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1 Model parameters and values

Constant parameters. Table S1 shows the epidemiological parameter values for brucellosis
in literature. The unit of the model parameters is one year. The incubation period of human
brucellosis is about two weeks [1], so the clinical outcome rate for exposed people is σ = 26
per year. From the China Statistical Yearbook [2] and the China Animal Husbandry Statistical
Yearbook [3], one can obtain the demographic parameter values (including human populations
birth rate bh and death rates dh, sheep recruitment and slaughter rate b) for mainland China and
the 11 provinces with the highest incidence for human brucellosis listed in Table S2.

Table S1: Constant parameters description and values (year−1).

Description Notation Value Reference
Extrinsic incubation period of human brucellosis 1

σ
1
26

[1]
Transfer rate from acute infections to chronic infections p 0.6 [4]
Transfer rate from acute infections to susceptible populations m 0.4 [4]
Brucella shedding rate by infected animals k 15 [4]
The decaying rate of Brucella in the environment δ 3.6 [4]

Table S2: Values of b, bh and dh and 95% confidence intervals (year−1).

b 95% CI bh 95% CI (10−3) dh 95% CI (10−3)
Mainland China 0.9026 (0.8531-0.9521) 12.098 (11.9863-12.2097) 6.937 (6.7422-7.1318)
Xingjiang 0.8363 (0.7470-0.9256) 15.918 (15.5573-16.2787) 4.973 (4.7345-5.2125)
Shandong 1.3203 (1.2255-1.4151) 11.682 (11.3864-11.8776) 6.353 (6.1953-6.5107)
Liaoning 0.9914 (0.9723-1.0104) 6.382 (6.0943-6.6697) 5.758 (5.3973-6.1187)
Henan 1.0794 (1.0524-1.1064) 11.616 (11.4145-11.8162) 6.459 (6.3734-6.6166)
Ningxia 0.8515 (0.7890-0.9139) 14.509 (13.7663-15.2517) 4.755 (4.5832-4.9268)
Shanxi 0.5087 (0.4892-0.5283) 11.201 (10.7591-11.6429) 5.819 (5.6489-5.9891)
Hebei 1.2397 (1.0895-1.3899) 12.91 (12.649-13.171) 6.544 (6.2962-6.6918)
Heilongjiang 0.7864 (0.7605-0.8123) 7.448 (7.1854-7.7106) 5.538 (5.2718-5.8042)
Shannxi 0.6855 (0.6541-0.717) 10.115 (9.9321-10.2979) 6.1516 (6.0809-6.2321)
Inner Mongolia 1.0228 (1.0021-1.0435) 9.525 (9.262-9.7878) 5.7025 (5.5515-5.8535)
Jilin 0.7667 (0.7292-0.7956) 7.2026 (6.6134-7.7994) 5.2854 (5.0902-5.4805)

Estimated values of transmission rates. We fix the human indirect transmission rate
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βhw, and assume that βhw = 0.5 for mainland China and 11 selected provinces with the highest
incidence for human brucellosis. By using least-squares fitting method in DEDiscover software,
the estimates of βs, βsw and βh for these 11 provinces and mainland China can be obtained, and
are shown in Table S3.

Table S3: Estimated values of βs, βsw and βh with their 95% confidence intervals (year−1).

βs 95% CI βsw 95% CI βh 95% CI
Mainland China 0.5583 (0.5522-0.5643) 0.1125 (0.1086-0.1186) 0.0676 (0.0662-0.0691)
Xinjiang 0.2395 (0.1602-0.3188) 0.3037 (0.2832-0.3243) 0.7291 (0.6525-0.8057)
Shandong 0.5739 (0.3944-0.7534) 0.3743 (0.3319-0.4176) 0.9223 (0.7376-1.1070)
Liaoning 0.1870 (0.1138-0.2602) 0.2970 (0.2816-0.3123) 0.0738 (0.0297-0.1180)
Henan 0.2389 (0.1829-0.2950) 0.3402 (0.3115-0.3689) 0.4457 (0.3881-0.5032)
Ningxia 0.3761 (0.2102-0.5420) 0.2847 (0.2455-0.3240) 0.4264 (0.2148-0.6380)
Shanxi 0.3878 (0.3622-0.4134) 0.0544 (0.0437-0.0650) 0.9355 (0.9049-0.9661)
Hebei 0.6213 (0.5381-0.7045) 0.1847 (0.1550-0.2143) 0.9295 (0.8963-0.9627)
Heilongjiang 0.3781 (0.3176-0.4386) 0.1311 (0.1167-0.1456) 0.5256 (0.4561-0.5951)
Shaanxi 0.4598 (0.4023-0.5173) 0.0579 (0.0427-0.0731) 0.0929 (0.0331-0.1565)
Inner Mongolia 0.6275 (0.6030-0.6520) 0.1437 (0.1344-0.1530) 0.4638 (0.4401-0.4874)
Jilin 0.5347 (0.3661-0.7034) 0.1984 (0.1657-0.2311) 0.4628 (0.3405-0.5851)

2 Dynamical behavior

For the brucellosis model:

dSs

dt
= bNs − βsSs IsNs

− βswSsf(W )− bSs,
dIs
dt

= βsSs
Is
Ns

+ βswSsf(W )− bIs,
dW
dt

= kIs − δW,
dSh

dt
= bhNh +mIh − βhSh Is

Nh
− βhwShg(Nh,W )− dhSh,

dEh

dt
= βhSh

Is
Nh

+ βhwShg(Nh,W )− σEh − dhEh,
dIh
dt

= σEh − pIh −mIh − dhIh,
dCh

dt
= pIh − dhCh,

Ns = Ss + Is, Nh = Sh + Eh + Ih + Ch.

(1)

As the last four equations are independent of the first three equations for system (1), we
only need to consider the following system:

dSs

dt
= bNs − βsSs IsNs

− βswSsf(W )− bSs,
dIs
dt

= βsSs
Is
Ns

+ βswSsf(W )− bIs,
dW
dt

= kIs − δW.
(2)
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For the general incidence rate βswSsf(W ), nonnegative functions f(W ) is assumed to be
differentiable with W , and thus solutions to system (2) with nonnegative initial conditions exist
and are unique. Throughout we also assume the following properties of function f(W ), which
are biologically reasonable:

(H1) Nonnegative function f(W ) vanishes when W = 0.

(H2) f(W ) is monotone nondecreasing with W .

(H3) f(W )
W

is monotone nonincreasing.

Notice that mass action incidence, saturating incidence, and standard incidence of system
(2) satisfy assumptions (H1)-(H3). Omega limit sets of system (2) are contained in the following
bounded region in the non-negative cone of R3:

X = {(Ss, Is,W )|Ss + Is = Ns, 0 ≤ Ss, Is ≤ Ns, 0 ≤ W ≤ kNs

δ
}.

Region X is positively invariant with respect to system (2). It is obvious that any solution of
system (2) with nonnegative initial values is nonnegative and system (2) has one disease-free
equilibrium P0 = (Ns, 0, 0). We derive the basic reproduction number of system (2) by the next
generation matrix formulated in Diekmann et al. [5, 6]. We order the infection variables first
by disease state, only needing the vector x = (Is,W )T . Considering the following auxiliary
system: {

dIs
dt

= βsSs
Is
Ns

+ βswSsf(W )− bIs,
dW
dt

= kIs − δW,
(3)

Following the recipe from van den Driessche and Watmough [7] to obtain:

F =

(
βs βswNsf

′
(0)

0 0

)
, V =

(
b 0
−k δ

)
, V −1 =

(
1
b

0
k
bδ

1
δ

)
,

here f ′(0) is the derivative of f(W ) with respect to W at disease-free equilibrium. The basic
reproduction number is defined as the spectral radius of the nonnegative matrix FV −1; it is easy
to obtain

R0 = ρ(FV −1) =
βs
b

+
kβswNsf

′
(0)

bδ
= Ri

0 +Re
0,

where Re
0 = kβswNsf

′
(0)

bδ
and Ri

0 = βs
b

are partial reproductive numbers due to environment-to-
individual transmission and individual-to-individual transmission, respectively.

Stability of the disease-free equilibrium. System (2) is a cooperation system, and the fol-
lowing theorem shows that the disease-free equilibrium of system (2) is globally asymptotically
stable in the region X .

Theorem 2.1. Supposing that assumptions (H1)-(H3) hold, then the following conclusions hold
for the system (2). (a) If R0 < 1, then the disease-free equilibrium P0 of system (2) is globally
asymptotically stable in the region X . (b) If R0 > 1, then the disease-free equilibrium P0 of
system (2) is unstable.
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Proof. One can obtain the following equation by using assumptions (H1) and (H3),

f(W )

W
≤ lim

W→0

f(W )

W
= lim

W→0

f(W )− f(0)

W − 0
= f

′
(0),

which also means f ′(0)W ≥ f(W ). Hence, for system (3), it is easy to obtain:

dx
dt
≤ (F − V )x, (4)

Let b ≥ 0 be the left eigenvector of the nonnegative matrix V −1F with respect to the
eigenvalue ρ(V −1F ) = R0, that is, bTV −1F = R0bT . Define the Lyapunov function:

L1 = bTV −1x.

Then the derivative of L along the system (3) is:

dL1

dt
= bTV −1x′ ≤ bTV −1(F − V )x = bTV −1Fx− bTx ≤ (R0 − 1)bTx.

IfR0 < 1, then dL1

dt
≤ 0. Let:

Ψ = {(Ss, Is,W ) ∈ X|dL1

dt
= 0}.

If R0 < 1, dL1

dt
= 0 implies that bTx = 0, thus Is = 0,W = 0. Therefore, the largest invariant

set of Ψ is the singleton P0. By LaSalle’s invariance principle [8], P0 is globally asymptotically
stable in the region X whenR0 < 1.

IfR0 > 1 and x > 0, it follows that:

(R0 − 1)bTx > 0, (5)

There must exist dL1

dt
> 0 in a small enough neighborhood of P0 in the interior of X . Therefore,

solutions in the interior of X sufficiently close to P0 move away from P0 providedR0 > 1, and
thus P0 is unstable. The proof is end.

The existence and stability of the endemic equilibrium. Firstly, we will show the ex-
istence of the endemic equilibrium of system (2). It is assumed that P ∗ = (S∗s , I

∗
s ,W

∗) is an
endemic equilibrium of system (2), and satisfies the following equilibrium equations:

bNs = βsS
∗
s
I∗s
Ns

+ βswS
∗
sf(W ∗) + bS∗s ,

bI∗s = βsS
∗
s
I∗s
Ns

+ βswS
∗
sf(W ∗),

kI∗s = δW ∗,

(6)

We have W ∗ = kI∗s
δ

and S∗s = Ns − I∗s . Therefore, the equilibrium of system (2) is equal to the
following system:

bI∗s = βs(Ns − I∗s )
I∗s
Ns

+ βsw(Ns − I∗s )f(
kI∗s
δ

). (7)
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Equation (7) has a zero solution I∗s = 0. Let,

F (I∗s ) = βs(Ns − I∗s )
I∗s
Ns

+ βsw(Ns − I∗s )f(
kI∗s
δ

)− bI∗s . (8)

For equation (8), we can obtain:

dF (I∗s )

dI∗s
= βs − 2βs

I∗s
Ns

+ βswNs
k

δ
f
′
(
kI∗s
δ

)− βswf(
kI∗s
δ

)− b.

Due to F (0) = 0 and F (Ns) = −bNs < 0, so the sufficient and necessary condition for the
existence of positive equilibrium of system (7) is:

dF (I∗s )

dI∗s
|I∗s=0 = βs + βswNs

k

δ
f
′
(0)− b = b(R0 − 1) > 0.

Hence, we can conclude that for system (2) there at least exists an endemic equilibrium if
R0 > 1.

Theorem 2.2. Suppose that assumptions (H1)–(H3) hold. IfR0 > 1, then the endemic equilib-
rium P ∗ of system (2) is unique and globally asymptotically stable in the interior of X .

Proof. Let h(a) = 1− a+ ln a for all a > 0, then it is easy to verify that:

h(a) = 1− a+ ln a ≤ 0. (9)

LetD1 = Ss−S∗s−S∗s ln Ss

S∗s
+Is−I∗s−I∗s ln Is

I∗s
andD2 = W−W ∗−W ∗ ln W

W ∗
. Differentiating

D1 and D2 with t along solution curves of system (2) and using equilibrium equations (6) to
simplify, one can obtain:

dD1

dt
=

(
1− S∗s

Ss

)
S
′

s +

(
1− I∗s

Is

)
I
′

s

=

(
1− S∗s

Ss

)(
βsS

∗
s

I∗s
Ns

− βsSs
Is
Ns

+ βswS
∗
sf(W ∗)− βswSsf(W ) + bS∗s − bSs

)
+

(
1− I∗s

Is

)(
βsSs

Is
Ns

− βsS∗s
I∗s
Ns

Is
I∗s

+ βswSsf(W )− βswS∗sf(W ∗)
Is
I∗s

)
= βswS

∗
sf(W ∗)

((
1− S∗s

Ss

)(
1− Ssf(W )

S∗sf(W ∗)

)
+

(
1− I∗s

Is

)(
Ssf(W )

S∗sf(W ∗)
− Is
I∗s

))
+bS∗s

(
1− Ss

S∗s

)(
1− S∗s

Ss

)
+ βsS

∗
s

I∗s
Ns

(
2− S∗s

Ss
− Ss
S∗s

)
≤ βswS

∗
sf(W ∗)

(
2− Is

I∗s
− S∗s
Ss
− SsI

∗
s f(W )

S∗sIsf(W ∗)
+

f(W )

f(W ∗)

)
≤ βswS

∗
sf(W ∗)

(
f(W )

f(W ∗)
− ln

f(W )

f(W ∗)
+ ln

Is
I∗s
− Is
I∗s

)
≤ βswS

∗
sf(W ∗)

((
f(W )

f(W ∗)
− 1

)(
1− f(W ∗)W

f(W )W ∗

)
+

W

W ∗ − ln
W

W ∗ + ln
Is
I∗s
− Is
I∗s

)
≤ βswS

∗
sf(W ∗)

(
W

W ∗ − ln
W

W ∗ + ln
Is
I∗s
− Is
I∗s

)
.
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Through using inequality (9), we can obtain the second and third inequality with the following
equations:

2− S∗s
Ss
− SsI

∗
s f(W )

S∗sIsf(W ∗)
≤ − ln

S∗s
Ss
− ln

SsI
∗
s f(W )

S∗sIsf(W ∗)
= − ln

f(W )

f(W ∗)
+ ln

Is
I∗s
.

f(W )

f(W ∗)
− ln

f(W )

f(W ∗)
=

f(W )

f(W ∗)
+ ln

f(W ∗)W

f(W )W ∗ − ln
W

W ∗

≤ f(W )

f(W ∗)
− 1 +

f(W ∗)W

f(W )W ∗ − ln
W

W ∗

=

(
f(W )

f(W ∗)
− 1

)(
1− f(W ∗)W

f(W )W ∗

)
+

W

W ∗ − ln
W

W ∗ .

Following from assumptions (H2) and (H3), we have f(W )
f(W ∗)

− 1 ≥ 0, 1 − f(W ∗)W
f(W )W ∗

≤ 0 for

W ∗ ≤ W , and f(W )
f(W ∗)

− 1 < 0, 1− f(W ∗)W
f(W )W ∗

> 0 for W ∗ > W . Hence, one can obtain:(
f(W )

f(W ∗)
− 1

)(
1− f(W ∗)W

f(W )W ∗

)
≤ 0.

Similarly, we have the following equation:

dD2

dt
=

(
1− W ∗

W

)
W
′
= kI∗s

(
1− W ∗

W

)(
Is
I∗s
− W

W ∗

)
= kI∗s

(
1− W

W ∗ +
Is
I∗s
− IsW

∗

I∗sW

)
≤ kI∗s

(
− W

W ∗ + ln
W

W ∗ − ln
Is
I∗s

+
Is
I∗s

)
.

Hence, we can define the following Lyapunov function:

L2 =
D1

βswS∗sf(W ∗)
+
D2

kI∗s
.

It follows that:

dL2

dt
=

1

βswS∗sf(W ∗)

dD1

dt
+

1

kI∗s

dD2

dt

≤
(
W

W ∗ − ln
W

W ∗ + ln
Is
I∗s
− Is
I∗s

)
+

(
− W

W ∗ + ln
W

W ∗ − ln
Is
I∗s

+
Is
I∗s

)
= 0.

Moreover, the equality dL2

dt
= 0 holds if and only if Ss = S∗s , Is = I∗s and W = W ∗.

Thus, P ∗ is the only invariant set of system (2) in {(Ss, Is,W ) ∈ X : dL2

dt
= 0}. By LaSalle’s

invariance principle [8], P ∗ is globally asymptotically stable and unique in the interior of X
whenR0 > 1. This completes the proof.
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The endemic equilibrium of human population. From previous analysis we know that
the endemic equilibrium of system (2) is unique and globally asymptotically stable if R0 > 1.
(1) The indirect transmission rate of human population is standard incidence, and bh > dh.
When system (2) is stable, the last four equations of system (1) will become the following
equations: 

dSh

dt
= bhNh +mIh − βhSh I

∗
s

Nh
− βhwShW

∗

Nh
− dhSh,

dEh

dt
= βhSh

I∗s
Nh

+ βhwSh
W ∗

Nh
− σEh − dhEh,

dIh
dt

= σEh − pIh −mIh − dhIh,
dCh

dt
= pIh − dhCh,

(10)

where Nh = Sh + Eh + Ih + Ch. For dNh

dt
= (bh − dh)Nh, it is easy to obtain Nh(t) =

Nh(0)e(bh−dh)t and lim
t→∞

Nh(t) = ∞. We make the following scaling transforms for system
(10),

sh =
Sh
Nh

, eh =
Eh
Nh

, ih =
Ih
Nh

, ch =
Ch
Nh

,

and we can obtain the following equations:
dsh
dt

= bh(1− sh) +mih − βhwshW
∗

Nh
− βhsh I

∗
s

Nh
,

deh
dt

= βhwsh
W ∗

Nh
+ βhsh

I∗s
Nh
− σeh − bheh,

dih
dt

= σeh − pih −mih − bhih,
dch
dt

= pih − bhch.

(11)

As lim
t→∞

Nh(t) =∞, we only need to consider the following limit system:
dsh
dt

= bh(1− sh) +mih,
deh
dt

= −σeh − bheh,
dih
dt

= σeh − pih −mih − bhih,
dch
dt

= pih − bhch.

(12)

For system (12), there is only a equilibrium E0 = (1, 0, 0, 0), and the equilibrium is globally
asymptotically stable. Furthermore, let P (t) = (Sh(t), Eh(t), Ih(t), Ch(t)) be the positive equi-
librium of system (10) at time t. We can obtain:

Sh(t) =
Nh(t)

βhI∗s + βhwW ∗ (σ + dh)Eh(t), Ih(t) =
σ

p+m+ dh
Eh(t), Ch(t) =

p

dh
Ih(t). (13)

Taking the equations of system (13) into Nh(t) = Sh(t) + Eh(t) + Ih(t) + Ch(t), we can
obtain:

Eh(t) =
Nh(t)

(σ+dh)(p+dh)+mdh
dh(p+m+dh)

+ σ+dh
βhI∗s+βhwW

∗Nh(t)
.

Hence,

lim
t→∞

Eh(t) = lim
t→∞

Nh(t)
(σ+dh)(p+dh)+mdh

dh(p+m+dh)
+ σ+dh

βhI∗s+βhwW
∗Nh(t)

=
βhI

∗
s + βhwW

∗

σ + dh
,
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lim
t→∞

Ih(t) =
σ

p+m+ dh

βhI
∗
s + βhwW

∗

σ + dh
, lim
t→∞

Ch(t) =
pσ

dh(p+m+ dh)

βhI
∗
s + βhwW

∗

σ + dh
,

lim
t→∞

Sh(t) = lim
t→∞

Nh(t)

βhI∗s + βhwW ∗ (σ + dh)Eh(t) = lim
t→∞

Nh(t).

(2)

The indirect transmission rate of human population is saturating incidence or mass action
incidence, and bh > dh. When system (2) is stable, the last four equations of system (1) will
become the following equations:

dSh

dt
= bhNh +mIh − βhSh I

∗
s

Nh
− βhwShg(W ∗)− dhSh,

dEh

dt
= βhSh

I∗s
Nh

+ βhwShg(W ∗)− σEh − dhEh,
dIh
dt

= σEh − pIh −mIh − dhIh,
dCh

dt
= pIh − dhCh,

(14)

Before discussing the details, we make the following scaling transforms for system (14):

sh =
Sh
Nh

, eh =
Eh
Nh

, ih =
Ih
Nh

, ch =
Ch
Nh

, ϕ = βhwg(W ∗).

We have, 
dsh
dt

= bh(1− sh) +mih − ϕsh − βhwshW
∗

Nh
,

deh
dt

= ϕsh + βhwsh
W ∗

Nh
− σeh − bheh,

dih
dt

= σeh − pih −mih − bhih,
dch
dt

= pih − bhch.

(15)

Due to lim
t→∞

Nh(t) =∞, so we only need to consider the following limit system:


dsh
dt

= bh(1− sh) +mih − ϕsh,
deh
dt

= ϕsh − σeh − bheh,
dih
dt

= σeh − pih −mih − bhih,
dch
dt

= pih − bhch.

(16)

Let P∗ = (s∗h, e
∗
h, i
∗
h, c
∗
h) be the positive equilibrium of system (16), we have:

s∗h =
bh(p+m+ bh)(σ + bh)

(ϕ+ dh)(p+m+ bh)(σ + bh)−mσϕ
, e∗h =

ϕ

σ + bh
s∗h, i

∗
h =

σ

p+m+ bh
e∗h, c

∗
h =

p

bh
i∗h.

For the stability of positive equilibrium P∗ of system (16), we have the following theorem.

Theorem 2.3. The positive equilibrium P∗ of system (16) is globally asymptotically stable.
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Proof. To prove the local stability of positive equilibrium P∗ of system (16), all eigenvalues of
the Jacobian matrix with system (16) at positive equilibrium P∗ should have negative real parts.
The Jacobian matrix is:

J |P∗=


−(bh + ϕ) 0 m 0

ϕ −(σ + bh) 0 0
0 σ −(p+m+ bh) 0
0 0 p −bh

 .

Hence, the corresponding characteristic equation of J |E∗ is:

|z − J |P∗ | =

∣∣∣∣∣∣∣∣
z + (bh + ϕ) 0 −m 0
−ϕ z + (σ + bh) 0 0
0 −σ z + (p+m+ bh) 0
0 0 −p z + bh

∣∣∣∣∣∣∣∣
= (z + bh)

∣∣∣∣∣∣
z + (bh + ϕ) 0 −m
−ϕ z + (σ + bh) 0
0 −σ z + (p+m+ bh)

∣∣∣∣∣∣
= (z + bh)(z

3 +M1z
2 +M2z +M3) = 0,

where M1 = ϕ+ p+m+ σ+ 3dh > 0,M2 = (ϕ+ bh)(p+m+ bh) + (ϕ+ bh)(σ+ bh) + (p+
m+ bh)(σ+ bh) > 0,M3 = (ϕ+ bh)(p+m+ bh)(σ+ bh)−mσϕ > 0, and M1M2−M3 > 0.

Let Φ(z) := z3+M1z
2+M2z+M3 = 0. By Routh–Herwitz criteria, all roots of Φ(z) have

negative real parts, and hence the positive equilibrium P∗ of system (16) is locally asymptoti-
cally stable. Furthermore, the positive equilibrium P∗ of system (15) is globally asymptotically
stable, because system (16) is linear. The proof is end.

If the direct transmission rate of human population is not standard incidence, we can obtain
the same conclusion with this situation.

Remark 2.4. For the transmission rate of human brucellosis, there are two kinds of situations.
In the first situation both direct and indirect transmission rate of human population are standard
incidence. In this situation, the human brucellosis cases will remain constant, but the proportion
between infection cases and whole population will tend to 0 in the future when R0 > 1. In the
second situation at least one of the direct and indirect transmission rate of human population
is not standard incidence. In this situation, the human brucellosis cases will remain increasing,
but the proportion between infected cases and whole population will tend to a constant in the
future whenR0 > 1.
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