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Abstract: This study uses a vector autoregression (VAR) model to analyze changes in pollutants
among different mining industries and related policy in China from 2001 to 2014. The results show
that: (1) because the pertinence of standards for mining waste water and waste gas emissions
are not strong and because the maximum permissible discharge pollutant concentrations in these
standards are too high, ammonia nitrogen and industrial sulfur dioxide discharges increased in
most mining industries; (2) chemical oxygen demand was taken as an indicator of sewage treatment
in environmental protection plans; hence, the chemical oxygen demand discharge decreased in all
mining industries; (3) tax reduction policies, which are only implemented in coal mining and washing
and extraction of petroleum and natural gas, decreased the industrial solid waste discharge in these
two mining industries.

Keywords: mining industry; environmental pollution; policy; VAR; China

1. Introduction

Mineral resources are the material basis of economic development. In 2014, China’s oil
production was 211.41 million tons, gas production was 124.81 billion cubic meters, and production of
non-petroleum oils was 8.437 billion tons [1]. Mining promotes China’s economic development. In the
past 10 years, the value of the mining industry has increased each year.

Except for in 2014, the mining industry added value accounted for more than 4% of the GDP [2–29].
In 2014, it was 58.788 trillion Yuan, nearly four times that in 2005 (Figure 1). Among the mining
industries, coal mining and washing accounted for 44.27%, petroleum and natural gas extraction
accounted for 19.84%, non-ferrous metal ore mining and processing accounted for 10.80%, ferrous
metal ore mining and processing accounted for 15.87%, and non-metal ore mining and processing
accounted for 9.22%. Furthermore, mining cities in which the mining industry is the dominant or pillar
industry accounted for 34% of cities in China [30].

Mining activities cause great environmental disturbance. A variety of pollutants are generated
in the process of ore mining. These pollutants diffuse into the surrounding environment and result
in water, air and soil pollution problems. In 2014, 2531.67 million tons of industrial wastewater
was discharged by the mining industry, nearly 2.2 times the 2005 amount; 903.6 billion cubic
meters of industrial waste gas, nearly 1.3 times the 2005 amount; and 1449.32 million tons of
industrial solid waste, nearly 3 times the 2005 amount (Figure 2). The chemical oxygen demand
(COD) and ammonia nitrogen (AN) discharged in industrial wastewater were 1857.12 million and
74.31 million tons, respectively. The industrial sulfur dioxide (SO2) discharged in industrial waste
gas was 2192.59 million tons [31–44]. To control pollution from mining processes, 86,187.14 million
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Yuan were input for remediation of mine environments in 2014. Mining not only promotes economic
development in China but also causes serious environmental pollution problems. The type and the
degree of pollution vary depending on different mineral resources; hence, analysis of the nexus between
industry development and environmental pollution for different mineral resources is important to
compare their related environmental pollution problems and analyze the policies that cause the
similarities and differences among them.
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Figure 2. Three wastes emissions over 2001–2014.

However, existing studies on the nexus between the mining industry and environmental pollution
primarily focus on mine product consumption and energy minerals, including coal, oil and natural
gas, which draw more attention due to the highlight on the greenhouse effect. Among them, the most
studies are on coal consumption because it contributes more carbon per ton of oil equivalent than
other resources such as oil and natural gas. These studies include Bloch et al. for China [45], Saboori
and Sulaimanfor Malaysia [46], Tiwari et al. and Ahmad et al. for India [47,48] and Govindaraju
and Tangfor India and China [49]. These studies all conclude that CO2 emission is related to coal
consumption. Compared with studies on coal consumption, there are fewer studies on oil and natural
gas. Alkhathlan and Javid examined the relationship between oil and natural gas consumption and
CO2 emission in Saudi Arabia from 1980 to 2011, finding that they both lead to an increase in CO2

emissions, and the CO2 emissions can be reduced if the energy consumption structure switches from
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oil to natural gas [50]. Saboori and Sulaiman studied the relationship between natural gas and CO2

emission. The results show that they have a positive relationship.
Although there are numerous studies on the environmental pollution resulting from mine product

end consumption, studies on the environmental pollution caused by mine product production are
few and focus on single minerals. Hence, it is impossible to contrast the differences in environmental
pollution problems among different mineral resources or to discover the policies that cause them.
For instance, Yu predicted China’s coal production environmental pollution in 2030, indicating that
the turning point of the waste production per year will not occur until 2030 and the pollution caused
by coal production will not increase to a great extent [51].

This paper uses the vector autoregression (VAR) model to analyze the water, air and solid pollution
problems in coalmining and washing, petroleum and natural gas extraction, and non-ferrous metal
ore, ferrous metal ore, and non-metal ore mining and processing. Through the establishment of the
dynamic relationship between the gross industrial output value and the pollutant discharged in these
five types of mining industries, the environmental pollution problems among them are compared and
the policies that cause similarities and differences are analyzed. The VAR model has the following two
characteristics. First, the estimation of traditional economic methods are based on economic theory
and the theory cannot always rigorously describe the dynamic links among variables [52]. Compared
with traditional econometric methods, the VAR model does not rely on these “incredible” economic
assumptions. Second, the endogenous variables can appear on the right side of the equations well as be
placed on the left side of the equation. This is complex for model to estimate and infer the relationship
between variables [53]. Nevertheless, it is unnecessary to identify the endogenous and exogenous
variables in the VAR model. Hence, it is used by many researchers [54–56] and is adopted in this paper
to analyze the issue.

2. Econometric Methodology

2.1. VAR Model

The VAR model, proposed by Sims, is established based on the statistical properties of the data.
It appears as the form of multiple simultaneous equations. In each equation, the dynamic relationship
between all of the endogenous variable are estimated by the regression, which include the endogenous
and the lagged value of endogenous. Moreover, it allows us to consider both long-and short-run
restrictions justified by economic considerations [57]. The mathematical expression of the general VAR
model is as follows:

yt = v + A1yt−1 + · · ·+ Apyt−p + B0xt + B1xt−1 + · · ·+ Bqxt−q + utt ∈ {−∞,+∞} (1)

where yt, t = 1, T is a K × 1 time-series vector and A is a K × K parametric matrix. xt is an M × 1
vector of exogenous variables and B is a K ×M coefficient matrix to be estimated. ut represents the
random error term.

The large lag periods (p and q) makes it possible for the VAR model to reflect all of the dynamic
innovations between variables. However, there is a shortage for the longer lag periods in which more
parameters need to be estimated and there is a lower degree of freedom. Hence, it is necessary to make
a reasonable choice between the lag periods and the freedom. The general principle is to adopt lag
periods when the Swartz Criterion (SC) and Akaike Information Criterion (AIC) are the lowest. The
formulas of these two statistics are expressed as follows:

AIC = −2l/n + 2k/n (2)

SC = −2l/n + k ln n/n (3)
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where k = m (qd + pm) represents the number of parameters to be estimated. n is the sample size and
meets the following formula:

l = −nm(1 + ln 2π)/2− n ln

[
det

(
∑

t
ε̂t ε̂
′
t/n

)]
/2 (4)

2.2. Stationary Test

Most econometric models require a stable time series of variables. Hence, it is necessary to
implement a stationary test before establishing the model for analysis. The unit root test is the
standard method for checking if a sequence is stationary. The Augmented Dickey-Fuller (ADF), KPSS
(Kwiatkowski Phillips Schmidt Shin) and Dickey-Fuller GLS (DFGLS) tests are three test methods.
This paper uses the ADF test, which is the most widely used. Because a lagged difference term of
the dependent variables is added into the regression equation, the ADF test can avoid the effects of
higher-order serial correlation:

∆yt = ηyt−1 +
p−1

∑
i=i

βi∆yt−i + utt = 1, 2, . . . , T (5)

∆yt = ηyt−1 + α+
p−1

∑
i=i

βi∆yt−i + utt = 1, 2, . . . , T (6)

∆yt = ηyt−1 + α+ δt +
p−1

∑
i=i

βi∆yt−i + utt = 1, 2, . . . , T (7)

The following assumptions are then tested:

H0: η = 0, H1: η < 0 (8)

The original hypotheses is that the sequence of economic variable has a unit root, and the
alternative hypothesis implies that the time series has no unit root. By testing whether the estimated
value η̂ rejects the null hypothesis, we can determine if the time series has a unit root.

2.3. Data Sources

We use annual time-series data from 2001 to 2014 for industrial output value, chemical oxygen
demand discharged, ammonia nitrogen discharged, industrial SO2 discharged and industrial solid
wastes discharged in China. To avoid possible heteroscedasticity and multicollinearity problems,
we transform all variables into logarithmic and differential form. Data on industrial output value
represent the development of the mining industry and were obtained from the China Industry Economy
Statistical Yearbook and the China Industry Statistical Yearbook. To eliminate the effect of price change,
the industrial output value is calculated at a constant price (price-base year is 2000). The data for
chemical oxygen demand discharged, ammonia nitrogen discharged, industrial SO2 discharged and
industrial solid wastes discharged represent the environmental pollution and were obtained from the
China Statistical Yearbook on Environment. Among them, the chemical oxygen demand and ammonia
nitrogen discharged are used as indicators of water pollution, industrial SO2 discharged is used as
an indicator of air pollution, and industrial solid waste is used as an indicator of solid pollution.
The definitions of the variables are shown in Table 1.
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Table 1. Variables used in this study.

Variable Definition Units of Measure

GIOV Gross industrial output value yuan
COD Chemical oxygen demand discharge ton
AN Ammonia nitrogen discharge ton
ISW Industrial solid waste ton
SO2 Industrial sulfur dioxide emission ton

3. Empirical Results

3.1. Results of the Unit-Root Tests

The results of the unit root test for all mining industries are presented in Tables 2–6. The results
show that the null hypotheses of a unit root are not rejected in all variables but are rejected in their
first-order difference at a 10% significance level.

Thus, the variables are not all a stationary sequence, but their first-order difference is a stationary
sequence. Thus, the co-integration tests can be conducted.

Table 2. Unit root test results for coal mining and washing.

Series (I, T, K) ADF 0.5 Critical Value 0.1 Critical Value Prob. *

Levels

GIOV (I, N, 0) −2.843436 −3.119910 −2.701103 * 0.0793
COD (I, T, 1) −5.610523 −3.875302 ** −3.388330 * 0.0044
AN (N, N, 0) 1.014372 −1.970978 −1.603693 0.9077
ISW (N, N, 0) −1.078925 −1.970978 −1.603693 0.2388
SO2 (I, T, 0) −4.639636 −3.828975 ** −3.362984 * 0.0146

First
difference

GIOV (I, N, 0) −7.240146 −3.175352 ** −2.728985 * 0.0001
COD (I, N, 0) −2.945721 −3.144920 −2.713751 * 0.0691
AN (I, N, 0) −4.119500 −3.144920 ** −2.713751 * 0.0100
ISW (N, N, 0) −1.948815 −1.974028 −1.602922 * 0.0525
SO2 (I, N, 1) −4.903284 −3.175352 ** −2.728985 * 0.0035

Note: (I, T, K): I is the intercept, T is the trend, L is the lag length, and N is none; * and ** denote the null hypothesis
of a unit root rejected at the 10% and 5% significance levels, respectively.

Table 3. Unit root test results for petroleum and natural gas extraction.

Series (I, T, K) ADF 0.5 Critical Value 0.1 Critical Value Prob. *

Levels

GIOV (N, N, 0) 2.342212 −1.970978 −1.603693 0.9911
COD (I, T, 0) −3.633524 −3.828975 −3.362984 * 0.0671
AN (I, N, 0) −1.353440 −1.970978 −1.603693 0.1546
ISW (I, T, 0) −4.426978 −3.828975 −3.362984 0.0201
SO2 (N, N, 0) −0.762549 −1.970978 −1.603693 0.3663

First
difference

GIOV (I, N, 0) −2.917358 −3.144920 −2.713751 * 0.0848
COD (I, N, 1) −4.322892 −3.175352 ** −2.728985 * 0.0083
AN (I, N, 0) −3.971944 −3.144920 ** −2.713751 * 0.0128
ISW (I, N, 0) −8.541855 −3.144920 ** −2.713751 * 0.0000
SO2 (I, N, 0) −3.152109 −3.144920 ** −2.713751 * 0.0494

Note: (I, T, K): I is the intercept, T is the trend, L is the lag length, and N is none; * and ** denote the null hypothesis
of a unit root rejected at the 10% and 5% significance levels, respectively.
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Table 4. Unit root test results for non-ferrous metal ore mining and processing.

Series (I, T, K) ADF 0.5 Critical Value 0.1 Critical Value Prob. *

Levels

GIOV (N, N, 2) 1.293183 −1.977738 −1.602074 0.9387
COD (N, N, 0) 0.593911 −1.970978 −1.603693 0.8312
AN (I, T, 0) −2.941565 −3.119910 −2.701103 * 0.0674
ISW (N, N, 0) 0.457459 −1.970978 −1.603693 0.7987
SO2 (N, N, 0) −0.775078 −1.970978 −0.1603683 0.3608

First
difference

GIOV (I, T, 1) −3.737389 −3.933364 −3.420030 * 0.0653
COD (I, N, 0) −3.441553 −3.144920 ** −2.713751 * 0.0308
AN (I, N, 0) −6.981994 −3.144920 ** −2.713751 * 0.0001
ISW (I, N, 0) −4.756370 −3.144920 ** −2.713751 * 0.0036
SO2 (I, N, 0) −3.335679 −3.144920 ** −2.713751 * 0.0366

Note: (I, T, K): I is the intercept, T is the trend, L is the lag length, and N is none; * and ** denote the null hypothesis
of a unit root rejected at the 10% and 5% significance levels, respectively.

Table 5. Unit root test results for ferrous metal ore mining and processing.

Series (I, T, K) ADF 0.5 Critical Value 0.1 Critical Value Prob. *

Levels

GIOV (I, N, 1) −3.317284 −3.144920 ** −2.713751 * 0.0377
COD (I, T, 2) −3.783048 −3.933364 −3.420030 * 0.0616
AN (I, N, 0) −2.945174 −3.119910 −2.701102 * 0.0670
ISW (N, N, 0) 0.180184 −1.970973 −1.603693 0.7222
SO2 (N, N, 0) −0.838323 −1.970978 −1.603693 0.3334

First
difference

GIOV (I, T, 1) −5.608179 −3.933364 ** −3.420030 * 0.0055
COD (I, N, 0) −2.720846 −3.144920 −2.713751 * 0.0989
AN (I, N, 0) −4.190148 −3.144920 ** −2.713751 * 0.0090
ISW (I, N, 1) −3.874464 −3.175352 ** −2.728985 * 0.0166
SO2 (I, N, 0) −3.310650 −3.144920 ** −2.713751 * 0.0381

Note: (I, T, K): I is the intercept, T is the trend, L is the lag length, and N is none; * and ** denote the null hypothesis
of a unit root rejected at the 10% and 5% significance levels, respectively.

Table 6. Unit root test results for non-metal ore mining and processing.

Series (I, T, K) ADF 0.5 Critical Value 0.1 Critical Value Prob.*

Levels

GIOV (N, N, 1) 0.664558 −1.974028 −1.602922 0.8452
COD (N, N, 2) −0.934667 −1.977738 −1.602074 0.2901
AN (I, N, 0) −5.096009 −3.119910 ** −2.701103 * 0.0018
ISW (N, N, 0) 0.600191 −1.970978 −1.603693 0.8326
SO2 (N, N, 0) −0.704130 −1.970978 −1.603693 0.3920

First
difference

GIOV (I, N, 0) −2.894985 −3.175352 −2.728985 * 0.0774
COD (I, N, 1) −4.635565 −3.175352 ** −2.728985 * 0.0052
AN (I, N, 1) −5.388098 −3.175352 ** −2.728985 * 0.0017
ISW (I, N, 0) −3.075061 −3.144920 −2.713751 * 0.0560
SO2 (I, N, 0) −3.137956 −3.144920 −2.713751 * 0.0506

Note: (I, T, K): I is the intercept, T is the trend, L is the lag length, and N is none; * and ** denote the null hypothesis
of a unit root rejected at the 10% and 5% significance levels, respectively.

3.2. Johansen Co-Integration Tests

Because most time series of economic variables are non-stationary, a differencing method is often
used in building a reasonable VAR model to eliminate the non-stationary trend. However, the variables
in the first-order difference equation often do not have direct economic significance. To solve this
problem, Engle and Granger proposed the co-integration theory and methods to build a reasonable
mode for non-stationary series [58]. The theory suggests that some linear combination of economic
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variables may be stationary, even though the variables are not stationary and call this stationary linear
combination a co-integration equation.

The Johansen co-integration is a widely used multivariate con-integration method and it is
based on the VAR model. In this paper, the trace statistic is used to determine whether there is a
co-integration relationship. The results of the Johansen co-integration tests between the logarithm of
gross of industrial output value (LGIOV), logarithm of chemical oxygen demand (LCOD), logarithm
of ammonia nitrogen (LAN), logarithm of industrial SO2 (LSO2) and logarithm of industrial solid
wastes (LISW) of all mining industries are presented in Tables 7–11. As is evident in these tables, all
null hypotheses in which there is no co-integration equation are rejected and there are one or two
equations between variables. Therefore, a co-integration relationship exists between the LGIOV and
LCOD, LAN, LSO2 and LISW in all mining industries.

Table 7. Johansen co-integration test for coal mining and washing.

Hypothesized No. of CE(s) Eigen Value Trace Statistic 0.1 Critical Value Prob. **

AN
None * 0.575470 15.54843 13.42878 0.0491

At most 1 * 0.355274 5.267164 2.705545 0.0217

COD
None * 0.9222961 36.11994 13.42878 0.0000

At most 1 * 0.360168 5.358602 2.705545 0.0206

ISW
None * 0.613525 16.00155 13.42878 0.0419

At most 1 * 0.318033 4.593290 2.705545 0.0321

SO2
None * 0.602425 14.56814 13.42878 0.0686

At most 1 * 0.252962 3.499675 2.705545 0.0614

Note: * denotes the null hypothesis rejected at a 10% significance level; ** denotes the null hypothesis rejected at a
5% significance level.

Table 8. Johansen co-integration test for petroleum and natural gas extraction.

Hypothesized No. of CE(s) Eigen Value Trace Statistic 0.1 Critical Value Prob. **

AN
None * 0.647262 14.29508 10.47457 0.0231

At most 1 * 0.138627 1.790728 2.976163 0.2127

COD
None * 0.578479 10.48204 10.47457 0.0997

At most 1 * 0.009571 0.115407 2.976163 0.7797

ISW
None * 0.490082 10.75556 10.47457 0.0902

At most 1 * 0.199717 2.673485 2.976163 0.1206

SO2
None * 0.602425 14.56814 13.42878 0.0686

At most 1 * 0.252962 3.499675 2.705545 0.0614

Note: * denotes the null hypothesis rejected at a 10% significance level; ** denotes the null hypothesis rejected at a
5% significance level.

Table 9. Johansen co-integration test for non-ferrous metal ore mining and processing.

Hypothesized No. of CE(s) Eigen Value Trace Statistic 0.1 Critical Value Prob. **

AN
None * 0.684011 18.74787 13.42878 0.0156

At most 1 * 0.336531 4.923283 2.705545 0.0265

COD
None * 0.900634 31.84773 13.42878 0.0001

At most 1 * 0.291803 4.140395 2.705545 0.0419

ISW
None * 0.649359 16.83893 13.42878 0.0312

At most 1 * 0.299003 4.263022 2.705545 0.0389

SO2
None * 0.665964 17.64016 13.42878 0.0234

At most 1 * 0.311704 4.482436 2.705545 0.0342

Note: * denotes the null hypothesis rejected at a 10% significance level; ** denotes the null hypothesis rejected at a
5% significance level.
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Table 10. Johansen co-integration test for ferrous metal ore mining and processing.

Hypothesized No. of CE(s) Eigen Value Trace Statistic 0.1 Critical Value Prob. **

AN
None * 0.601836 17.78395 13.42878 0.0222

At most 1 * 0.429421 6.733250 2.705545 0.0095

COD
None * 0.680474 20.50181 13.42878 0.0081

At most 1 * 0.433096 6.810791 2.705545 0.0091

ISW
None * 0.676599 21.35281 13.42878 0.0058

At most 1 * 0.478235 7.806465 2.705545 0.0052

SO2
None * 0.652966 17.30102 13.42878 0.0265

At most 1 * 0.318474 4.601048 2.705545 0.0319

Note: * denotes the null hypothesis rejected at a 10% significance level; ** denotes the null hypothesis rejected at a
5% significance level.

Table 11. Johansen co-integration test for non-metal ore mining and processing.

Hypothesized No. of CE(s) Eigen Value Trace Statistic 0.1 Critical Value Prob. **

AN
None * 0.744436 20.11470 17.98038 0.0524

At most 1 * 0.267975 3.743292 7.556722 0.4517

COD
None * 0.819147 26.47076 23.34234 0.0421

At most 1 * 0.390932 5.949903 10.66637 0.4667

ISW
None * 0.669033 19.57367 17.98038 0.0620

At most 1 * 0.408683 6.304840 7.556722 0.1685

SO2
None * 0.811809 26.61353 23.34234 0.0404

At most 1 * 0.527215 8.240259 10.66637 0.2327

Note: * denotes the null hypothesis rejected at a 10% significance level; ** denotes the null hypothesis rejected at a
5% significance level.

3.3. VAR Model

In this section, the VAR model is used to analyze the nexus between the industry development
and the environmental pollution in every mining industry. The lag order is selection in Section 3.3.1.
Section 3.3.2 presents the constructions and the stability tests of VAR model. Section 3.3.3 describes
impulse response functions.

3.3.1. Optimal Lag Order Analysis

The longer the lag period is, the lower the degree of freedom and the weaker the explanatory
power. Therefore, it is necessary to select an optimal lag period for the variables in the model to have a
strong explanatory power. In this paper, a lag of 1 is selected as a result of the logarithmic likelihood
ratio (LogL), AIC, SC, sequential modified LR test statistic (lR), FPE (final prediction error) and HQ
(Hannan-Quinn) information criterion, as shown in Tables 12–16.

Table 12. Lag selection criteria for coal mining and washing.

Lag LogL LR FPE AIC SC HQ

0 −4.898238 NA 3.16 × 10−6 1.522806 1.740094 1.478143
1 52.35847 61.66107 * 3.22 × 10−8 * −3.439765 * −2.136036 * −3.707740 *

Note: * indicates lag order selected using the criterion.
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Table 13. Lag selection criteria for petroleum and natural gas extraction.

Lag LogL LR FPE AIC SC HQ

0 −52.41949 NA 0.004729 8.833768 9.051056 8.789105
1 −0.133846 56.30762 * 0.000103 * 4.635976 * 5.939706 * 4.368001 *

Note: * indicates lag order selected using the criterion.

Table 14. Lag selection criteria for non-ferrous metal ore mining and processing.

Lag LogL LR FPE AIC SC HQ

0 −60.59859 NA 0.016643 10.09209 10.30938 10.04743
1 10.35923 76.41612 * 2.06 × 10−5 * 3.021657 * 4.325386 * 2.753682 *

Note: * indicates lag order selected using the criterion.

Table 15. Lag selection criteria for ferrous metal ore mining and processing.

Lag LogL LR FPE AIC SC HQ

0 −70.28704 NA 0.073885 11.58262 11.79991 11.53796
1 −5.819538 69.42654 * 0.000248 * 5.510698 * 6.814427 * 5.242723 *

Note: * indicates lag order selected using the criterion.

Table 16. Lag selection criteria for non-metal ore mining and processing.

Lag LogL LR FPE AIC SC HQ

0 −64.54193 NA 0.030528 10.69876 10.91605 10.65410
1 12.79631 83.28733 * 1.42 × 10−5 * 2.646722 * 3.950451 * 2.378747 *

Note: * indicates lag order selected using the criterion.

3.3.2. VAR Estimates and Stability Tests

Through the unit tests and the co-integration tests, we identified that all variables are stationary
after first-order differencing and there is a co-integration relationship between LGIOV and the LCOD,
LAN, LSO2 and LISW in every mining industry. Therefore, the VAR model, which includes these
variables, can be estimated using the AIC and SC criteria. The estimates and their t-values and standard
errors are presented in Table 17.

It is necessary to test the stability of VAR model before use the mode to conduct impulse response.
The characteristic roots of the coefficient matrix, pesaran and pesaran procedure are used in the
stationary test. Figures 3–7 show that the characteristic roots of every mining industry are less than 1
and lie inside the unit circle. This indicates that the model satisfies the stability condition.

It can be seen from the above analysis, the results of unit-root tests and Johansen co-integration
testes show that the variables is stationary. The reliability of the model estimation results depends on
the stationariness of the variables. Meanwhile, the model has been proved to be stable and has a high
degree of fit to the sample. Hence, the estimation results of data for 14 years is reliable.
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Table 17. Vector autoregression estimates.

Coal Mining
and Washing

Petroleum and
Natural Gas
Extraction

Non-Ferrous
Metal Ore Mining

and Processing

Ferrous Metal
Ore Mining

and Processing

Non-Metal
Ore Mining

and Processing

AN(−1)
0.013800 0.173641 0.010107 0.495835 0.103729
(0.13192) (0.18427) (0.20466) (0.24020) (0.09501)
[0.10461] [0.94229] [0.04938] [2.06422] [1.09176]

COD(−1)
−0.222574 0.085947 −0.419635 0.184019 −0.101893
(0.18916) (0.15746) (0.55758) (0.95134) (0.21591)

[−1.17663] [0.54583] [−0.75262] [0.19343] [−0.47193]

GIOV(−1)
0.911397 1.122400 0.404800 0.207995 0.240634
(0.11579) (0.19102) (0.25404) (0.13985) (0.15037)

[7.787093] [5.87582] [1.59344] [1.48728] [1.60033]

ISW(−1)
−0.102868 0.059372 0.123448 0.240839 0.087564
(0.08728) (0.05662) (0.36974) (0.29701) (0.33694)

[−1.17859] [1.04860] [0.33388] [0.81089] [0.25988]

SO2(−1)
0.056690 0.020648 0.012060 0.039336 0.032275
(0.29353) (0.01346) (0.03866) (0.03804) (0.02164)
[0.19313] [1.53439] [0.31194] [1.03412] [1.49160]

C
3.464985 −3.327779 9.051754 0.226979 3.866749
(4.28332) (3.43990) (6.63006) (10.6432) (2.67781)
[0.80895] [−0.96741] [1.36526] [0.02133] [1.44400]

R2 0.991146 0.937076 0.586858 0.697211 0.745154

Adj_R2 0.984822 0.892131 0.291756 0.480933 0.563120

SSR 0.079826 0.113653 0.976506 1.718965 0.387413

S.E. equation 0.106788 0.127421 0.373498 0.495547 0.235255

F-statistic 156.7269 20.84919 1.988663 3.223678 4.093505

LogL 14.65733 12.36093 −1.619498 −5.295226 4.389687

AIC −1.331898 −0.978605 1.172230 1.737727 0.247741

SC −1.071152 −0.717859 1.432979 1.998473 0.508486

Mean dependent 9.117604 8.771560 8.838160 8.937502 6.019265

S.D. dependent 0.866805 0.387964 0.443810 0.687817 0.355924

Note: standard error is shown in parentheses, and t-statistics are in brackets.Int. J. Environ. Res. Public Health 2017, 14, 254 10 of 19 
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indicate characteristic roots.
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3.3.3. Impulse Response Functions

In this section, the impulse response functions are applied to build the nexus between industry
development and environmental pollution by investigating the responses of the environmental
pollution variables caused by the industrial output value shock in each mining industry.

As observed in Figure 8, in the coal mining and washing industry, the discharge of chemical
oxygen demand and industrial solid wastes show a negative response to industrial output value
fluctuation in the short-term but subsequently achieve equilibrium prior to showing a positive response
in the long-term; the ammonia nitrogen discharged shows a positive response, and the industrial SO2

discharged shows a negative response.
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The solid lines indicate the mean responses to a one standard deviation shock, while the dotted lines
represent ± 2 standard deviations of the responses.

As observed in Figure 9, in petroleum and natural gas extraction, the discharge of chemical oxygen
demand, ammonia nitrogen and industrial solid wastes all show a negative response to industrial
output value fluctuation; industrial SO2 shows a negative response in the short-term but subsequently
achieves equilibrium prior to showing a positive response in the long-term.

As observed in Figures 10–12, in non-ferrous metal ore, ferrous metal ore and non-metal ore
mining and processing, the responses of every pollutant to industrial output value fluctuation are the
same. Among them, the discharge of ammonia nitrogen, industrial SO2 and industrial solid wastes all
show a positive response to industrial output value fluctuation and chemical oxygen demand shows a
negative response.
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4. Discussion

According to the above empirical results, we come to the conclusion that in terms of water
pollution, the discharge of COD decreased in coal mining and washing in the short-term but increased
in the long-term, whereas it increased in the other industries. The discharge of AN decreased only
in petroleum and natural gas extraction and increased in the others. This phenomenon is due to the
limiting effect of weak emission standards for mining wastewater and because AN was not used as
an indicator for wastewater treatment until 2011 [59]. Although the maximum permissible discharge
concentrations of COD and AN are clear in the Integrated Wastewater Discharge Standard [60], to
which discharged mining wastewater refers, the following two deficiencies limit the effects of the
standard. First, the Integrated Wastewater Discharge Standard is not specific to each industrial sector.
The maximum permissible discharge concentrations in this standard are applied to the whole mining
industry. The fact that the degree of pollution varies depending on different types of mineral resources
has not been considered. Second, the maximum permissible discharge concentrations adopted in 1996
are too high to efficiently control the pollutants. However, COD has been taken as an indicator of
sewage treatment in the China Environmental Protection plan, but AN was not used until 2011. Hence,
the weak limiting effect of emission standards and the indicators for wastewater treatment that are not
specific to each industrial sector caused a decrease in the COD in all types of mining industries (for
coal mining and washing, it only decreased in the short-term), but the AN increased in most mining
industries except for petroleum and natural gas extraction. The reason for the increase in COD from
coal mining and washing in the long-term after decreasing in the short-term is that tactic of increasing
production, which is adopted by most coal enterprises to compensate for losses caused by falling coal
prices, leads to an increase in the COD discharged per gross industrial output value. The reason the
AN only decreased in petroleum and natural gas extraction is that a great deal of industrial wastewater
in which the COD is not treated is injected into the oil field. Furthermore, the injection rate is greater
than 90%, and this rejected wastewater is not counted as discharged wastewater. Hence, the AN in
petroleum and natural gas extraction decreased.

In terms of air pollution, the industrial SO2 decreased in coal mining and washing, decreased in
the short term in petroleum and natural gas extraction, but increased in the long-term and increased in
the other three mining industries. The reason for this phenomenon is that the effect of the Integrated
Emission Standard of Air Pollutants, to which mining waste gas refers, is not strong due to the same
deficiencies as in the Integrated Wastewater Discharge Standard [61]. However, the Discharge Standard
for Coal Industry [62] lowered the maximum permissible discharge concentration of industrial SO2,
causing the industrial SO2 to decrease in coal mining and washing. In addition, the comprehensive
utilization of coal gangue decrease the industrial SO2 to some extent. A large number of coal gangue
are produced and are piled up [63]. The coal gangue piles are prone to spontaneous combustion,
which is hazardous to environment by discharge the harmful gas including sulfur dioxide. With the
increasing awareness of environmental protection and comprehensive utilization of resources in China,
the coal gangue is used for power generation and making bricks, etc. This change makes the gangue
piles turned into man-made eco-park and decrease the amount of sulfur dioxide discharged [64,65].
The reason the industrial SO2 decreased in the short-term in petroleum and natural gas extraction is
that the industrial SO2 is mainly produced from natural gas purification plant tail gas and policies
were introduced to encourage enterprises to improve the recovery and utilization of industrial SO2 in
the tail gas of these purification plants. Nevertheless, the costs of tail gas treatment and the maximum
permissible discharge concentrations for the extraction of petroleum and natural gas are too high.
To pursue economic benefits, tail gas treatment equipment is the optimal choice for enterprises. This
caused the industrial SO2 increase in the long-term in petroleum and natural gas extraction.

In terms of solid pollution, the industrial solid waste discharged decreased in petroleum and
natural gas extraction, decreased in coal mining and washing in the short-term but increased in the
long-term and increased in the three other types of mining industries. This phenomenon occurs
because some of the Chinese government’s policies to promote the comprehensive utilization ratio
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of the industrial solid wastes were only implemented in coal mining and washing and petroleum
and natural gas extraction. The comprehensive utilization of 17% of coal gangue is required [66], and
a 100% resource utilization ratio of oily sludge is required [67]. Furthermore, the enterprises that
sell the coal gangue or oily sludge they produce and those that yield products made of coal gangue
or oily sludge can return 50% value-added tax [68]. These policies decreased the industrial solid
waste in petroleum and natural gas extraction and in coal mining and washing in the short-term.
However, the tactic of increasing production, which is adopted by most coal enterprises to compensate
for losses caused by falling coal prices, caused the increase in industrial solid waste in the long-term.
In addition to the above three points, the uniformity of the pollution control policies and standards
reduce the effect of pollution prevention to some extent because there are diversities in the level
of economic development, industrial structure, environmental carrying capacity, etc., among the
provinces [69–71]. Firstly, although the uniform pollution control policies and standards are stipulated
by the central government, the responsibilities of local governments are not clear for environment
pollution, and further how such responsibilities are evaluated [72]. In order to economic development,
local governments, especially who face difficulty in economic development, are inclined to neglect
their responsibilities for protecting local environment, and finally make the effects of uniform pollution
control policies and standards unobvious [73–75]. Worse still, local governments may reduce the
collection of emission fees to protect the profits of local companies [76]. For example, the industrial
structure of Shanxi Province is single due to heavily dependent on coal industry. When the coal
prices are low, it is a challenge for Shanxi Province to solve environmental problems according to
the uniform policies and standards. Secondly, the diversities of environment carrying capacities
among provinces can make the different environmental disturbance caused by the same amount of
pollution discharged [77–80]. Therefore, the implementation of the uniform pollution control policies
and standards is not rational. It can destruct the environment in ecologically fragile regions due to the
low pollutant control polices and standards, which are suitable for regions with high environment
carrying capacities. For example, the forest coverage rate and rainfall are low in northwest China, in
which most province are environmental fragile. The environment can be construct if these provinces
implement the same pollution control policies and standards as other regions.

5. Conclusions

Using a time series from 2001 to 2014, this paper investigated the nexus between industry
development and environmental pollution in coal mining and washing, petroleum and natural gas
extraction and non-ferrous metal ore, ferrous metal ore and non-metal ore mining and processing in
China, considering the dynamic changes within the VAR model. The results are as follows.

The pertinence of standards for the discharge of industrial wastewater and industrial waste gas is
not strong and the maximum permissible discharge concentrations in these standards are too high.
These two problems limit the effect of the standards in most mineral industries. Hence, to reduce
the discharge of pollutants in industrial wastewater and waste gas, niche targeting standards for
industrial wastewater and the waste gas should be adopted and the maximum permissible discharge
concentrations in the standards should be lowered for different mining industries according to the
characteristics of pollutants in each mining industry.

Tax reduction policies to promote the comprehensive utilization of industrial solid waste in coal
mining and washing and petroleum and natural gas extraction are effective. However, these policies
are not adopted in other mining industries. Hence, to reduce the discharge of industrial solid waste in
non-ferrous metal ore, ferrous metal ore and non-metal ore mining and processing, the enterprises
that sell the industrial solid waste they produce and those that yield products made of industrial solid
waste can return a part of the value-added tax in these three mining industries.

The tactic of increasing production, used by many coal enterprises, led to increases in the COD
and industrial solid waste discharged in the long-term in this industry. Hence, to manage the problem
of overcapacity of coal enterprises, the production of coal enterprises should be controlled within
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a reasonable range by the Chinese government. Policies should also be adopted to encourage coal
enterprises to extend the industrial chain by developing the coal chemical and coal gasification
industries, which can increase the added value of the product to compensate for losses caused by
falling prices.

The current uniform pollution control policies and standards have a shortage that they do not
consider the diversity among different provinces. The diversity can reduce the effect of pollution
prevention. Hence, the different pollution control policies and standards should be stipulated according
to the level of economic development, industrial structure, environmental carrying capacity, etc., among
provinces. Appropriately raise pollution control polices and standards in environmental fragile regions.
Meanwhile, responsibilities of local governments for environment pollution should be determined
and the method should be stipulated to evaluate the responsibilities.
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