
International  Journal  of

Environmental Research

and Public Health

Article

Time Prediction Models for Echinococcosis Based on
Gray System Theory and Epidemic Dynamics

Liping Zhang 1,†, Li Wang 2,†, Yanling Zheng 1, Kai Wang 1, Xueliang Zhang 1 and
Yujian Zheng 2,*

1 College of Medical Engineering and Technology, Xinjiang Medical University, Urumqi 830011, China;
zhanglp1219@163.com (L.Z.); zhengyl_math@sina.cn (Y.Z.); wangkaimath@sina.com (K.W.);
shuxue2456@126.com (X.Z.)

2 College of Public Health, Xinjiang Medical University, Urumqi 830011, China; Liwang@xjmu.edu.cn
* Correspondence: zhyujian6@hotmail.com; Tel.: +86-991-436-5561
† These authors contributed equally to this work.

Academic Editor: Paul B. Tchounwou
Received: 20 December 2016; Accepted: 16 February 2017; Published: 4 March 2017

Abstract: Echinococcosis, which can seriously harm human health and animal husbandry production,
has become an endemic in the Xinjiang Uygur Autonomous Region of China. In order to
explore an effective human Echinococcosis forecasting model in Xinjiang, three grey models,
namely, the traditional grey GM(1,1) model, the Grey-Periodic Extensional Combinatorial Model
(PECGM(1,1)), and the Modified Grey Model using Fourier Series (FGM(1,1)), in addition to
a multiplicative seasonal ARIMA(1,0,1)(1,1,0)4 model, are applied in this study for short-term
predictions. The accuracy of the different grey models is also investigated. The simulation results
show that the FGM(1,1) model has a higher performance ability, not only for model fitting, but also
for forecasting. Furthermore, considering the stability and the modeling precision in the long run,
a dynamic epidemic prediction model based on the transmission mechanism of Echinococcosis is
also established for long-term predictions. Results demonstrate that the dynamic epidemic prediction
model is capable of identifying the future tendency. The number of human Echinococcosis cases
will increase steadily over the next 25 years, reaching a peak of about 1250 cases, before eventually
witnessing a slow decline, until it finally ends.
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1. Introduction

Echinococcosis is a globally distributed parasitic infection of humans and livestock. It can threaten
human health and seriously hinder the development of animal husbandry. The worldwide prevalence
of cystic Echinococcosis has fallen dramatically over the past several decades. However, Echinococcosis
has increased dramatically in the Xinjiang Uygur Autonomous Region of China in the last 10 years,
partially due to the nomadic nature of some minorities, the poor understanding of the transmission
dynamics, and the lack of effective disease control measures.

Between 2004 and 2010, a total of 4768 human Echinococcosis cases were reported in Xinjiang,
accounting for 32.55% of the total number of cases in China [1]. Data presented at the Xinjiang Center
for Disease Control and Prevention (Xinjiang CDC) indicated that 2843 new cases were found in
Xinjiang between 2011 and 2012. Echinococcosis continues to be a substantial cause of morbidity and
mortality in Xinjiang. The large number of published reports on various aspects of Echinococcosis
in Xinjiang clearly suggests that the disease is of major public health concern. At present, infection
with Echinococcus remains a major public health issue, and it is regarded as one of the most serious
endemic diseases in Xinjiang.
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To understand the epidemic spreading phenomena of Echinococcosis and the designing
of appropriate strategies to control infections, many scholars have studied different aspects of
Echinococcosis [2–7]. To obtain a reliable forecast, certain laws governing the phenomena of system
development must be discovered on the basis of either natural principles or real observation.

Traditional statistical model- and artificial intelligence-based approaches are the two main
techniques for time series forecasting [8]. In these approaches, the predictor is built on the assumption
of realizing the structure of the system to be forecasted. However, because of the limitation of
information and knowledge, only part of the system’s structure can be fully realized. Grey theory
was first proposed by Professor Deng [9], mainly for a system with incomplete or uncertain
information, in order to construct a grey model for forecasting and decision-making. As an emerging
multiple attribute, decision-making tool, which requires a limited knowledge and understanding of
an unascertained system to solve problems, producing good estimations or predictions, the grey theory
has caught the attention of scholars and practitioners from various disciplines and scientific fields.

The grey model, which is an effective method for modeling and forecasting small sample time
series, is one of the best features of grey system theory. Generally, the grey model is written as GM(m,n),
where m is the order and n is the number of variables of the modeling equation. The first-order
one-variable grey model, GM(1,1), is the most widely used, and is successfully demonstrated in many
applications. The GM(1,1) model is a special modeling approach based on grey exponential law,
resulting from accumulated generation operations. It has an ideal fitting prediction effect for the
data sequence, with homogeneous exponential characteristics. Compared with the classical statistical
model and neural network model, the grey model needs a smaller sample size and data distribution is
not necessary.

In recent years, the grey prediction model has been successfully utilized in many fields and has
demonstrated satisfactory results [10]. Wang et al. used the grey prediction model to predict the
energy consumption of a building’s heat-moisture system, and the accuracy of the prediction was
high [11]. Lei et al. proposed a novel grey model PGM(1,2,a,b) to predict the price of electricity [12].
Dong et al. presented a hybrid prognosis approach, combining the age-dependent hidden Markov
model (HMM) and the grey model, for prediction of engineering asset health [13]. Huang et al. created
an automatic stock market forecasting and portfolio selection mechanism, based on the moving average
autoregressive exogenous (ARX) prediction model, combined with grey system theory and rough set
(RS) theory [14]. In these studies, it is seen that the grey prediction models can obtain satisfactory
results for short-term predictions, and that grey predictors are more robust with respect to noise and
to the lack of modeling information, when compared to conventional methods [12].

Using information on epidemic dynamics is also an important method of studying the spread
of infectious disease, both qualitatively and quantitatively. It is based on the specific property of
population growth, the spread of infectious diseases, and the related social factors, etc. It is used to
construct mathematical models reflecting the dynamic properties of infectious diseases, to analyze
these properties, to analyze the dynamic behavior of infectious diseases, and to pursue further
simulations [15]. It is an important method for understanding the prevalence and distribution of
a species, together with the factors that determine their incidence, spread, and persistence. In contrast
with classic biometrics, dynamic methods can slow the transmission rules of infectious diseases from
the mechanism of transmission of the disease, so that people can understand the global dynamic
behavior of the transmission process. The research results are helpful for predicting the developing
tendency of the infectious disease, to determine the key factors of the spread of infectious disease,
and to seek the optimum strategies for preventing and controlling the spread of infectious diseases.

The traditional GM(1,1) is easy to understand and simple to calculate, with a satisfactory accuracy,
but it also lacks the flexibility for adjusting the model, in order to acquire a higher forecasting precision.
To improve the feasibility and effectiveness of GM(1,1), researchers have proposed many new high
precision combinational prediction models, by combining different theories with grey theory [13,14].
These practical results show that the combinational prediction methods have a higher forecasting
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accuracy than the GM(1,1) method. In this study, the autoregressive process is combined with the
grey system theory (Grey-Periodic Extensional Combinatorial Model, PECGM(1,1)), to create a human
Echinococcosis forecasting model. A residual correction model based on Fourier (FGM(1,1)) is also
presented for short-term forecasting. In order to verify the suitability of the FGM(1,1) model for
forecasting the number of Echinococcosis cases in the short-term, a seasonal time series ARIMA
model (ARIMA(1,0,1)(1,1,0)4) is also established for comparison. Furthermore, an epidemic dynamic
model is built to evaluate the long-term trend of human Echinococcosis cases. The results of the grey
predicting models show that the human Echinococcosis cases will increase in the short-term. However,
the approximate estimated value of the basic reproduction number R0 = 0.541 in the epidemic dynamic
model, indicates that, with the current control measures, human Echinococcosis cases will decrease in
the future and eventually die out.

The remainder of this paper is organized as follows. In Section 2, the methods and theories are
briefly introduced. The simulation results of the different models are carefully investigated in Section 3.
Finally, conclusions are made in Section 4.

2. Materials and Methods

2.1. Short-Term Prediction Models

2.1.1. Original GM(1,1) Model

Although various types of grey models can be mentioned, most of the previous researchers
have focused their attention on GM(1,1) models in their predictions, because of its computational
efficiency. One can create a grey model to describe the behavior of a few outputs by using fewer (at
least four) data points, and by using predictions to analyze future situations. Three basic operations,
including accumulated generation, inverse accumulated generation, and grey modeling, are used
to build a grey forecasting model. The use of an accumulated generating operator, which plays an
extremely important role in grey system theory, is a method employed to make a grey process turn
white. Through accumulation, one can potentially uncover a development tendency, so that the
characteristics and laws of integration hidden in the chaotic original data can be sufficiently revealed.

The whitening differential equation of the GM(1,1) is a first-order differential equation. It can be
established on the basis of a monotonically increasing series X(1), as follows:

dx(1)

dt
+ ax(1) = b (1)

where, a is the development coefficient, which reflects the development trend of the original series; b is
the driving coefficient, which reflects the changes in the relationships between system data. a and b
can be obtained by the least squares estimation.

The time response function of GM(1,1) is as follows:

x̂(1)(k + 1) = (x(0)(1)− b
a
)e−ak +

b
a

; k = 1, 2, · · · , n (2)

The simulation and forecasting values of GM(1,1) can be evaluated as follows:

x̂(0)(k + 1) = x̂(1)(k + 1)− x̂(1)(k) = (1− ea)(x(0)(1)− b
a
)e−ak (3)

The procedures involved when using the GM(1,1) model are given in the first part of
Supplementary Materials.

The GM(1,1) model hads been widely adopted in many fields. However, the effectiveness of
the residual series of GM(1,1) depends on the number of data points with the same sign, which is
generally low when the observations are few [16–19]. To make the grey forecasting model more
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adaptive and precise, some studies have developed improved residual sign estimators for the GM(1,1)
model. Many scholars have worked diligently, to propose hybrid grey models that incorporate the
grey prediction theory and theories or discourses in other fields of algorithm, in order to enhance the
forecasting precision [14,20–27]. The above research results play an important role in promoting the
development of grey system theory.

To reduce the periodic and stochastic residual errors of GM(1,1), we establish two residual error
modification models, i.e., the Grey-Periodic Extensional Combinatorial Model (PECGM(1,1)) and the
Modified Grey Model Using Fourier Series (FGM(1,1)), respectively.

2.1.2. Grey-Periodic Extensional Combinatorial Model (PECGM(1,1))

The Grey-Periodic Extensional Combinatorial Model can be modeled as:

x̂(0)2 (k) = x̂(0)1 (k) + ε̂
(0)
1 (k) + ε̂

(0)
2 (k) (4)

where X̂(0) = (x̂(0)(1), x̂(0)(2), · · · , x̂(0)(n)) is the fitting sequence of GM(1,1),

x̂(0)1 (k) = (1− ea)[x(0)(1)− b
a
]e−a(k−1); k = 1, 2, · · · , n.

Ê1 = (ε̂1(1), ε̂1(2), · · · , ε̂1(n)) is the fitting sequence of one-time residual sequence, and ε̂
(0)
1 (k) is

the sum of values at the same moment of different preferred periods,

ε̂
(0)
1 (k) = ∑

l∈I
fl(k) (5)

Ê2 = (ε̂2(1), ε̂2(2), · · · , ε̂2(n)) is the simulate value of the two-time residual sequence by
an ARIMA time series model. The procedures involved for using the PECGM(1,1) model are given in
the second part of Supplementary Materials.

2.1.3. Modified Grey Model Using Fourier Series (FGM(1,1))

Besides the variation tendency, the tendency for periodic and stochastic phenomena also
commonly exist in time series. The forecasting precision of the GM(1,1) model for a data sequence
with large random fluctuations, is always low. In this study, the Fourier series is always adopted to
improve the prediction performance of the original grey model [28].

Assume X(0) = (x(0)(1), x(0)(2), · · · , x(0)(n)) is a non-negative time sequence. A Fourier series
correction can be obtained as follows:

x̂(0)2 (k) = x̂(0)1 (k) + ε̂(0)(k), k = 2, 3, · · · , n. (6)

ε̂
(0)
1 (k) ∼=

1
2

a0 +
m

∑
i=1

[ai cos(
2πi
T

k) + bi sin(
2πi
T

k)]; k = 2, 3, · · · , n, (7)

where X̂(0) = (x̂(0)(1), x̂(0)(2), · · · , x̂(0)(n)) is the fitting sequence of GM(1,1),

x̂(0)1 (k) = (1− ea)[x(0)(1)− b
a
]e−a(k−1); k = 1, 2, · · · , n. (8)

The procedures involved when using the FGM(1,1) model are also given in the third part of
Supplementary Materials.

The PECGM(1,1) and the FGM(1,1) are two error-modified grey models in which the residual is
adjusted by GM(1,1). The grey-periodic extensional combinatorial model belongs to an error periodic
extensional model based on GM(1,1), with a preferred period to contrast new data sequences and to
add the values at the same moment of different periods. In the FGM(1,1) model, the Fourier series
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is employed to modify the implied periodic phenomena in the one-time residual series. Note that
the Fourier series is only used to increase the prediction capability from the considered input data
set, and thus, does not change the local characteristics of GM(1,1). These two models overcome the
unpredictability due to the monotonicity and periodical fluctuation of the time series.

2.1.4. The ARIMA Model

The ARIMA model is one of the most popular univariate time series models, which is widely used
in infectious disease modeling [29–31]. The ARIMA model is based on the ARMA models, linearly
expressing the current human Echinococcosis cases with its previous cases (autoregressive) and the
residual series (moving average). The ARMA model can be expressed as:

y(t) = φ1y(t− 1) + · · ·+ φpy(t− p) + ε(t)− θ1ε(t− 1)− · · · − θq(t− q) (9)

where y(t) refers to the value of the time series at time t and ε(t) is the residual at time t. φ and θ are
their corresponding coefficients, respectively.

The ARIMA model deals with a non-stationary time series, using a differencing process based on
the ARMA model. The model can be expressed as ARIMA (p,d,q) × (P,D,Q)s, where p, d, and q are
non-negative integers, which refer to the order of the autoregressive, integrated, and moving average
parts of the model, respectively; whereas P, D, and Q represent the order of the seasonal autoregressive,
differencing, and moving average, respectively (not shown in the above equation). The subscripted
letter “s” shows the seasonal period length. The ARIMA modeling procedure introduced by Box and
Jenkins, consists of three iterative steps: identification, estimation, and diagnostic checking [32]. To test
the validity of FGM(1,1), an autoregressive integrated moving average is also used to fit the univariate
time series model of human Echinococcosis cases in Xinjiang.

2.1.5. Model Accuracy Examination

To compare the accuracy of the proposed forecasting models, three evaluation criteria are used
here: the mean absolute deviation (MAD), the mean absolute percentage error (MAPE), and the root
mean square error (RMSE). They are expressed as follows:

MAD =

n
∑

i=1

∣∣∣x(0)(k)− x̂(0)(k)
∣∣∣

n
(10)

MAPE = (
1
n

n

∑
k=1

∣∣∣∣∣ x(0)(k)− x̂(0)(k)
x(0)(k)

∣∣∣∣∣)× 100% (11)

RMSE =

√
∑n

k=1 [(x(0)(k)− x̂(0)(k))]2

n
(12)

where x(0)(k) is the actual value at time k, x̂(0)(k) is its fitting value, and n is the number of data points
used for the prediction.

2.2. Long-Term Prediction Model

The grey models, which demonstrate an optimal and unique ability for performing fitting
predictions using small data sets and limited information, often obtain a higher precision in short-term
predicting. However, because of the inherent bias in the traditional grey-forecasting FGM(1,1) model
and the fixed choice of its parameter, the forecast precision is relatively low and unsuitable for
long-term forecasting. To catch the long-term tendency of a time series, the transmission mechanism



Int. J. Environ. Res. Public Health 2017, 14, 262 6 of 14

implied in the time series must be considered. The epidemic dynamic model, based on the transmission
mechanism of Echinococcosis, is adapted in this study after Wang et al. [1], and is described below:

dSD
dt = A1 − β1SD IL − d1SD + σID

dID
dt = β1SD IL − (d1 + σ)ID,

dSL
dt = A2 − β2SLx− d2SL,

dIL
dt = β2SLx− d2 IL,

dx
dt = aID − dx,
dSH
dt = A3 − β3SHx− d3SH + γIH ,

dEH
dt = β3SHx− (d3 + ω)EH ,

dIH
dt = ωEH − (d3 + µ + γ)IH .

(13)

For the dog population, assume the annual recruitment rate and the natural death rate are A1

and d1, respectively; The recovery rate of transition from infected to non-infected dogs, including
the natural recovery rate and recovery due to anthelmintic treatment, is σ; let β1SD IL describe the
transmission of Echinococcosis between susceptible dogs and infectious livestock after the ingestion
of cyst-containing organs of the infected livestock. For the livestock population, suppose the annual
recruitment rate is A2 and the death rate is d2; the transmission of Echinococcosis to livestock by the
ingestion of Echinococcus eggs in the environment is described as β2SLx. For Echinococcus eggs,
assume the released rate from infected dogs is a and the mortality rate is d. For a human population,
suppose the annual recruitment rate is A3, the natural death rate is d3, and the disease-related death rate
is µ; the incubation period of infected individuals is denoted by 1/ω and the recovery rate is denoted
by γ. The transmission of Echinococcosis to the human population by the ingestion of Echinococcus
eggs in the environment is described as β3SHx. All parameters are assumed to be positive.

The population of dogs is divided into two classes: the susceptible population and the infected
population, denoted by SD(t) and ID(t), respectively. The livestock population is divided into
two classes: susceptible and infectious, denoted by SL(t) and IL(t), respectively The density of
Echinococcus eggs is denoted by x(t). The human population is divided into three classes: susceptible,
exposed, and infectious, denoted by SH(t), EH(t), and IH(t), respectively.

The basic reproductive number R0 is defined as:

R0 = 3

√
β1β2 A1 A2a

(d1 + σ)d1d2
2d

(14)

The basic reproductive number R0 determines the dynamics of the model [1]. The disease-free
equilibrium is globally asymptotically stable when R0 < 1. The disease-free equilibrium is unstable
and the endemic equilibrium is globally asymptotically stable if R0 > 1.

3. Results

3.1. Short-Term Prediction Results

Data on the epidemiological cases in humans were obtained from the quarterly report of Xinjiang
CDC. The 33 observations from the first quarter of 2004 (2004(Q1)) to the first quarter of 2012
(2012(Q1)), are used to establish the fitting models and the remaining observations from the second
quarter (2012(Q2)) to the fourth quarter (2012(Q4)), which are utilized as test objects to compare their
performance. In this section, to present a short-term prediction of the Echinococcosis transmission in
Xinjiang, the GM(1,1), PECGM(1,1), FGM(1,1), and seasonal time series model ARIMA(1,0,1)(1,1,0)4,
are established for comparison. The results are listed in Table 1.
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Table 1. Forecasting results and performance evaluation of original values, GM(1,1) model, PECGM(1,1)
model, FGM(1,1) model, and ARIMA(1,0,1)(1,1,0)4.

Time Original Values GM(1,1) PECGM(1,1) FGM(1,1) ARIMA(1,0,1)(1,1,0)4

2004-Q1 29
2004-Q2 54 94.1602 43.2064 66.6371 53.9460
2004-Q3 53 98.5481 56.6699 40.3629 52.9470
2004-Q4 37 103.1405 46.8164 49.6371 36.9630
2005-Q1 75 107.947 104.9348 62.3629 56.0506
2005-Q2 80 112.9774 80.6936 92.6371 88.8068
2005-Q3 85 118.2423 81.1441 72.3629 75.6675
2005-Q4 90 123.7525 75.6184 102.6371 68.5544
2006-Q1 171 129.5195 148.0873 158.3629 130.5286
2006-Q2 159 135.5552 152.8614 171.6371 184.2488
2006-Q3 163 141.8722 142.374 150.3629 155.4327
2006-Q4 163 148.4836 136.5795 175.6371 148.7839
2007-Q1 234 155.403 206.1309 221.3629 208.9408
2007-Q2 181 162.645 204.6812 193.6371 228.0572
2007-Q3 181 170.2244 167.3362 168.3629 182.2278
2007-Q4 151 178.157 159.3529 163.6371 181.2402
2008-Q1 238 186.4593 209.4171 225.3629 227.2463
2008-Q2 230 195.1485 219.1547 242.6371 211.5525
2008-Q3 187 204.2426 212.3443 174.3629 229.9090
2008-Q4 192 213.7605 176.2863 204.6371 177.1743
2009-Q1 281 223.7219 250.2797 268.3629 266.3309
2009-Q2 246 234.1475 261.9837 258.6371 239.4284
2009-Q3 239 245.059 237.8308 226.3629 230.8546
2009-Q4 199 256.479 226.4649 211.6371 216.9646
2010-Q1 260 268.4312 271.189 247.3629 284.9956
2010-Q2 257 280.9403 264.9865 269.6371 243.4996
2010-Q3 244 294.0324 262.9642 231.3629 223.7910
2010-Q4 289 307.7346 248.4205 301.6371 233.6549
2011-Q1 328 322.0753 350.6532 315.3629 365.3474
2011-Q2 349 337.0843 330.7005 361.6371 300.1962
2011-Q3 352 352.7928 345.6146 339.3629 335.7246
2011-Q4 289 369.2333 342.7292 301.6371 332.4649
2012-Q1 431 386.4399 374.0377 418.3629 340.5767

MAD 31.9641 19.2301 12.6371 22.9506
MAPE (%) 25.0438 10.4278 8.6256 11.7100

RMSE 37.448 23.1066 12.4442 30.2869
2012-Q2 418 404.4483 423.8045 376.9253 428.4281
2012-Q3 342 423.296 421.0678 365.1108 413.7626
2012-Q4 334 443.02 415.5579 389.5186 420.2279

MAD 67.96 47.3842 28.1548 56.1395
MAPE (%) 19.8847 16.3088 11.0688 16.4300

RMSE 78.906 65.6686 42.0458 65.0483

Table 1 demonstrates that the performance of FGM(1,1) is better than GM(1,1), PECGM(1,1),
and ARIMA(1,0,1)(1,1,0)4, based on the MAD, the MAPE, and the RMSE.

The fitting curves are shown in Figures 1–3, respectively. For short-term forecasting, the results
clearly indicate that the values forecasted by these models are very close to the real values.

As we can see from Table 1 and Figure 1, the traditional GM(1,1) model exhibits a better
performance in trend prediction. However, the GM(1,1) model has over-shooting phenomena on the
change-points, and further causes the delay effects among the whole prediction line, so the prediction
precision is not very satisfactory.
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Figures 2–4 demonstrate the other three models (PECGM(1,1), FGM(1,1), and ARIMA(1,0,1)(1,1,0)4

models), which demonstrate a better adaptability to structural change than the GM(1,1) model. Fitting
curves show that the prediction results of the PECGM(1,1), FGM(1,1), and ARIMA(1,0,1)(1,1,0)4 models
can synchronously vibrate with the actual curve, and there are obvious seasonal and periodic features
in Echinococcosis cases in Xinjiang; for example, spring is the epidemic season for Echinococcosis.
The fitting results of the four models shown in Table 1 indicate that, using present control methods,
the number of Echinococcosis cases will increase in the short-term.
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Figure 4. The comparison between the real values and the simulation values of the
ARIMA(1,0,1)(1,1,0)4 model.

Table 1 and Figure 3 illustrate that the prediction accuracy of the FGM(1,1) model for
2012(Q2)–2012(Q4) is significantly higher than the other models, and that the simulation errors
from 2004(Q1) to 2012(Q1) are also notably smaller. In contrast to the PECGM(1,1) and the
ARIMA(1,0,1)(1,1,0)4 models, the FGM(1,1) model produces better simulations and predictions.
By using Fourier techniques to transform the one-time residual series into frequency spectra,
the low-frequency terms can be selected and the FGM(1,1) model can filter out the noise at the
high-frequency modes, to obtain better performance of the prediction. As shown in Equation (3),
we note that GM(1,1) and FGM(1,1) are based on the exponential function and may have unsatisfactory
results when employed in the modeling and predicting of non-smooth curves for a long period of time.

3.2. Long-Term Prediction Results

3.2.1. Fitting Results

The prevention and treatment of Echinococcosis action plan for 2010–2015 was formulated by
the Ministry of Health of the People’s Republic of China, on 24 December 2010. Recent technological
advances may facilitate the implementation of improved control programmes and reduce the time
frame required for elimination. We expect that this will significantly reduce the incidence of
Echinococcosis infection in Xinjiang. In this section, we use the epidemic dynamic model proposed by
Wang et al. [1] to give a prediction of Echinococcosis in the long-term.

We select and calculate the main model parameters by fitting the model to quarterly data of
Echinococcosis [1]. The parameter list is as follows [33].
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Based on the parameter values listed in Table 2, we chose the initial values of the model as follows:

SD(0) = 2× 106/4, IL(0) = 1.425× 107, x(0) = 1.44× 107/4, (15)

SH(D) = 0.29× 107, EH(0) = 625, IH(0) = 29. (16)

Table 2. Parameters and their values (unit: quarter−1).

Parameters Value Comments

A1 2× 104 annual crop of newborn puppies
d1 2× 10−2 dog natural mortality rate
β1 1× 10−4 livestock to dog transmission rate
σ 0.5 rate moving from infected to non-infected dog

A2 2.625× 107 annual crop of newborn livestock
d2 8.25× 10−2 livestock mortality rate
β2 2.4× 10−13 parasite egg-to-livestock transmission rate
a 1.65 released rate from infected dog
d 47.5 parasite egg mortality rate

A3 6× 104 human annual birth population
d3 3.525× 10−3 human natural mortality rate
ω 3.125× 10−3 human incubation period
µ 0.0238% human disease-related death rate
γ 0.1875 treatment/recovery rate
β3 1.325× 10−9 parasite egg-to-human transmission rate

Using these parameter values, we can give a rough estimate of the basic reproduction number
R0 = 0.541 in the current circumstances in Xinjiang. This indicates that, with the current control
measures, human Echinococcosis cases will eventually vanish in Xinjiang.

The simulation results of the model on the number of human Echinococcosis cases are shown
in Figure 5.
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Figure 5. The comparison between real values and the simulation values.

From Figure 5, we can see that the dynamic epidemic model simulation result matches the
Echinococcosis data well. According to the current situation, we present a prediction on the general
tendency of the epidemic in the long-term, which is presented in Figure 6.
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Figure 6. The tendency prediction of human Echinococcosis cases over a period of 60 years.

Figure 6 shows that the number of human Echinococcosis cases will increase steadily in 26 or 27 years,
then reach a peak (about 1250) in 2039, before beginning to slowly decline, and finally disappear.

3.2.2. Sensitivity Analysis

To create better control strategies for Echinococcosis infections, we would like to see what
parameters can reduce the basic reproduction number R0. Based on the methods of reference [34],
we performed a sensitivity analysis of several model parameters and provided some useful strategies
for controlling the transmission of Echinococcosis.

For the sensitivity analysis, we used Latin hypercube sampling (LHS) and partial rank correlation
coefficients (PRCC) to examine parameters which had a significant influence on the basic production
number R0. We chose the sample size n = 3000, and the significance level α = 0.05. The larger the PRCC
is in absolute value, the more important the parameters are for responding to the change of R0. A plus
sign or minus sign means that the influence is positive or negative, respectively. The ordering of these
PRCCs corresponds to the level of statistical influence that the parameter has on the variability of the
basic production number R0. The PRCC values of six parameters are listed in Table 3 and are shown
in Figure 7.

Table 3. Partial rank correlation coefficients (PRCCs) for the aggregate R0 and each input
parameter variable.

Input Parameter
The Basic Production Number R0

PRCC p Value

A1 0.0833 0.0000
A2 0.0148 0.4183
β1 0.8916 0.0000
β2 0.9530 0.0000
σ −0.8307 0.0000
α 0.0071 0.6964

From Table 3 and Figure 7, we can confirm that parameters A1, β1, and β2 have a positive impact
upon R0, and that σ has a negative impact. We also know that R0 is not sensitive to parameters A2 and
α. Further, Table 3 shows that the low parasite egg-to-livestock transmission rate β2 (|PRCC| = 0.9530)
has the greatest impact on R0, followed by the livestock to dog transmission rate β1 (|PRCC| = 0.8916),
and then the high rate moving from infected to non-infected dogs σ (|PRCC| = −0.8307). Hence,
from sensitivity and mathematical analysis, we conclude that the most effective approach for reducing
the Echinococcosis infection is to decrease the parameters β1, and β2, and to increase the parameter σ.
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From the above sensitivity analysis, to control Echinococcosis, some alternative strategies can
be considered: dogs should be barred from slaughter houses and should not be fed uncooked offal,
infection carcasses and offal should be burned or buried, the frequency of dog anthelmintic should be
increased, the method of transmission and instructions in personal sanitation should be informed to
the public, and the annual crop of newborn puppies should be reduced, etc. [1].

4. Conclusions

Echinococcosis is of significant medical and economic importance in the Xinjiang Uygur
Autonomous Region of China. It is one of the most important zoonotic diseases and it is of great
social importance. This research investigates the modified grey model and the dynamic epidemic
model for predicting the human Echinococcosis cases. In this study, the traditional GM(1,1) model,
two residual correction-based grey models (PECGM(1,1), FGM(1,1)), and a multiplicative seasonal
model ARIMA(1,0,1)(1,1,0)4 are applied, to analyze the surveillance data of Echinococcosis cases for
a short-term prediction comparison. Furthermore, a dynamic epidemic model for long-term prediction
is also established.

The fitting results of the grey models show that FGM(1,1) is able to make an accurate prediction
for the Echinococcosis prevalence trend in Xinjiang. The results also demonstrate that there are obvious
seasonal and periodic features in Echinococcosis cases in Xinjiang. Infection with Echinococcus remains
a major public health issue and the cases will continue to rise in the short-term. Efforts should be
continued, for both animals and humans, by increasing training campaigns and public awareness.

A dynamic epidemic prediction model can predict the future tendency very well. Its results
demonstrate that, using current control options, human Echinococcosis cases will decrease around
the 104th quarter. The basic reproduction number R0 = 0.541 indicates that, with the current control
measures, human Echinococcosis cases will cease to exist in Xinjiang in the long run. To control human
Echinococcosis, we could choose prevention and control strategies from decresae parameters A1

(annual crop of newborn puppies), β1 (livestock to dog transmission rate), β2 (parasite egg-to-livestock
transmission rate), and increase the parameter σ (rate moving from infected to non-infected dog).
However, elimination is a difficult goal to achieve, principally due to the disease transmission
restriction and the control measures being implemented.

It should be noted that the government and officials in Xinjiang have enlarged the propaganda
and education on Echinococcosis control. There are many clear technological improvements in the
diagnosis and treatment of human and animal Echinococcosis vaccinations against Echinococcus
granulosus in animals. These new measures and technologies increase the efficiency of Echinococcus
control programmes, potentially reducing the time required for its elimination. We hope that our work
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may help in understanding the epidemic spreading phenomena and designing appropriate strategies
to control Echinococcus infections in Xinjiang.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-4601/14/3/262/s1.
1. Original GM(1,1) Model; 2. Grey-Periodic Extensional Combinatorial Model (PECGM(1,1)); 3. Modified Grey
Model Using Fourier Series (FGM(1,1)).
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