829399
http://dx.doi.org/10.1080/09603123.2014.1003040
http://www.ncbi.nlm.nih.gov/pubmed/25608493
http://dx.doi.org/10.1002/2014JD022249
http://dx.doi.org/10.1002/sim.4780121914
http://www.ncbi.nlm.nih.gov/pubmed/8272668
http://dx.doi.org/10.1016/S1368-8375(00)00113-5
http://dx.doi.org/10.1016/j.joca.2012.11.006
http://www.ncbi.nlm.nih.gov/pubmed/23220558
http://dx.doi.org/10.1007/BF01581478


Int. J. Environ. Res. Public Health 2017, 14, 1518 13 of 13

32. Fotheringham, A.S.; Brunsdon, C.; Charlton, M. Geographically Weighted Regression: The Analysis of Spatially
Varying Relationships; Wiley: New York, NY, USA, 2002.

33. Padmanabha, H.; Durham, D.; Correa, F.; Diuk-Wasser, M.; Galvani, A. The interactive roles of Aedes aegypti
super-production and human density in dengue transmission. PLoS Negl. Trop. Dis. 2012, 6. [CrossRef]
[PubMed]

34. Syed, M.; Saleem, T.; Syeda, U.R.; Habib, M.; Zahid, R.; Bashir, A.; Rabbani, M.; Khalid, M.; Iqbal, A.;
Rao, E.Z.; et al. Knowledge, attitudes and practices regarding dengue fever among adults of high and low
socioeconomic groups. J. Pak. Med. Assoc. 2010, 60, 243–247. [PubMed]

35. De Mattos Almeida, M.C.; Caiaffa, W.T.; Assuncao, R.M.; Proietti, F.A. Spatial vulnerability to dengue in
a Brazilian urban area during a 7-year surveillance. J. Urban Health 2007, 84, 334–345. [CrossRef] [PubMed]

36. Teurlai, M.; Menkes, C.E.; Cavarero, V.; Degallier, N.; Descloux, E.; Grangeon, J.P.; Guillaumot, L.; Libourel, T.;
Lucio, P.S.; Mathieu-Daude, F.; et al. Socio-economic and climate factors associated with dengue fever spatial
heterogeneity: A worked example in New Caledonia. PLoS Negl. Trop. Dis. 2015, 9. [CrossRef] [PubMed]

37. Wang, D. The population health in village-in-the-city: The problem we should not ignore during urbanization
in our country. Med. Philos. 2007, 28, 31–33.

38. Wang, L.; Wang, X. Influence of temporary migration on the transmission of infectious diseases in a migrants‘
home village. J. Theor. Biol. 2012, 300, 100–109. [CrossRef] [PubMed]

39. Song, Y.; Zenou, Y. Urban villages and housing values in China. Reg. Sci. Urban Econ. 2012, 42, 495–505.
[CrossRef]

40. Zhang, L.; Zhao, S.X.B.; Tian, J.P. Self-help in housing and chengzhongcun in China‘s urbanization. Int. J.
Urban Reg. Res. 2003, 27, 912–937. [CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1371/journal.pntd.0001799
http://www.ncbi.nlm.nih.gov/pubmed/22953017
http://www.ncbi.nlm.nih.gov/pubmed/20225792
http://dx.doi.org/10.1007/s11524-006-9154-2
http://www.ncbi.nlm.nih.gov/pubmed/17243024
http://dx.doi.org/10.1371/journal.pntd.0004211
http://www.ncbi.nlm.nih.gov/pubmed/26624008
http://dx.doi.org/10.1016/j.jtbi.2012.01.004
http://www.ncbi.nlm.nih.gov/pubmed/22266046
http://dx.doi.org/10.1016/j.regsciurbeco.2011.06.003
http://dx.doi.org/10.1111/j.0309-1317.2003.00491.x
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methods and Materials 
	Study Area 
	Data Collection 
	DF Incidence Data 
	Socioeconomic and Environmental Data 

	Spatial Autocorrelation Analysis 
	Geographically Weighted Regression Modeling 

	Results 
	Temporal and Spatial Distribution of Local DF Epidemic 
	Spatial Variability of Socioeconomic and Environmental Factors 
	Spatial Modeling 

	Discussion 
	Conclusions 

