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Abstract: Inter-individual variability in blood pressure (BP) is influenced by both genetic and
non-genetic factors including socioeconomic and psychosocial stressors. A deeper understanding of
the gene-by-socioeconomic/psychosocial factor interactions on BP may help to identify individuals
that are genetically susceptible to high BP in specific social contexts. In this study, we used a genomic
region-based method for longitudinal analysis, Longitudinal Gene-Environment-Wide Interaction
Studies (LGEWIS), to evaluate the effects of interactions between known socioeconomic/psychosocial
and genetic risk factors on systolic and diastolic BP in four large epidemiologic cohorts of European
and/or African ancestry. After correction for multiple testing, two interactions were significantly
associated with diastolic BP. In European ancestry participants, outward/trait anger score had
a significant interaction with the C10orf107 genomic region (p = 0.0019). In African ancestry
participants, depressive symptom score had a significant interaction with the HFE genomic region
(p = 0.0048). This study provides a foundation for using genomic region-based longitudinal analysis
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to identify subgroups of the population that may be at greater risk of elevated BP due to the combined
influence of genetic and socioeconomic/psychosocial risk factors.

Keywords: blood pressure; hypertension; genetics; gene-by-environment interaction; non-burden test;
socioeconomic status; psychosocial factors; depression; chronic burden

1. Introduction

Hypertension is a leading risk factor for cardiovascular disease and stroke and it is estimated
that over 41% of adults in the U.S. will have hypertension by 2030 with a disproportionate burden
among ethnic minorities [1]. Multiple lines of evidence indicate that inter-individual variation in
blood pressure (BP) is influenced by both genetic [2] and non-genetic factors including socioeconomic
status (SES) [3] and psychosocial factors [4]. Given that complex traits such as BP are likely shaped
by multiple risk factors as well as their interactions with one another, a deeper understanding of the
gene-by-socioeconomic/psychosocial factor interactions on BP may help to identify individuals that
are genetically susceptible to high BP in specific social contexts.

Genome-wide association studies (GWAS) have identified significant, replicated predictors of
systolic (SBP) and diastolic blood pressure (DBP) in populations of primarily European, African
and Asian ancestries [5–10]. Many of the identified loci harbor genes with plausible biological
roles in BP regulation [5–10]. Several physiological pathways have been proposed for these genes
in the pathogenesis of hypertension, many of which are likely to be modulated by non-genetic
factors. For example, the ATP2B1 gene, which was strongly associated with both SBP and
DBP [5], encodes PMCA1, a plasma membrane calcium/calmodulin-dependent ATPase that is
expressed in vascular endothelium and is involved in calcium pumping from the cytosol to the
extracellular compartment [11]. This signal transduction pathway is influenced by oxidative stress
and inflammation [12,13], which are known to be associated with lifestyle (e.g., physical activity, diet,
smoking), sociodemographic, and psychosocial factors (e.g., stress) [14–17].

In parallel, epidemiological studies have shown that socioeconomic and psychosocial factors are
also related to BP levels. Several studies have linked low SES at the individual level [3], neighborhood
level [18] and over the life course [19] to high BP. Possible pathways mediating these effects include
influences of low SES on health behaviors such as salt intake or lack of physical activity as well as
possible links between SES and stress, which has been hypothesized to be associated with BP through
neuroendocrine mechanisms [20]. Psychosocial factors have also been linked to high BP, possibly
through effects on behavior or direct impact on sympathetic and hypothalamic-pituitary-adrenal
(HPA) axis activity [3,20,21]. For example, high levels of anger have been associated with progression
from prehypertension to hypertension [20], depressive symptoms have been associated with increased
SBP and DBP [22,23] as well as hypertension incidence [24] and stress has been associated with BP
progression [25]. Nevertheless, findings for some psychosocial factors, such as depressive symptoms,
have been inconsistent across studies and important questions remain regarding the relative importance
of socioeconomic and psychosocial factors in explaining variability in BP.

The proper understanding and quantification of the etiologic roles of genes and environments
in the causation of complex diseases will require consideration of gene-by-environment
interactions [26,27]. Specifically, the influence of genetic predictors may be enhanced or suppressed by
the presence of a certain environmental context. Likewise, the influence of environmental exposures
may be modified by genetic predisposition. The investigation of gene-by-environment interactions
in the genomic era remains in its infancy in part because of the lack of large population studies with
rich environmental and genomic measurements as well as analytic methods that can effectively utilize
the data. In addition, the majority of gene-by-environment interaction studies for complex diseases
and traits such as BP have focused on demographic factors (e.g., age and body mass index (BMI))
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or health behaviors (e.g., smoking, salt intake) [27] and have had cross-sectional designs. Very few
have examined the socioeconomic or psychosocial environments in which genes operate and even
fewer have used repeated measures data. However, the pathways through which socioeconomic
and psychosocial factors are hypothesized to influence BP (which may include health behaviors but
also physiologic processes such as stress response, oxidative stress, inflammation, or changes in the
immune system) are likely to interact with genetic predispositions and these relationships may change
over time.

In this study, we used longitudinal data from four large epidemiologic cohorts of European
and/or African ancestry to investigate interactions between known socioeconomic/psychosocial
and genetic risk factors on variation in BP. We used a novel genomic region-based method for
repeated measures analysis, Longitudinal Gene-Environment-Wide Interaction Studies (LGEWIS) [28],
to evaluate interactions rather than testing each single nucleotide polymorphism (SNP) individually.
Region-based approaches such as LGEWIS may be advantageous for trans-ethnic analysis because
they are able to detect interactions even in the presence of genetic heterogeneity in ancestrally diverse
populations. Testing all SNPs in a region simultaneously substantially reduces multiple testing burden
compared to traditional one-at-a-time SNP analysis. Furthermore, region-based analyses are able
to detect the cumulative small effects of multiple SNPs within the region that may be missed by
single SNP approaches that rely on the presence of high impact SNP effects. Longitudinal approaches
to genetic association and gene-by-environment interaction studies that allow for varying outcome
and exposure trajectories also have improved power compared to cross-sectional analysis [28–30].
This work represents an important first step toward comprehensively integrating social and biological
factors to better understand the determinants of BP in multiple race/ethnic groups.

2. Materials and Methods

2.1. Study Cohorts

A total of 21,258 European ancestry (EA) and 8964 African ancestry (AA) participants from
four population-based longitudinal cohorts of U.S. adults with up to 4 exams (time points) each
were included in this analysis: the Atherosclerosis Risk in Communities Study (ARIC, 4 exams) [31],
the Health and Retirement Study (HRS, 2 exams) [32], the Jackson Heart Study (JHS, 3 exams) [33,34]
and the Multi-Ethnic Study of Atherosclerosis (MESA, 4 exams) [35]. A detailed description of each
cohort and its characteristics are provided in the Supplementary Text and Supplementary Table S1.
Participants were included in the study sample if they had genotype data and all of the following data
for at least one time point: SBP and/or DBP, at least one socioeconomic/psychosocial factor, and all
adjustment variables.

This study was conducted in accordance with the Declaration of Helsinki. All participants
provided informed consent prior to study participation, and data collection protocols for each cohort
were reviewed by Institutional Review Boards (IRBs) at study field centers. Analysis for this project was
approved by the University of Michigan IRB for Health Science and Behavioral Science (HUM00079124,
HUM00012107, HUM00119419, HUM00012347).

2.2. Blood Pressure

For ARIC (exams 1–3), HRS and MESA, BP was measured three times and the average of the
last two measures was used. For ARIC (exam 4) and JHS, two measures were taken and averaged.
For participants taking antihypertensive medications, 15 and 10 mmHg were added to SBP and DBP,
respectively [36]. At each exam, for each ancestry group within each cohort separately, values for SBP
and DBP greater than 4 standard deviations from the mean were excluded.
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2.3. Socioeconomic and Psychosocial Factors

Two socioeconomic and three psychosocial factors were examined: adult SES, childhood SES,
outward/trait anger, depressive symptoms, and chronic burden. Lower adult SES was characterized
by the respondents’ educational attainment (1 = high school degree or less). Lower childhood SES was
assessed by the maximum educational attainment of either parent (1 = less than high school degree).
Psychosocial factors are described below. Socioeconomic and psychosocial factors were not measured
at all exams in all cohorts, so we imputed missing data to facilitate longitudinal analysis. For each
cohort, the first report of adult and parental education was imputed to all time points. For psychosocial
factors, missing data were imputed by carrying the most recent valid measure forward to future exams.
For example, anger score was measured at exams 1 and 3 in MESA, so we imputed data at exams 2
and 4 using the values from exams 1 and 3, respectively. Supplementary Table S2 shows the exams for
which each factor was measured or imputed.

2.3.1. Outward/Trait Anger

Outward/trait anger scores were created from the “anger-out” and “trait anger temperament”
items in the Spielberger State-Trait Anger Expression Inventory [37]. Specific questions differed
somewhat across studies but included items such as, “I am quick tempered,” “I fly off the handle,”
“When I get mad I say nasty things,” and “When I get mad I argue with others.” Each item was
measured on a scale from 1 = “almost never” to 4 = “almost always,” and anger scores were calculated
as the average item response. Items were reverse coded as necessary. Scores for respondents with
missing values on more than half of the anger items were set to missing.

2.3.2. Depressive Symptoms

Depressive symptom scores were created from the 20-item Center for Epidemiologic
Studies—Depression (CES-D) scale [38] for MESA and JHS, the 8-item CES-D scale for HRS and
the 21-item Maastricht Vital Exhaustion Questionnaire for ARIC [39]. Although the Maastricht
questionnaire is not strictly a measure of depression, it has been shown to be highly correlated with
measures of depression [40,41] and has been used as a measure of depression in the ARIC study [42]
and for replication of GWAS results for depressive symptoms [43]. Questions from the 20-item CES-D
were on a scale from 1 = “rarely or none of the time” to 4 = “most or all of the time,” corresponding to
how much the respondent had experienced each symptom in the last week. Those from the 8-item
CES-D were yes/no indicators of feeling the symptom much of the time in the last week (CES-D)
and the Maastricht also had yes/no indicators. Items were reverse coded as necessary, such that
a higher score on each scale indicates greater symptoms of depression. To create homogeneity between
scores, items from the 20-item CES-D were dichotomized, collapsing values of 3 (“much of the time”)
and 4 (“most or all of the time”) to correspond with the yes indicator on the other scales. Depressive
symptom scores were then calculated as the average of item responses. Scores for respondents with
missing values on more than half of the depression symptoms items were set to missing.

2.3.3. Chronic Burden

Chronic burden scores were derived from five questions about ongoing problems for at least six
(MESA and JHS) or twelve (HRS) months and included items on health, physical ailments of a spouse
or child, difficulties at work, financial strain, and problems with a close relationship. Chronic burden
was not measured in ARIC. Chronic burden scores were the sum of the number of ongoing problems.
If more than 3 of the 5 items had missing values, scores were set to missing.

2.4. Genomic Regions Associated with Blood Pressure

For each study, genotyping was performed using the Affymetrix Genome-Wide Human SNP
Array 6.0 (Affymetrix®, Santa Clara, CA, USA) or Illumina Infinium HumanOmni2.5 Beadchip
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(Illumina®, San Diego, CA, USA). Genotypes were then imputed using the 1000 Genomes Project
cosmopolitan reference panel, Phase 1, version 3 (released March, 2012) [44]. Within each cohort and
ancestry group separately, SNPs with minor allele frequency less than 1% or poor imputation quality
(INFO or R2 < 0.8), as well as all insertion/deletions (indels), were excluded from analysis. Genetic
principal components were calculated separately by ancestry group within each cohort.

A total of 33 genomic regions containing SNPs previously identified to be significant, replicated
predictors of SBP and DBP in a GWAS of European ancestry [5] and a GWAS of African ancestry
followed by trans-ethnic meta-analysis [6] were selected for analysis (Supplementary Table S3). If the
index SNP from the GWAS was within the boundaries of a gene plus a 5kb buffer on either side,
all SNPs within the gene region were selected (22 genomic regions). If the index SNP was not in
a gene, all SNPs within 50 kb of the index SNP were selected (11 genomic regions). The number of
SNPs selected for the genomic regions ranged from 29 to 4444 (Supplementary Table S4) and varied
according to the size of the region as well as study-specific parameters such as imputation quality
and allele frequencies. All position information was based on genome assembly GRCh37 and gene
positions were defined by GENCODE annotation version 19 [45]. If there were multiple transcripts
for a gene, the most inclusive start and stop positions were used to define the gene region. The BAG6
genomic region was excluded from analysis in JHS, as only a single SNP in this region met criteria
for analysis.

2.5. Adjustment Covariates

Sex and age, age2, and BMI at the time of BP measurement were included as adjustment variables
in all models, since these were the adjustment variables in the GWAS of EA [5] and AA (except
for age2) [6]. For each ancestry within each cohort separately, outliers greater than 4 standard
deviations from the mean BMI were removed. The top 4 genetic principal components, calculated
separately for each ancestry within each cohort, were included in genetic models to account for
population stratification.

2.6. Statistical Modeling

To examine the association between each of the socioeconomic or psychosocial factors, one at
a time, on SBP or DBP, we used generalized estimating equations (GEE) [46] with an exchangeable
correlation structure to account for within-person correlations over time. Analyses were conducted
separately for each ancestry within each cohort, using SAS v9.4 (SAS Institute, Cary, NC, USA).
Associations between each of the socioeconomic/psychosocial factors and SBP or DBP were
meta-analyzed using inverse variance weighting with fixed effects. Meta-analysis was conducted
separately by ancestry (EA, AA) and then combining results from all ancestries (EA + AA).

To investigate the genomic region-by-socioeconomic/psychosocial factor interactions on BP,
we used LGEWIS [28] in R v3.4.1 [47]. LGEWIS is a GEE-based dispersion test specifically designed
for longitudinal studies to test the joint effects of SNPs/variants, or SNP/variant-by-environment
interactions, within a genomic region on phenotypic variation.

In the equation below, Yij represents the outcome variable (SBP or DBP) for ith subject at time j.
Eij represents the environmental exposure (socioeconomic or psychosocial factor), and Xij represents
the vector of adjustment covariates. Gi = (Gi1, Gi2, . . . , Gip) represents the genotypes for the p SNPs
within the genomic region for individual i and remains constant across all time points, j. We were
primarily interested in the statistical interaction between Eij and Gi on the outcome Yij, adjusting for
Xij and the main effect of Eij and Gi. The LGEWIS statistical model is:

Yij = α′Xij + f (Eij) + β′Gi + γ′(Eij*Gi) + εij,

where α′ = [α1, ..., αm]′ is the vector of regression coefficients for the m covariates and f (Eij) is
a spline smoothing function to capture the main environmental effect, which allows for a non-linear
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relationship between the environment and the outcome and is thus robust to the misspecification
of the main effect. β′ = [β1, . . . , βp]′ is the vector of regression coefficients for the p observed
SNPs, and γ′ = [γ1, . . . , γp]′ is the vector of regression coefficients of the interaction terms for the
environment and the p observed SNPs. Weighted principal component analysis is used to fit the main
genetic effects to avoid type I error due to overfitting. The null hypothesis of no SNP-by-environment
interactions, H0: γ1 = γ2= . . . = γp = 0, is evaluated using an aggregated score statistic to test the
overall dispersion of γ from 0. Similarly, a model without the environmental exposure or interaction
terms is used to evaluate the marginal genetic effects with the null hypothesis H0: β = 0.

Associations between each of the genomic regions and SBP or DBP were meta-analyzed by
combining p-values using Fisher’s method [48]. In parallel with the socioeconomic/psychosocial
factor analysis, meta-analysis of the genomic region associations was conducted separately by ancestry
(EA, AA) and then combining results from all ancestries (EA + AA). Previous research in gene-gene
and gene-environment interaction studies shows that filtering genetic factors with at least marginal
associations with the outcome of interest prior to testing for interactions can reduce multiple testing
burden and increase power [49,50]. Thus, we limited assessment of gene-by-environment interactions
to genomic regions that had a p-value < 0.2 in their marginal association with BP.

For SBP and DBP, interactions between genomic regions with marginal association p < 0.2
and socioeconomic/psychosocial factors were evaluated using LGEWIS. Interaction effects were
meta-analyzed by combining p-values using Fisher’s method [48]. For each BP measure in each
ancestry group (EA, AA and EA + AA), we applied a False Discovery Rate (FDR) q-value threshold of
0.05 to declare significance [51].

Significant genomic region-by-socioeconomic/psychosocial factor interactions were further
evaluated to identify the SNPs that were most strongly contributing to the significant interaction.
We evaluated the interaction between each SNP in the region and the socioeconomic/psychosocial
factor of interest using GEE with an exchangeable correlation structure. Interaction effects were
meta-analyzed using inverse variance weighting with fixed effects with the METAL package in R [52].

3. Results

3.1. Descriptive Statistics

Descriptive statistics at the time of first BP measurement (baseline exam) are provided for each
cohort, separately by ancestry, in Table 1. Mean age ranged from 50.4 to 67.3 years and there were
slightly fewer males than females (ranging from 37.4% to 47.9% male). Mean SBPs and DBPs ranged
from 122.0 to 144.1 mmHg and from 73.5 to 88.8 mmHg, respectively. Cohorts with older mean
ages, such as HRS, tended to have higher BPs, and BPs were also generally higher for AA than EA
participants within each cohort. Lower adult and childhood SES was more prevalent in HRS and ARIC,
and lower SES was also generally more prevalent in AA than EA participants within each cohort.
Mean outward/trait anger scores did not differ substantially across cohorts or ancestries. Depressive
symptom scores were highest in ARIC AA and lowest in MESA EA and AA. Chronic burden scores
were highest in HRS and lowest in JHS.

Table 1. Baseline a descriptive statistics for four cohort studies.

ARIC HRS JHS MESA

Total N b Mean (SD)
or N (%) Total N b Mean (SD)

or N (%) Total N b Mean (SD)
or N (%) Total N b Mean (SD)

or N (%)

European Ancestry

Gender (Male) 9274 4379 (47) 9441 4037 (43) – – 2518 1205 (48)
Age, years 9274 54.3 (5.7) 9441 67.3 (10.9) – – 2518 62.7 (10.2)

BMI, kg/m2 9274 26.9 (4.7) 9441 28.9 (5.6) – – 2518 27.7 (5.0)
SBP, mmHg c 9265 122.0 (19.3) 9440 136.8 (22.5) – – 2516 128.4 (23.0)
DBP, mmHg c 9266 74.1 (11.4) 9434 83.7 (12.3) – – 2518 73.5 (11.3)

Lower Adult SES d 9262 4826 (52) 9420 4704 (50) – – 2510 549 (22)
Lower Childhood SES e 7338 3877 (53%) 8462 3204 (38%) – – 2359 677 (29)
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Table 1. Cont.

ARIC HRS JHS MESA

Total N b Mean (SD)
or N (%) Total N b Mean (SD)

or N (%) Total N b Mean (SD)
or N (%) Total N b Mean (SD)

or N (%)

European Ancestry

Outward/Trait Anger Score 8920 1.6 (0.4) 8574 1.5 (0.5) – – 2509 1.5 (0.3)
Depressive Symptom Score 8924 0.2 (0.2) 9441 0.2 (0.2) – – 2507 0.1 (0.1)

Chronic Burden Score – – 5167 1.7 (1.3) – – 2510 1.1 (1.1)

African Ancestry

Gender (Male) 3155 1182 (38) 2060 770 (37) 2117 836 (40) 1608 743 (46)
Age, years 3155 53.4 (5.8) 2060 63.2 (10.5) 2117 50.4 (12.0) 1608 62.3 (10.1)

BMI, kg/m2 3155 29.5 (5.8) 2060 30.6 (6.5) 2117 32.1 (7.3) 1608 30.1 (5.8)
SBP, mmHg c 3146 134.6 (22.4) 2060 144.1 (24.3) 2115 131.7 (19.5) 1606 139.1 (24.5)
DBP, mmHg c 3153 84.1 (13.4) 2059 88.8 (13.7) 2117 80.8 (10.3) 1607 79.5 (11.7)

Lower Adult SES d 3148 1931 (61) 2055 1294 (63) 2113 637 (30) 1595 497 (31)
Lower Childhood SES e 2014 1541 (77%) 1759 1025 (58%) 1824 855 (47) 1412 623 (44)

Outward/Trait Anger Score 2885 1.6 (0.4) 1502 1.5 (0.5) 1380 1.6 (0.4) 1593 1.4 (0.3)
Depressive Symptom Score 2887 0.3 (0.2) 2058 0.2 (0.3) 1429 0.2 (0.2) 1590 0.1 (0.1)

Chronic Burden Score – – 982 2.2 (1.4) 1506 0.9 (1.2) 1593 1.2 (1.2)

ARIC: Atherosclerosis Risk in Communities; HRS: Health and Retirement Study; JHS: Jackson Heart Study; MESA:
Multi-Ethnic Study of Atherosclerosis; BMI: body mass index; SBP: systolic blood pressure; DBP: diastolic blood
pressure; SES: socioeconomic status. a Baseline was defined as the first exam at which each measure was taken.
For ARIC, all measures were taken at Exam 1 except for anger and depressive symptoms scores, which were
first measured at Exam 2. For HRS, blood pressure (BP) was measured at alternating exam dates (during the
face-to-face exam only), so values for all measures reflect the corresponding year at which BP was first measured
(2006, 2008, or 2010). Chronic burden was not measured in HRS in 2008. For JHS, all measures were taken at
Exam 1 except chronic burden, which was first measured at Exam 3. For MESA, all measures were taken at Exam 1.
b Total N reflects the number of non-missing values with valid measures on SBP or DBP, gender, age and BMI.
c For participants taking antihypertensive medications, 15 and 10 mmHg were added to SBP and DBP, respectively.
d High school degree or less. e Parental education less than high school degree.

3.2. Association between Socioeconomic/Psychosocial Factors and BP

Results from meta-analysis of the associations between each of the socioeconomic/psychosocial
factors and BP, using data from all time points, are presented in Table 2. Lower adult SES (high school
degree or less) was associated with higher SBP (2.83 and 2.77 mmHg in EA and AA, respectively) and
higher DBP (0.52 and 1.10 mmHg, respectively) (all p < 4× 10−4). Lower childhood SES was associated
with higher SBP (1.83 mmHg, p < 5 × 10−6) in EA but was not associated with higher BP in AA or
DBP in EA. Outward/trait anger score was associated with higher DBP in AA (p = 0.019). Chronic
burden scores were associated with higher SBP and DBP in AA (p = 0.002 and 0.02, respectively) but
were not associated with either SBP or DBP in EA. Depressive symptom score was also associated with
higher DBP in AA (p = 0.002).

Table 2. Meta-analysis of the association between each socioeconomic or psychosocial factor and
blood pressure.

SBP DBP

Beta p-Value Beta p-Value

European Ancestry

Lower Adult SES a 2.83 <5 × 10−6 0.52 3.6 × 10−4

Lower Childhood SES b 1.83 <5 × 10−6 0.12 0.431
Outward/Trait Anger Score 0.42 0.097 0.13 0.375
Depressive Symptom Score 0.32 0.566 −0.24 0.459

Chronic Burden Score −0.02 0.871 −0.03 0.629

African Ancestry

Lower Adult SES a 2.77 <5 × 10−6 1.10 <5 × 10−6

Lower Childhood SES b 0.52 0.268 −0.04 0.887
Outward/Trait Anger Score 0.95 0.027 0.57 0.019
Depressive Symptom Score 1.36 0.186 1.80 0.002

Chronic Burden Score 0.64 0.002 0.25 0.020
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Table 2. Cont.

SBP DBP

Beta p-Value Beta p-Value

European Ancestry + African Ancestry

Lower Adult SES a 2.81 <5 × 10−6 0.68 <5 × 10−6

Lower Childhood SES b 1.49 <5 × 10−6 0.08 0.545
Outward/Trait Anger Score 0.56 0.011 0.24 0.050
Depressive Symptom Score 0.56 0.255 0.25 0.377

Chronic Burden Score 0.16 0.142 0.05 0.408
a High school degree or less. b Parental education less than high school degree. Generalized estimating equations
were used to model the effect of each socioeconomic/psychosocial factor separately on SBP or DBP, adjusting
for sex and age, age2, and BMI at the time of BP measurement. Betas and p-values represent beta coefficients
(effect estimates) for the socioeconomic/psychosocial factors from the inverse variance-weighted fixed effects
meta-analysis across cohorts and their corresponding p-values.

3.3. Association between Genomic Regions and BP

The association between each of the 33 genomic regions and BP was also evaluated in each
ancestry group (Table 3). A total of 21, 11 and 21 genomic regions had p < 0.2 with SBP, and a total
of 21, 10 and 23 genomic regions had p < 0.2 with DBP in EA, AA and the combined sample
(EA + AA), respectively. These genomic regions with p < 0.2 were retained for subsequent genomic
region-by-socioeconomic/psychosocial factor interactions. Associations tended to be less significant
in AA than EA, with only 5 genomic regions for SBP and 3 genomic regions for DBP reaching
a nominal significance threshold (p < 0.05) in the AA meta-analysis, compared to 15 and 16 regions,
respectively, for EA. After correction for multiple testing, 12 and 10 regions were significantly associated
(FDR q < 0.05) with SBP and DBP in EA, respectively, and none were significantly associated with SBP
or DBP in AA.

Table 3. p-values from meta-analysis of the association between each genomic region and blood pressure.

SBP DBP

Genomic Region EA AA EA + AA EA AA EA + AA
p-Value p-Value p-Value p-Value p-Value p-Value

ARHGAP42 0.1157 0.9122 0.4840 0.7648 0.6353 0.8013
ATP2B1 <5 × 10−6 0.9550 <5 × 10−6 * 0.0001 * 0.6745 0.0015 *
BAG6 0.5830 0.6999 0.7427 0.6535 0.5613 0.6999

C10orf107 0.2420 0.7852 0.5516 0.0094 * 0.0462 0.0032 *
CACNB2 0.0032 * 0.6633 0.0297 0.1055 0.4553 0.1948

CSK 0.0002 * 0.1863 0.0006 * 0.0015 * 0.5212 0.0115 *
FES 0.0057 * 0.9461 0.1008 0.0049 * 0.5335 0.0289

GOSR2 0.0005 * 0.2659 0.0019 * 0.0413 0.1341 0.0298
GUCY1A3 0.2639 0.0055 0.0093 * 0.6453 0.0645 0.1662

HFE 0.0549 0.0242 0.0077 * 0.0355 0.1282 0.0254
MECOM 0.0043 * 0.3570 0.0155 0.0001 * 0.1986 0.0003 *
MTHFR 0.0236 0.8904 0.1973 0.0003 * 0.9941 0.0191
NT5C2 0.0111 * 0.0478 0.0038* 0.0025* 0.6324 0.0228
PLCE1 0.6174 0.0817 0.1873 0.3960 0.3966 0.4036

PLEKHA7 0.1594 0.1885 0.1151 0.2518 0.2767 0.2230
PLEKHG1 0.0256 0.6792 0.1270 0.0044 * 0.3302 0.0142
rs10850411 0.3666 0.2214 0.2460 0.0688 0.5504 0.1816
rs1173771 0.2511 0.5098 0.3729 0.7050 0.6744 0.7945

rs11953630 0.3041 0.4429 0.3722 0.0352 0.4752 0.0984
rs13082711 0.0082 * 0.7951 0.0798 0.0654 0.2571 0.0794
rs13209747 0.5173 0.1037 0.1869 0.0171 0.5513 0.0725
rs1327235 0.0445 0.0356 0.0092 0.0037 * 0.0613 0.0019 *
rs1458038 0.0083 * 0.3549 0.0249 0.0235 0.4374 0.0677

rs17428471 0.0007 * 0.0022 1.7 × 10−5 * 0.0435 0.0690 0.0166
rs2932538 0.0704 0.8772 0.3506 0.4944 0.9010 0.8393
rs4373814 0.0160 * 0.4816 0.0582 0.2120 0.5541 0.3639
rs7129220 0.4061 0.8965 0.7845 0.4627 0.6577 0.6413

SH2B3 0.0581 0.1463 0.0423 0.0048 * 0.2540 0.0111 *
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Table 3. Cont.

SBP DBP

Genomic Region EA AA EA + AA EA AA EA + AA
p-Value p-Value p-Value p-Value p-Value p-Value

SLC39A8 0.2630 0.4592 0.3505 0.4093 0.3212 0.3527
SOX6 0.0024 * 0.7271 0.0289 0.0574 0.0306 0.0099 *
ULK4 0.3536 0.6047 0.5235 0.2123 0.0626 0.0571

ZNF652 0.7850 0.0840 0.2508 0.2715 0.0047 0.0085 *
ZNF831 0.1331 0.8755 0.4803 0.1674 0.4666 0.2681

Number of genes
with p < 0.2 21 11 21 21 10 23

Number of genes
with FDR q < 0.05 12 0 7 10 0 8

EA = European ancestry; AA = African ancestry. Longitudinal Gene-Environment-Wide Interaction Studies
(LGEWIS) was used to model the effect of each gene region separately on SBP or DBP, adjusting for sex, top 4 genetic
principal components and age, age2, and BMI at the time of BP measurement. p-values are Fisher’s combined
p-value across cohorts for the meta-analysis of the association between genomic region and BP. p-values < 0.2 are
in bold, indicating associations that were further explored for interactions between the genomic region and each
socioeconomic/psychosocial factor. * Indicates that genomic region is significantly associated with FDR q < 0.05.

3.4. Interaction between Socioeconomic/Psychosocial Factors and Genomic Regions on BP

Using the LGEWIS method, we next evaluated evidence for genomic region-by-socioeconomic/
psychosocial factor interactions using genomic regions with p < 0.2 in the meta-analyses. After
correction for multiple testing, two interactions were significantly associated with DBP (FDR q < 0.05,
Table 4). In EA, an interaction was observed between outward/trait anger score and C10orf107
(meta-analysis p = 0.0019, FDR q = 0.049) on DBP. The number of SNPs in the genomic region ranged
from 365–400 across the three cohorts examined. p-values for each cohort show that the interaction
was most significant in MESA (p = 0.0004) and HRS (p = 0.085). In AA, a second interaction was
observed between depressive symptom score and HFE (meta-analysis p = 0.0048, FDR q = 0.048) on
DBP. The number of SNPs in the genomic region ranged from 48 to 84 across the four cohorts examined.
The interaction was most significant in ARIC (p = 0.0058) and MESA (p = 0.031). No interactions
between socioeconomic/psychosocial factors and genomic regions were significantly associated with
SBP in any ancestry group.

Table 4. p-values for significant interactions between psychosocial factors and genomic regions on
diastolic blood pressure.

Ancestry Psychosocial Factor Genomic
Region

Number
of SNPs a

ARIC
p-Value

HRS
p-Value

JHS
p-Value

MESA
p-Value

Meta-Analysis
p-Value

(FDR q) b

EA Outward/Trait Anger Score C10orf107 365–400 0.801 0.085 N/A 0.0004 0.0019 (0.049)
AA Depressive Symptom Score HFE 46–84 0.006 0.162 0.550 0.031 0.0048 (0.048)

EA = European ancestry; AA = African ancestry. LGEWIS was used to model interactions between
socioeconomic/psychosocial factors and genomic regions on SBP or DBP, adjusting for sex, top 4 genetic principal
components and age, age2, and body mass index (BMI) at the time of BP measurement. a Range of the number of
SNPs included in the genomic region across cohorts. b Fisher’s combined p-value across cohorts for the meta-analysis
of the association between the interaction and DBP and corresponding FDR q-value.

To identify and illustrate the SNP-by-socioeconomic/psychosocial factor interactions that
may be driving the two significant genomic region-level associations that we observed,
we performed meta-analysis of the interactions for each SNP within the genomic region and the
socioeconomic/psychosocial factor of interest on DBP. In the EA meta-analysis of SNP-by-anger
interactions for the C10orf107 region, no single SNPs were measured in at least two cohorts and had at
least a nominally significant p-value for the interaction with anger (p < 0.05). In the AA meta-analysis
of SNP-by-anger interactions for the HFE region, the most significant SNP was rs147426902 (p = 0.0003),
which was only present in two cohorts (HRS and JHS). Average predicted DBP for those with at least
one copy of the minor allele (T) and high depressive symptoms (90th percentile of depressive symptom
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score within each cohort) was 9.20 mmHg higher than those with no copies of the minor allele and
low depressive symptoms (10th percentile of depressive symptom score within each cohort) (Figure 1).
Although SNPs were coded additively in the association analysis, we grouped those with one or two
copies of the minor allele together for the purposes of generating the interaction plot (Figure 1) to
ensure an adequate sample size in each cell.Int. J. Environ. Res. Public Health 2017, 14, 1596  10 of 18 
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average predicted DBP estimates. Due to larger sample size in the CC group, confidence intervals for 
this group are too small to be shown. 
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Figure 1. Interaction between rs147426902 and depressive symptom score on diastolic blood pressure
(DBP) in African ancestry cohorts. Average predicted DBP across HRS and JHS African ancestry
cohorts for those with the CC genotype at rs147426902 vs. The CT or TT genotype are presented, with
depressive symptom scores at the cohort-specific 10th percentile (low depressive symptoms) or the 90th
percentile (high depressive symptoms). Black bars indicate 95% confidence intervals for the average
predicted DBP estimates. Due to larger sample size in the CC group, confidence intervals for this group
are too small to be shown.

4. Discussion

The influence of socioeconomic and psychosocial factors on BP and hypertension is widely
recognized [4,53]. Advances in genomic technologies and multi-cohort collaborations are now
providing evidence for the additional influence of hundreds of genes [5–10]. However, most of
the heritability of BP remains unexplained, likely in part due to the presence of gene-by-environment
interactions [27,54]. A deeper understanding of the context-dependent genetic effects on BP may yield
insight into the biological mechanisms of hypertension etiology and facilitate personalized medicine
approaches to BP control that may include lifestyle modifications, more aggressive prevention or
treatment approaches, and/or pharmacogenomics. Further, a more complete understanding of the
similarities and differences in context-dependent effects across multiple race/ethnic groups may help
in the development of effective strategies for reducing health disparities in hypertension.

To our knowledge, this study is one of the first to meta-analyze the effects of socioeconomic
and psychosocial factors on BP in multiple cohorts of European and African ancestry. Consistent
with prior literature [3,19,55], we found that lower adult SES, as measured by having less than a high
school degree, was associated with increased BP. Lower childhood SES was most strongly associated
with SBP in EA but was not associated with BP in AA. Of the three psychosocial stressors evaluated
(anger, depressive symptoms, and chronic burden), all were associated with both SBP and DBP in
AA participants, except for depressive symptoms with SBP. However, they were not significantly
associated with BP in EA. All observed associations were in the expected direction (lower SES and
childhood SES and greater anger, depressive symptoms, and chronic burden were associated with
higher BPs).
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A previous study in EA and AA ARIC participants found that high levels of trait anger were
associated with progression from prehypertension to hypertension [20]. A recent study in AA from
JHS [25] also found outwardly-expressed anger is associated with BP stage progression. Hostility,
a trait closely related to anger, was associated with hypertension risk in the Coronary Artery Risk
in Young Adults study (CARDIA) as well [56]. In this study, outward/trait anger associated with
continuous measures of SBP in AA, with each increase of 1 unit on the outward/trait anger score
(range 0–4) conferring an increase of 0.85 mmHg. For AA, a 1 unit increase in anger was also associated
with a 0.68 mmHg increase in DBP. The strong relationship between anger and BP in this study sample
is perhaps expected, since ARIC and JHS comprise two of the four cohorts meta-analyzed here. In EA,
although the relationship between anger and BP was in the expected direction, the effect was not
significant. Biological mechanisms for this relationship may include sympathetic nervous system
hyperactivity and arousal due to anger and psychological stress [20].

Although some studies have demonstrated increased risk of hypertension [24,57,58],
BP progression (an increase in BP stage) [25], or increases in BP [22,23] with depression/depressive
symptoms, other studies show inverse [59] or no relationships [4]. Differences in findings may be
due to study design (duration of follow-up, measurement of depression, and age or race/ethnic
composition of the study sample). In this study, repeated measures analysis showed no association
between depressive symptoms and either SBP or DBP in EA and only a weak relationship with SBP in
AA. However, the relationship between depressive symptom score and DBP was significant in AA
(p = 0.002), with a 10% increase in depressive symptom score associated with a 0.18 mmHg increase in
DBP. Potential mechanisms for the relationship between depression and hypertension include both
behavioral (e.g., smoking, physical activity, adherence to antihypertensive medication) and biological
(e.g., inflammation, altered night-time BP dipping as a result of insomnia) mechanisms [60].

We used a novel genomic region-based, repeated measures approach to assess the relationship
between 33 genomic regions known to be associated with SBP, DBP, or both. These regions were
identified in a GWAS meta-analysis of EA (29 regions) [5] and a GWAS meta-analysis of AA followed
by trans-ethnic meta-analysis (an additional 4 regions) [6]. Of these 33 regions, 25 (75%) had a marginal
association p-value of < 0.2 for SBP and/or DBP in our meta-analysis of EAs, with the majority of these
(17 regions) achieving p < 0.2 in both. In AA, a smaller number of regions (16, 48%) had a marginal
association p-value < 0.2, including only 5 regions with p < 0.2 for both SBP and DBP. These regions with
marginal p < 0.2 were carried forward for genomic region-by-psychosocial factor interaction analysis.
However, only 12 and 10 regions in EA were significant with SBP and DBP, respectively, at a False
Discovery Rate of 5%. No regions were significant after multiple testing correction in AA, likely
because most of the regions were identified in meta-analysis of EA only, as well as the significantly
smaller sample size of AA compared to EA participants in this study.

Gene-by-environment interaction studies on BP and related traits are now being reported and
catalogued [27,61], including large-scale genome-wide analyses of genetic interactions with lifestyle
factors (alcohol consumption [62], smoking [63–65], sodium intake [66], age [67], and BMI [68]).
To our knowledge, only one genome-wide study has examined interactions between socioeconomic
or psychosocial factors and BP. In this study of 3836 participants from the Framingham Heart Study
(FHS), two genome-wide significant and three suggestive gene-by-education interactions on SBP
(1 interaction), DBP (3 interactions) and pulse pressure (1 interaction) were identified [69]. Although
the 5 genes identified were all biologically related to BP, none were identified in GWAS studies used to
select genomic regions for evaluation in this study, so they were not included in our analysis. We also
identified one study that examined interactions between polymorphisms in biological candidate genes
and socioeconomic/psychosocial factors on BP. In this study of 208 AAs, neighborhood SES was found
to interact with glucocorticoid receptor polymorphisms to influence cortisol levels but not BP [70].
Finally, in the paper describing the LGEWIS method, He et al. investigated interactions between genes
known to influence BP and perceived or geographic information system (GIS)-based measures of
healthy food and physical activity environment in MESA participants [28]. Interactions were observed
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for SBP between the genomic region indexed by rs10850411 and perceived healthy food availability
in EA, and between the CACNB2 genomic region and density of recreational facilities in Hispanic
Americans. Although we evaluated both of these genomic regions in our study, we did not observe
interactions between these regions and socioeconomic/psychosocial factors on BP.

In this multi-cohort study examining socioeconomic/psychosocial factor interactions with
genomic regions identified through large, replicated BP GWAS, we observed two significant
interactions after correction for multiple testing. Outward/trait anger was found to have an interaction
with the C10orf107 gene region on DBP in EA. C10orf107, or CABCOCO1, is a relatively uncharacterized
gene but the mouse homolog encodes a protein with a predicted coiled-coil domain and a CLAMP
motif with a leucine zipper domain that has calcium-binding activity [71]. Results of tissue-specific
gene expression patterns from the GTEx Analysis Release V6p (dbGaP Accession phs000424.v6.p1) [72]
showed that this protein is most highly expressed in the testis, spinal cord and brain tissues, pituitary
gland, prostate and lung. Further research is necessary to characterize the biological mechanisms that
underlie the interaction between C10orf107 and anger on DBP. To ensure that the interaction was not
detected due to gene-environment correlation, we used LGEWIS to assess the association between the
C10orf107 genomic region and anger (p > 0.1 in all cohorts, indicating no gene-environment correlation).
Single SNP analysis in this region revealed no SNPs that appeared to be driving this association in
multiple cohorts. This finding in EA illustrates the ability of genomic region-based analysis techniques
to detect interaction signals that reflect a shift in the entire distribution of interaction effects across the
genomic region, due to the presence of multiple SNPs that have small influences, even when no SNPs
with high-impact interaction effects are present.

We also identified an interaction between the HFE gene region and depression symptom score on
DBP in AA. HFE encodes a membrane protein that regulates iron binding, which influences absorption
of iron in the small intestine and recycling of iron in macrophages [73] and has also been shown to
demonstrate immune-related activities that bridge adaptive and innate immunity [74]. Mutations in
HFE can cause hereditary hemochromatosis (HH) [75], characterized by iron accumulation that can lead
to tissue damage. Hemochromatosis may be associated with BP through increased serum ferritin (iron)
levels that alter heart morphology or cause metabolic abnormalities such as insulin resistance [76,77].
Early signs of hemochromatosis include fatigue, malaise, joint pain and swelling and enlarged liver [78].
In a recent study of 395 subjects with HFE-related HH, 41% of the HH patients meeting the criteria
for fibromyalgia syndrome, characterized by chronic joint pain and fatigue, also met the criteria for
depression. To ensure that the interaction observed in this study was not due to gene-by-environment
correlation, we tested the HFE genomic region for association with depressive symptom score in each
of the AA cohorts using LGEWIS. None of the cohorts demonstrated significant association (all p > 0.1,
data not shown), so we concluded that the interaction was not due to correlation between HFE and
depressive symptoms.

This study is not without limitations. The LGEWIS method only assesses the significance of the
interaction term between the genomic region and the socioeconomic/psychosocial factor. However,
in some circumstances including gene discovery, it may be optimal to test the joint effects of the genomic
region and the interaction simultaneously. This approach has been favored by large consortia now
investigating gene-by-environment interactions on a genome-wide scale [79]. Further work is needed
to expand the repeated-measures genomic region-based methods to incorporate the analysis of joint
effects. Another limitation is that this study included only 33 of the genomic regions that have been
identified as being associated with BP. However, recent GWAS have increased the number of loci to
over 100 [7–10] and exploring interactions with these newly discovered loci is an important direction for
future research. In addition, the 33 genomic regions were selected through GWAS meta-analyses that
contained the cohorts analyzed in this study. The ARIC EA participants were included in the discovery
sample (N = 69,395) of the GWAS meta-analysis in EA only (total N > 200,000 EA) [5], and all four of
the AA cohorts were included in the discovery sample (N = 29,378) of the trans-ethnic meta-analysis
(total N > 120,000) [6]. From a genetic perspective, another limitation is that this study only evaluated
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common SNPs; however, this line of research could be expanded to examine interactions in these
gene regions using measures of rare, potentially functional variants such as exome or whole genome
sequence data.

From a phenotypic perspective, although we were able to successfully harmonize
socioeconomic/psychosocial factors in this study, there is heterogeneity across the cohorts in the
measurement of these factors. This is an ongoing challenge for gene-environment interaction
studies [80], emphasizing the need standardized phenotype measures such as those catalogued in
the Phoenix Toolkit (www.phenxtoolkit.org). In addition, we used educational attainment as our sole
marker of SES, which is only one facet of individual-level SES and may be confounded with other
factors that influence health (such as living in a rural vs. urban area). Educational attainment and the
psychosocial factors evaluated in this study may also be confounded by other unmeasured exposures
such as smoking, alcohol consumption and physical activity; however, these lifestyle factors may also
act as mechanisms by which socioeconomic/psychosocial factors influence BP. Although all cohorts
retained over 70% of participants over the course of the study, attrition was more extreme for AA
(vs. EA), lower SES (vs. higher SES), and older participants. To help alleviate concerns about bias
due to attrition, analyses were controlled for age and sex and were stratified by ethnicity. Sensitivity
analyses indicated that further adjustment for adult SES did not attenuate the significant interaction
findings (data not shown). We chose to account for antihypertensive use by adding a constant value
(+15/10 mmHg) to BP; however, we conducted a sensitivity analysis to evaluate whether an alternative
method (using original BP measures and including antihypertensive use as a covariate in all models)
influenced they key findings. Effect sizes for significant associations between psychosocial factors and
BP, as well p-values for the two significant genomic region-by-psychosocial factor interactions on DBP,
did not change appreciably using this alternative method (data not shown). Finally, we included BMI
as an adjustment variable in all models. This approach, used by the discovery GWASs [5,6], reduces
residual BP variance and boosts power to detect interaction effects; however, it reduces power to detect
interactions mediated at least in part by changes in BMI.

We detected two interactions in this study but their effect on BP is small, and although these
findings were statistically significant, it is still possible that they were due to chance. Therefore,
the clinical relevance of these findings has yet to be determined. Further, although our multiple
testing correction accounted for the number of genes we evaluated for interaction, we did not
account for testing multiple socioeconomic/psychosocial factors within each ancestry group. Since
the socioeconomic/psychosocial factors are correlated, a Bonferroni approach would have been
conservative in this instance. However, if we had followed this more stringent multiple testing
approach, the interactions we detected would have been attenuated. Although we included four
cohorts in this study, we also had limited power to detect effects, which may account for the lack of
significance of the associations between some of the genomic regions and BP, especially in AA. Lack of
power may also have contributed to inconsistent findings across ancestry groups, both for genomic
region associations with BP as well as interactions.

Despite these limitations, this study has several notable strengths including the use of novel
genomic region-based methods that allow for repeated measures analysis. Genomic region-based
methods to assess interaction are advantageous because they reduce the multiple testing burden
compared to testing each SNP individually, they allow for the detection of interactions that are driven
by multiple SNPs within a genomic region rather than those being driven by a single genetic factor,
and they may also be more suited for trans-ethnic studies because they do not rely on SNPs to have
similar linkage disequilibrium patterns across ancestry groups. Meta-analysis across multiple cohorts
increases the credibility and generalizability of findings, yet additional replication will be necessary to
further confirm these interactions.

www.phenxtoolkit.org
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5. Conclusions

In this meta-analysis of gene-by-socioeconomic/psychosocial factor interactions using data
from four large epidemiologic cohorts of European and/or African ancestry participants, we find
evidence for interactions that influence DBP. Although effect sizes for these interactions are modest
and replication in independent cohorts is needed, this study provides a foundation for using genomic
region-based longitudinal analysis to identify subgroups of the population that are at greater risk of
elevated BP due to the combined influence of genetic and socioeconomic/psychosocial risk factors.
For some groups, this approach may be clinically relevant for reducing risk of hypertension in this era
of precision medicine. Integrating genomic and social approaches may also lend insight into effective
strategies for reducing socioeconomic and race/ethnic health disparities in hypertension.
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