
International  Journal  of

Environmental Research

and Public Health

Review

Traffic-Related Air Pollution and Childhood Asthma:
Recent Advances and Remaining Gaps in the
Exposure Assessment Methods

Haneen Khreis 1,2,3,4,* and Mark J. Nieuwenhuijsen 1,2,3

1 Centre for Research in Environmental Epidemiology (CREAL), ISGlobal, 08003 Barcelona, Spain;
mark.nieuwenhuijsen@isglobal.org

2 Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
3 CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
4 Institute for Transport Studies, University of Leeds, LS2 9JT Leeds, UK
* Correspondence: khreishaneen@gmail.com; Tel.: +34-93-2147337

Academic Editor: Paul B. Tchounwou
Received: 8 February 2017; Accepted: 15 March 2017; Published: 17 March 2017

Abstract: Background: Current levels of traffic-related air pollution (TRAP) are associated with
the development of childhood asthma, although some inconsistencies and heterogeneity remain.
An important part of the uncertainty in studies of TRAP-associated asthma originates from
uncertainties in the TRAP exposure assessment and assignment methods. In this work, we aim
to systematically review the exposure assessment methods used in the epidemiology of TRAP
and childhood asthma, highlight recent advances, remaining research gaps and make suggestions
for further research. Methods: We systematically reviewed epidemiological studies published up
until 8 September 2016 and available in Embase, Ovid MEDLINE (R), and “Transport database”.
We included studies which examined the association between children’s exposure to TRAP metrics
and their risk of “asthma” incidence or lifetime prevalence, from birth to the age of 18 years old.
Results: We found 42 studies which examined the associations between TRAP and subsequent
childhood asthma incidence or lifetime prevalence, published since 1999. Land-use regression
modelling was the most commonly used method and nitrogen dioxide (NO2) was the most commonly
used pollutant in the exposure assessments. Most studies estimated TRAP exposure at the residential
address and only a few considered the participants’ mobility. TRAP exposure was mostly assessed at
the birth year and only a few studies considered different and/or multiple exposure time windows.
We recommend that further work is needed including e.g., the use of new exposure metrics such as
the composition of particulate matter, oxidative potential and ultra-fine particles, improved modelling
e.g., by combining different exposure assessment models, including mobility of the participants, and
systematically investigating different exposure time windows. Conclusions: Although our previous
meta-analysis found statistically significant associations for various TRAP exposures and subsequent
childhood asthma, further refinement of the exposure assessment may improve the risk estimates,
and shed light on critical exposure time windows, putative agents, underlying mechanisms and
drivers of heterogeneity.
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1. Introduction

Asthma is a chronic inflammatory disease of the airway which has a large impact on quality of life
and poses a great burden on health services [1]. In children, asthma is the most commonly reported
chronic disease in developed countries [2]. Environmental factors, importantly including improved

Int. J. Environ. Res. Public Health 2017, 14, 312; doi:10.3390/ijerph14030312 www.mdpi.com/journal/ijerph

http://www.mdpi.com/journal/ijerph
http://www.mdpi.com
http://www.mdpi.com/journal/ijerph


Int. J. Environ. Res. Public Health 2017, 14, 312 2 of 19

hygiene, ambient air pollution exposures, and early-life exposures to microbes and aeroallergens,
contribute to the development of asthma [2]. In a recent systematic review and meta-analyses,
we found statistically significant associations between traffic-related air pollution (TRAP) and the
incidence and lifetime prevalence of childhood asthma, although there was significant heterogeneity
in some of the risk estimates [3]. These effects are biologically plausible. Britain’s Committee on the
Medical Effects of Air Pollutants proposed four mechanisms by which air pollution can affect asthma:
(1) oxidative stress and damage; (2) inflamed pathways; (3) airway remodeling; and (4) enhancement
of respiratory sensitization to allergens [4]. Oxidative stress relates to common asthmatic traits [5],
and was suggested to play a role in asthma pathogenesis [6]. Further, it was previously highlighted as
one chief pathway which underpins the adverse health effects of (traffic-related) air pollution on the
respiratory systems [7].

TRAP is a particularly important and challenging exposure to study given its ubiquity,
its dominance in present urban areas, its proximity to human receptors, and its high spatial and
temporal variability [8–11]. For example, the local traffic contribution to ambient nitrogen dioxide
(NO2) can be up to 80%, and ranges between 9% and 53% for urban particulate matter less than
10 micrometres in diameter (PM10), and 9%–66% for urban particulate matter less than 2.5 micrometres
in diameter (PM2.5) [8].

In the epidemiological studies included in the most recent meta-analyses of TRAP and the
development of childhood asthma, different exposure assessment methods and indices have been
used to characterise the exposure to TRAP, including distance to roads, active measurement of air
pollutants, use of routinely measured air pollution data, land-use regression (LUR) modelling, air
dispersion modelling and remote sensing [3]. These various methods and indices differ substantially
and have advantages and disadvantages in terms of their spatial and temporal resolution, specificity
to traffic, data and effort/expertise requirements, transferability and information provided on the
actual pollutants. Furthermore, the different epidemiological studies focused on different pollutants
and different exposure time windows [3]. The use of different exposure assessment methods in
health effects or impacts studies can result in different estimates, partly due to the difference in
accuracy and precision of the exposure estimates and the potential differential effects of different
pollutants. Although the evidence base is very limited, research has shown differences, for example in
the performance of and the results from dispersion models versus LUR [12–14] which in two studies
translated into small differences in the risk estimates, but in one study translated into differences in
the direction of effect estimates of NO2 on birth weight [13]. In a previous meta-analysis on TRAP and
childhood asthma, there was some suggestion of a difference between associations with NO2 from
within-community studies that used LUR models (five studies, odds ratio (OR) = 1.14, 95% confidence
interval (CI) 1.06, 1.23) and those from studies that used dispersion models (five studies, OR = 1.02,
95% CI 0.97, 1.07) [15]. Further, there were differences in estimated health impacts when using different
pollutant-specific exposure-response functions. For example, cases of asthma attributable to PM10 and
NO2 differ substantially to cases of asthma attributable to black carbon [16].

In this paper, we aim to describe and discuss the exposure assessments conducted in studies of
TRAP and childhood asthma development, including the methods used in the different regions, the
pollutants and exposure assignment and time windows studied. We then highlight research gaps
and make suggestions for further research in this rapidly growing area. Our focus is on the exposure
assessments and not the effects of TRAP on asthma development per se; which we reviewed in depth
elsewhere [3]. Our results and discussion are applicable to other research on TRAP and various health
outcomes, beyond childhood asthma, as the exposure assessment methods are often similar [11,17].

2. Methods

We conducted a systematic review to synthesize the literature on TRAP exposures and the
subsequent risk of childhood asthma development defined as incidence or lifetime prevalence [3].
We followed established guidance published by the University of York’s Centre for Reviews and
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Dissemination [18]. We registered a protocol (registration number: CRD42014015448) with the
international prospective register of systematic reviews (PROSPERO) documenting our methodological
approach a priori [19].

We performed the searches on 8 September 2016 via the database search interface OvidSP
(http://ovidsp.ovid.com/). We searched the following databases for relevant studies: Embase (1996 to
week 36, 2016), Ovid MEDLINE (R) (1996 to August 2016), and “Transport Database” (1988 to August
2016). We identified relevant studies by entering four sets of combined keywords in the “Multi-Field
Search” option in OvidSP. We searched for the selected keyword combinations in “All Fields”.
The keyword combinations were:

1. “Child*” AND “air pollution” AND “asthma”;
2. “Child*” AND “air quality” AND “asthma”;
3. “Child*” AND “vehicle emissions” AND “asthma”; and
4. “Child*” AND “ultra-fine particles” AND “asthma”.

We applied no limits on the initial publication date and no limits on language although we
eventually excluded three foreign language studies due to translation difficulties [20–22]. We conducted
a hand search in the reference lists of all the included studies and of previous relevant reviews we
identified [15,17,23–30]. We contacted authors of unpublished studies (abstracts only) and the authors
of the most recurrent studies to ensure the inclusion of all relevant published material on the topic
and this resulted in the inclusion of two additional studies [31,32]. We searched Google for any other
material related to “traffic-related air pollution” AND “childhood asthma” and this resulted in the
inclusion of one additional study [33]. One study was also not identified in the searches but by
one of the reviewers and this was included [34]. We exported studies into an Endnote X7.4 library
and removed duplicates automatically using the Endnote function “Find Duplicates”. For inclusion,
we selected studies that met all the following criteria:

• Were published epidemiological/observational studies;
• Explicitly specified the term “asthma” as an outcome for investigation;
• Examined the childhood exposure from birth until 18 years old [35] to any designated TRAP metric

or established traffic-related air pollutant including proximity to roads or traffic, carbon monoxide
(CO), elemental carbon (EC), nitrogen oxides (NOx), nitric oxide (NO), NO2, hydrocarbons,
particles of different aerodynamic diameters (PM2.5, PM10, PMcoarse, UFPs) or PM2.5 absorbance
as a marker for black carbon (BC) concentrations [10,36]; and

• Examined and reported associations between preceding exposure to TRAP and subsequent risk
of asthma reported as incidence or lifetime prevalence from birth until 18 years old.

All titles and abstracts were reviewed against the inclusion criteria by one researcher
(Haneen Khreis) with a random 20% independently reviewed by another researcher. All potentially
relevant studies were then retrieved and the available full-papers reviewed against the inclusion
criteria by one researcher (Haneen Khreis) with a random 50% independently reviewed by another
researcher (Mark J. Nieuwenhuijsen). Screening was undertaken manually and differences were
resolved by consensus. The following data items were extracted from each included study:

1. Study reference and setting;
2. Study design;
3. Age group;
4. Number of participants;
5. Exposure assessment method(s);
6. Pollutant(s) studied;
7. Exposure assessment place;

http://ovidsp.ovid.com/
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8. Exposure assessment time; and
9. Air pollution estimates validation, if any.

Data was primarily extracted from the main papers of the included studies. Where necessary,
data items were missing from the main papers, data was extracted from the supplementary
materials [31,37–52], and the associated publications [53–66]. Data extraction was undertaken
manually by one researcher (Haneen Khreis). A random 50% was independently reviewed by another
researcher (Mark J. Nieuwenhuijsen). A fuller detail of the screening methodology can be found in
Khreis et al. (2017) [3].

3. Results

3.1. Overview

The databases searches yielded 4276 unique articles, from which 95 were selected for detailed
assessment of the full text, one of which was identified by a peer reviewer. Figure 1 shows the flow of
papers. A total of 42 studies met our inclusion criteria [31–34,36–48,50–52,58,67–87] (Table 1).

A summary of the included studies’ key characteristics is shown in Table 1. Ages of participants
ranged from 1 to 18 years old and sample sizes ranged from 184 [69] to 1,133,938 [85]. Follow-up
periods ranged from 1 to 16 years [47]. Eighteen studies were conducted in Europe, 11 in North
America, 5 in Japan, 3 in China and 1 in each of Korea and Taiwan. Thirty-two studies were cohort
studies (25 of which were birth cohorts), 6 studies were case-control studies (2 of which were nested in
a birth cohort), and 4 studies were cross-sectional.
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Table 1. Main characteristics of the included studies.

Study Reference Setting Study Design Age Group
(Years)

Participants Included
in the Analysis Exposure Assessment Pollutant(s)

Brauer, Hoek, Van Vliet, Meliefste, Fischer, Wijga,
Koopman, Neijens, Gerritsen and Kerkhof [68]

The Netherlands, north, west
and center communities Birth cohort (PIAMA) Birth–2 2989 LUR modelling BC, NO2 , PM2.5

Brauer, Hoek, Smit, De Jongste, Gerritsen,
Postma, Kerkhof and Brunekreef [67]

The Netherlands, north, west
and center communities Follow-up on Brauer et al. (2002) Birth–4 2826 LUR modelling BC, NO2 , PM2.5

Brunst, Ryan, Brokamp, Bernstein, Reponen, Lockey,
Khurana Hershey, Levin, Grinshpun and LeMasters [46] USA, Cincinnati Birth cohort (CCAAPS) Birth–7 589 LUR modelling EC

Carlsten, Dybuncio, Becker, Chan-Yeung and Brauer [69] Canada, Vancouver Birth cohort (CAPPS) Birth–7 184 LUR modelling BC, NO, NO2 , PM2.5

Clark, Demers, Karr, Koehoorn,
Lencar, Tamburic and Brauer [37]

Canada, Southwestern
British Columbia

Case-control nested in British
Columbia birth cohort Birth–4 37,401

LUR modelling, monitoring
data at closest three monitors

weighted by inverse distance to
child’s residence, proximity to

highways/major roads

BC, CO, NO, NO2 , PM10 , PM2.5

Fuertes, Standl, Cyrys, Berdel, von Berg, Bauer, Krämer,
Sugiri, Lehmann and Koletzko [72] Germany 2 birth cohorts

(GINIplus and LISAplus) 3–10 4585 LUR modelling BC, NO2 , PM2.5

Gehring, Cyrys, Sedlmeir, Brunekreef, Bellander, Fischer,
Bauer, Reinhardt, Wichmann and Heinrich [73] Germany, Munich 2 birth cohorts (GINI and LISA) Birth–2 1756 LUR modelling BC, NO2 , PM2.5

Gehring, Wijga, Brauer, Fischer, de Jongste, Kerkhof,
Oldenwening, Smit and Brunekreef [39]

The Netherlands, north, west
and center communities Follow-up on Brauer et al. (2007) Birth–8 3143 LUR modelling BC, NO2 , PM2.5

Gehring, Beelen, Eeftens, Hoek, de Hoogh, de Jongste,
Keuken, Koppelman, Meliefste and Oldenwening [48]

The Netherlands, north, west
and center communities

Follow-up on
Gehring et al. (2010) Birth–12 3702 LUR modelling

BC, NO2 , PM2.5 , PM10 ,
PMcoarse and PM composition

elements: copper (Cu), iron (Fe),
zinc (Zn), nickel (Ni), sulfur (S),

vanadium (V)

Gehring, Wijga, Hoek, Bellander, Berdel, Brüske, Fuertes,
Gruzieva, Heinrich and Hoffmann [47]

Sweden, Germany,
The Netherlands

Pooled data from four birth
cohorts: BAMSE; GINIplus;

LISAplus and PIAMA
Birth–16 14,126 LUR modelling BC, NO2 , PM2.5 ,

PM10 , PMcoarse

Gruzieva, Bergström, Hulchiy, Kull, Lind, Melén,
Moskalenko, Pershagen and Bellander [40] Sweden, Stockholm Birth cohort (BAMSE) Birth–12 3633

Dispersion modelling
(Airviro, street canyon

contribution for 160 houses)
NOx , PM10

Jerrett, Shankardass, Berhane, Gauderman, Künzli, Avol,
Gilliland, Lurmann, Molitor and Molitor [74]

USA, 11 southern
Californian communities Cohort (CHS) 10–18 209

NO2 Palmes tubes monitoring
for 2 weeks in 2 seasons at the

child’s residence
NO2

Kerkhof, Postma, Brunekreef, Reijmerink, Wijga,
De Jongste, Gehring and Koppelman [75]

The Netherlands, north, west
and center communities Birth cohort (PIAMA) Birth–8 916 LUR modelling BC, NO2 , PM2.5

Krämer, Sugiri, Ranft, Krutmann, von Berg, Berdel,
Behrendt, Kuhlbusch, Hochadel and Wichmann [36] Germany, Wesel 2 birth cohorts

(GINIplus and LISAplus) 4–6 2059
LUR modelling, distance to next

major road traversed by more
than 10,000 cars/day

BC, NO2

LeMasters, Levin, Bernstein, Lockey, Lockey, Burkle,
Khurana Hershey, Brunst and Ryan [76] USA, Cincinnati Birth cohort (CCAAPS) Birth–7 575 LUR modelling EC

Lindgren, Stroh, Björk and Jakobsson [41] Sweden, Scania Birth cohort Birth–6 6007

Dispersion modelling
(AERMOD), traffic intensity on
road with heaviest traffic within

100 m around residence

NOx
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Table 1. Cont.

Study Reference Setting Study Design Age Group
(Years)

Participants Included
in the Analysis Exposure Assessment Pollutant(s)

MacIntyre, Brauer, Melén, Bauer, Bauer, Berdel,
Bergström, Brunekreef, Chan-Yeung, Klümper, Fuertes,
Gehring, Gref, Heinrich, Herbarth, Kerkhof, Koppelman,
Kozyrskyj, Pershagen, Postma, Thiering, Tiesler,
Carlsten and Group [52]

Sweden, Canada, Germany,
The Netherlands

Pooled data from 6 birth cohorts:
BAMSE; CAPPS; GINI; LISA;

PIAMA; SAGE
Birth–8 5115 LUR modelling, dispersion

modelling for BAMSE only
NO2 (sensitivity analyses

for BC and PM2.5)

McConnell, Islam, Shankardass, Jerrett, Lurmann,
Gilliland and Gauderman [42]

USA, 13 southern
Californian communities Cohort (CHS)

Kindergarten/first
grade–fourth

grade
2497

Dispersion modelling for NOx
(CALINE 4), monitoring data for
NO2 , PM2.5 , PM10 , distance to

nearest freeway or other
highways or arterial roads,
traffic density within 150 m

around residence and school

NOx , NO2 , PM2.5 , PM10

Mölter, Agius, de Vocht, Lindley,
Gerrard, Custovic and Simpson [50] England, Greater Manchester Birth cohort (MAAS) Birth–11 1108

Microenvironmental exposure
model (LUR modelling for

outdoor and INDAIR for indoor
environments, indoor to

outdoor ratios: journey to
school and school)

NO2 , PM10

Mölter, Simpson, Berdel, Brunekreef, Custovic, Cyrys,
de Jongste, de Vocht, Fuertes and Gehring [51]

ESCAPE multi-center analysis,
England, Sweden, Germany,

The Netherlands

Pooled data from 5 birth cohorts:
MAAS, BAMSE, PIAMA, GINI,

LISA (South and North)
Birth–10 10,377

LUR modelling, traffic intensity
on the nearest street, traffic

intensity on major roads within
a 100-m radius

BC, NO2 , NOx , PM2.5 ,
PM10 , PMcoarse

Morgenstern, Zutavern, Cyrys, Brockow, Gehring,
Koletzko, Bauer, Reinhardt, Wichmann and Heinrich [58]

Germany, Munich
Metropolitan area

2 birth cohorts (GINI and
LISA)—extension on
Gehring et al. (2002)

Birth–2 3577 LUR modelling, living
close to major road BC, NO2 , PM2.5

Morgenstern, Zutavern, Cyrys, Brockow, Koletzko,
Kramer, Behrendt, Herbarth, von Berg and Bauer [77] Germany, Munich 2 birth cohorts (GINI and LISA) 4–6 2436

LUR modelling, minimum
distance to next motorway,

federal or state road
BC, NO2 , PM2.5

Oftedal, Nystad, Brunekreef and Nafstad [78] Norway, Oslo
Oslo birth cohort and sample

from simultaneous
cross-sectional study

Birth–10 2329

Dispersion modelling
(EPISODE), distance to main

transport routes with any form
of motor transport

NO2

Patel, Quinn, Jung, Hoepner, Diaz, Perzanowski,
Rundle, Kinney, Perera and Miller [44] USA, New York Birth cohort (CCCEH) Birth–5 593

Proximity to roadways, roadway
density, truck route density,
four-way street intersection

density, number of bus stops,
percentage of building area

designated for commercial use

NA

Rancière [34] Paris, France Birth cohort (PARIS) Birth–4 2015 Dispersion modelling NOx

Ranzi, Porta, Badaloni, Cesaroni, Lauriola,
Davoli and Forastiere [45] Italy, Rome Birth cohort (GASPII) Birth–7 672 LUR modelling, proximity to

high traffic roads NO2

Shima and Adachi [79] Japan, 7 Chiba
Prefecture communities Cohort 9/10–12/13 842 Monitoring data NO2

Shima, Nitta, Ando and Adachi [81] Japan, 8 Chiba
Prefecture communities Cohort 6–12 1910 Monitoring data NO2 , PM10

Shima, Nitta and Adachi [80] Japan, 8 Chiba
Prefecture communities Cohort 6/9–10/13 1858 Distance to trunk roads NA
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Table 1. Cont.

Study Reference Setting Study Design Age Group
(Years)

Participants Included
in the Analysis Exposure Assessment Pollutant(s)

Tétreault, Doucet, Gamache, Fournier,
Brand, Kosatsky and Smargiassi [85] Canada, Québec Birth cohort Birth–12 1,133,938 LUR modelling for NO2 ,

satellite imagery for PM2.5
NO2 , PM2.5

Wang, Tung, Tang and Zhao [82] Taiwan, 11 communities
in Taipei Cohort (CEAS)

Birth–kindergarten
(average

age 5.5 ± 1.1)
2661 Monitoring data CO, NO2 , PM2.5 , PM10

Yamazaki, Shima, Nakadate, Ohara,
Omori, Ono, Sato and Nitta [83] Japan, 57 elementary schools Cohort (SORA) 6–9 10,069

Dispersion modelling for
outdoor and indoor

concentrations, living near
heavily trafficked roads

EC, NOx

Yang, Janssen, Brunekreef, Cassee,
Hoek and Gehring [31]

The Netherlands, north, west
and center communities Birth cohort (PIAMA) Birth-14 3701 LUR modelling

Oxidative Potential, BC, NO2 ,
PM2.5 , copper (Cu), iron (Fe),

zinc (Zn), nickel (Ni), sulfur (S),
vanadium (V)

Dell, Jerrett, Beckerman, Brook, Foty, Gilbert,
Marshall, Miller, To and Walter [38] Canada, Toronto Case-control 5–9 1497

LUR modelling, monitoring data
weighted by inverse distance to

child’s residence, distance to
highways/major roadways

NO2

English, Neutra, Scalf, Sullivan, Waller and Zhu [71] USA, San Diego Case-control ≤14 8280
Average daily traffic on streets

within a 168-m
buffer around residence

NA

Hasunuma, Sato, Iwata, Kohno, Nitta, Odajima,
Ohara, Omori, Ono and Yamazaki [33] Japan, 9 cities and wards Case-control (nested in SORA) 1.5–3 416

Dispersion modelling including
indoor concentration assuming
an infiltration rate from outdoor

concentration, distance from
heavily trafficked roads

EC, NOx

[43] USA, Chicago, Bronx, Houston,
San Francisco, Puerto Rico

2 case-controls (GALA II
and SAGE II) 8–21 3015

Monitoring data at closest four
monitors weighted by inverse

distance squared to
child’s residence

NO2 , PM2.5 , PM10

Zmirou, Gauvin, Pin, Momas, Sahraoui, Just, Le Moullec,
Bremont, Cassadou and Reungoat [84]

France, Paris, Nice, Toulouse,
Clermont-Ferrand, Grenoble Case-control (VESTA) 4–14 390 Traffic density within 300 m to

road distance ratio NA

Deng, Lu, Norbäck, Bornehag, Zhang,
Liu, Yuan and Sundell [70] China, Changsha Cross-sectional (CCHH) 3–6 2490

Monitoring data weighted by
inverse distance to child’s

kindergarten

NO2 , PM10 (as a
mixture surrogate)

Deng, Lu, Ou, Chen and Yuan [86] China, Changsha Cross-sectional (CCHH) 3–6 2598
Monitoring data weighted by

inverse distance to
child’s kindergarten

NO2 , PM10 (as a
mixture surrogate)

[32] Korea, 45 elementary schools Cross-sectional 6–7 1828 Monitoring data CO, NO2 , PM10

Liu, Huang, Hu, Fu, Zou, Sun,
Shen, Wang, Cai and Pan [87] China, Shanghai Cross-sectional (CCHH) 4–6 3358 Monitoring data NO2 , PM10

Abbreviations: BAMSE, Barn (children), Allergy, Milieu, Stockholm, an Epidemiology project; BC: black carbon; CAPPS, The Canadian Asthma Primary Prevention Study; CCAAPS,
The Cincinnati Childhood Allergy and Air Pollution Study; CCCEH, Columbia Center for Children’s Environmental Health birth cohort study; CCHH, China-Children-Homes-Health
study; CEAS, Childhood Environment and Allergic Diseases Study; CHS, The Children’s Health Study; EC, elemental carbon; ESCAPE, The European Study of Cohorts for Air Pollution
Effects; GALA II, The Genes–environments and Admixture in Latino Americans; GASPII, The Gene and Environment Prospective Study in Italy; GINIplus, German Infant study on the
influence of Nutrition Intervention plus air pollution and genetics on allergy development; ICD, International Classification of Diseases; LISAplus, Life style Immune System Allergy
plus air pollution and genetics; LUR, land-use regression; MAAS, The Manchester Asthma and Allergy Study; Medi-Cal, California Medical Assistance Program; NA, not applicable;
NO, nitrogen oxide; PM: particulate matter; SAGE II, The Study of African Americans, Asthma, Genes and Environments; SAGE, The Study of Asthma, Genes and the Environment;
SORA, Study on Respiratory Disease and Automobile Exhaust; VESTA, Five (V) Epidemiological Studies on Transport and Asthma; y.o., years old.
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3.2. Exposure Assessment Methods

The exposure to TRAP was assessed using different methods, sometimes in isolation and other
times in combination with each other (Table 1). Most studies (N = 22) used LUR models, 16 studies
used TRAP surrogates (e.g., proximity to roadways), 11 studies used traffic-related air pollutant
concentrations measured at fixed-site monitoring stations, 8 studies used air dispersion modelling,
1 study used remote sensing and 1 study used diffusion tubes at the residence to measure NO2. These
methods vary substantially in terms of their spatial and temporal resolution, specificity to traffic,
data and effort/expertise required, transferability and information provided on the actual pollutants
(Table 2). These are key criteria important in studies of TRAP and asthma (and other health effects).

Table 2. Pros and cons of exposure assessment methods used in the systematic review literature. TRAP:
traffic-related air pollution.

Exposure Model
Resolution

Specificity
to Traffic Pros Cons

Spatial Temporal

TRAP surrogates main
e.g., proximity to

“major roads”
or “freeways”

- – +

Intuitive, simple and cost
effective, more insightful when
complemented with vehicle
counts and composition, low
need for updated data.

Assumes a road of a certain type or size corresponds to
a certain amount of traffic, sometime uses self-reported
traffic intensity (collected via questionnaires) which can
be subjective, assumes all pollutants disperse similarly
(limited directional dependence), cannot consider street
canyon effects, generally does not consider
compounded effects of proximity to multiple roads,
disregards exposure variability due to
mobility/individual activity.

Air pollutants
measurements from

fixed-site
monitoring stations

– ++ –

High and continuous temporal
resolution, actual
measurements rather than
predictions, cost-effective, can
provide large sample sizes,
medium need for
updated data.

Not present at all locations, locations usually based on
regulatory (not scientific) purposes, cannot consider
street canyon effects (unless located in a street canyon),
conceals persons’ differences because of a mismatch
between data used to estimate exposure and actual
subjects’ locations, potential for significant amounts of
missing data in practice, quality of the data depends on
quality of data ratification and verification, disregards
exposure variability due to mobility/individual activity.

Air pollutant
measurements from

residential
(stationary) samplers

++ - -

Provides individualized data,
captures spatial variability in
exposure between study
subjects, actual measurements
rather than predictions, cost
effective for select pollutants
(e.g., NO2), medium need for
updated data.

Only practical/feasible in small timeframes and
populations, logistic and costs concerns, not available or
cost prohibitive (e.g., ultra-fine particles) for all
pollutants of concern, disregards exposure variability
due to mobility/individual activity.

Remote sensing + - –

Can provide estimate for large
areas, can provide estimate
areas where measurements or
models are not available (e.g.,
low income countries),
relatively standardized method
across regions, medium need
for updated data.

Availability depends on satellite presence (i.e., time
resolution is limited), crude spatial resolution (10 * 10
km), only available for select pollutants, challenging to
assess errors in estimates, cannot consider street canyon
effects, disregards exposure variability due to
mobility/individual activity.

Land-use regression
models + – +

Assume independence
between sampled locations,
good agreement between
measured and predicted
averages of NO2 , less with PM,
modelling based on
measurements and information
around measurement points,
relatively easy to collate input
data, practical, low costs,
medium need for
updated data.

Only reflect the predictors used in the model, subject to
varying uncertainties amongst different pollutants, the
true contribution of traffic to the regression is not
always known or reported, difficult to take into account
street canyon effects; meteorology and atmospheric
chemistry, the quality of the data representing
“meaningful” predictors may be an issue and will affect
the overall accuracy of the model, the model’s outputs
are sensitive to the locations and density of the
sampling sites, generally disregards exposure
variability due to mobility/individual activity.

Air dispersion models ++ ++ ++

Continuous exposure metric,
traffic-specific i.e., based on
traffic flows and flow mix,
traffic emissions, meteorology
and atmospheric chemistry,
covers relatively large areas,
can assess episodic short-term
and long-term exposures, can
consider street canyon effects
through optional built-in street
canyon model, considers
compounded effects of
proximity to multiple roads,
medium need for
updated data.

Severe data demands, resource intensive, at the mercy
of the emission factors inputted in the model (subject to
high uncertainty), meteorology at the exposure scale is
influenced by complex physical features including
traffic turbulence which is difficult to consider,
overestimates pollution levels during periods of calm
wind, generally disregards exposure variability due to
mobility/individual activity.

Ratings: +: good; ++: very good; -: potentially inadequate; –: highly inadequate.
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In the literature, it was also apparent that the use of the different exposure assessment methods
varied by region (Table 1). For example, 8 out of the 11 studies using pollutant measurements at
fixed-site monitoring stations only used this exposure method (i.e., not in combination with other
methods or metrics), 7 of which were from Japan, Taiwan, Korea and China. Also, 12 out of
the 22 studies using LUR model used this exposure method only, 9 of which were from Europe
(predominantly from the PIAMA cohort in The Netherlands), while the remaining 3 were from Canada
and the USA. The remaining USA studies showed the most variability in the exposure assessment
methods choice and used residential diffusion tube monitoring, dispersion modelling, fixed-site
monitoring stations, proximity measures and multiple novel TRAP surrogates (see Patel et al. 2011
who used some new surrogates, including “four-way street intersection density” and “number of
New York City transit bus stops”).

3.3. Pollutants Studied

NO2 was the pollutant most studied (31 studies), followed by PM2.5 (18 studies),
BC or PM2.5 absorbance (15 studies), and PM10 (14 studies). Other pollutants including NOx (7 studies),
EC (4 studies), CO (3 studies), PMcoarse (3 studies), NO (2 studies) were less frequently studied.
Only two studies assessed particulate matter composition elements, considered as non-exhaust road
traffic emissions, including copper (Cu), iron (Fe), zinc (Zn), nickel (Ni), sulfur (S), and vanadium
(V). These studies exclusively originated from the Dutch PIAMA cohort [48,75]. One study assessed
oxidative potential, which is a measure of the inherent capacity of particulate matter to oxidise target
molecules, [31], and no studies assessed ultra-fine particles.

3.4. Exposure Assessment Place and Time (Windows)

Table S1 in the supplementary material is a summary of where and when the exposure to TRAP
was assessed in each included study and whether any validation was undertaken. The assignment
of TRAP exposures was almost exclusively based on the residential address of the participating
children. Only a few studies considered the impact of moving residence on TRAP exposure levels
and undertook additional or sensitivity analyses for movers/non-movers or assigned the exposure
at multiple addresses based on the residential history. There were a few studies which assigned the
exposure based on school locations instead of residence. Shima and Adachi [79] and Shima et al. [81]
used routine measurements from fixed-site stations near school addresses to represent TRAP exposures
in Japan, whilst Deng, Lu, Norbäck, Bornehag, Zhang, Liu, Yuan and Sundell [70] and Deng, Lu, Ou,
Chen and Yuan [86] used routine measurements from fixed-site stations near children’s kindergartens
to represent TRAP exposures in China.

The exposure assignment was generally static; i.e., not taking children’s mobility into account.
In many cases, this could be argued as reasonable as participants were in their infancy or early life
(birth–3 years old), and residential exposure is then thought to be most relevant. Only 10 studies,
mostly recent, considered children’s mobility in the exposure assessment and assigned time-weighted
exposures at day cares and/or schools [33,34,38,40,42,50,83,84], and other locations where the child
spends significant time [46,76], alongside residence. These studies were conducted at ages when
exposure at the residential address becomes less relevant due to children’s increased mobility.

In terms of the exposure time window investigated, studies differed, but birth year was the most
explored time window (Table S1). Very few studies investigated alternative exposure windows such as
different years of life, longer duration, cumulative or life-time exposure.

3.5. Exposure Assessment Validation

Studies using LUR or dispersion modelling validated their modelled exposure estimates
against measured concentration using different methods including leave-one-out cross validation
procedure (mainly for LUR models) and independent cross validation against fixed-site monitoring
stations measurements (mainly for dispersion models). Generally, the validation of the LUR model
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estimates were not conducted using a separate test validation dataset which significantly limits the
comprehensiveness of the validation. No study reported validation against personal exposures.

3.6. Risk Estimates by Exposure Assessment Model

Studies using different TRAP surrogates were the least consistent to show an increased asthma risk
associated with TRAP. Studies using dispersion model were more consistent in showing associations.
For example, out of 8 studies using dispersion models, 5 showed positive and statistically significant
risk estimates. Studies using traffic-related air pollutants concentrations at fixed-site monitoring
stations, and studies using LUR modelling generally showed an increased asthma risk associated
with TRAP. For example, out of 22 studies using LUR models, 17 showed positive and statistically
significant risk estimates. The one study that measured NO2 exposure at the individual residential
level also showed statistically significant associations between the exposure and asthma [74]; so did the
one study that used remote sensing [85]. Some of the same studies which found no association between
roadway proximity and asthma, found increased risks when employing more refined exposure models
such as LUR model estimates [36–38,42,45,78].

4. Discussion

We found 42 studies that examined the association between TRAP and the subsequent onset of
childhood asthma defined as incidence or lifetime prevalence. Exposures metrics differed in terms
of their spatial and temporal resolution and their specificity to traffic. LUR modelling was the most
commonly used exposure assessment method and NO2 was the most commonly studied pollutant.
Most studies estimated TRAP exposures at the residential address and only a few considered the
mobility of the children and/or their residential address changes. Most studies estimated the TRAP
exposures at the first year of life (birth year) and only a few studies assessed the effects of cumulative
exposures and/or exposures at different time-windows. Validation was undertaken for LUR and
dispersion models estimates only and no study has validated exposure estimates against personal
monitored exposures. Although our previous meta-analysis found positive and statistically significant
associations for various TRAP exposures (black carbon, NO2, PM2.5, PM10) with the onset asthma [3],
further refinement of the exposure assessments may improve the exposure-response functions and
shed light on associations with other under-investigated pollutants.

4.1. Putative Agents

The prominent focus on NO2 in the literature is probably related to the wide availability of
this pollutant measure, the ease and relatively low cost to measure it and its relative specificity
to road traffic [30]. The focus on NO2 in air quality guidelines, plans and mitigation strategies in
the EU, and beyond, is perhaps reinforcing the study of this pollutant. Fewer studies measured or
modelled PM2.5 or particulate components, even though it is more widely implicated in the health
effects of air pollution [88]. The cost of measuring and/or modelling PM tends to be higher. The
literature, however, suggests that there has been a recent move from studying standard air pollutants
to studying other agents, most notably including black and elemental carbon, two agents that are
considered as TRAP signatures, but also PM composition elements and other properties such as
oxidative potential [31,48,75]. As it stands, there were no studies investigating the impacts of long-term
exposure to ultra-fine particles on asthma but there are studies under way to measure ultra-fine
particles [89]. The work on PM composition is particularly relevant with the expected wide-spread
introduction of electric vehicles and the associated likely reductions of exhaust emissions and increase
in non-exhaust emissions [90]. PM composition research could potentially lead to further insight on
the putative agents and source of pollutants. For example, Gehring, Beelen, Eeftens, Hoek, de Hoogh,
de Jongste, Keuken, Koppelman, Meliefste and Oldenwening [48] suggested that iron, copper, and zinc
in PM, reflecting poorly regulated non-exhaust traffic emissions, may increase the risk of asthma and
allergy in Dutch schoolchildren. A birth cohort study using oxidative potential measures, particularly
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using the dithiothreitol assay, found that asthma and other respiratory health outcomes were more
strongly related to oxidative potential when compared to PM2.5, suggesting that this exposure metric
may be closer to the underlying mechanisms [31]. These different measures are rarely studied and
should be further explored in future research, principally in locations where ratios between oxidative
potential and other TRAP markers such as NO2 differ; to determine with more confidence which
metric predicts respiratory health better.

4.2. Exposure Assessment Methods

Many studies have used LUR modelling to estimate TRAP exposures, partly because of its
relatively low costs, ease of implementation and possibility to consider traffic determinants of exposure
such as the road network and traffic density. LUR models also tend to provide a good spatial coverage
and resolution for TRAP exposure. The LUR method is an empirical method and uses least squares
regression to combine measured data with geographic information system (GIS)-based predictor
data reflecting pollutant sources, to build a prediction model applicable to non-measured locations,
e.g., residential addresses of cohort members. An advantage of LUR models is that they are stable
over time [91–93]. However, their validation, most commonly undertaken using leave-one-out cross
validation procedure, is incomplete. Relatively few studies used air dispersion models which are based
on more detailed knowledge of the physical, chemical, and fluid dynamical processes in the atmosphere.
Air dispersion models use information on emissions, source characteristics, chemical and physical
properties of the pollutants, topography, and meteorology to model the transport and transformation of
gaseous or particulate pollutants through the atmosphere to predict air pollutant concentrations. They
allow for a finer temporal and spatial resolution of TRAP exposure and specific source apportionment
(beyond TRAP) which is valuable when recommending specific policy interventions targeted at specific
sources. Yet, their main drawback is related to the quality of the input data; especially the vehicle
emission factors which are highly uncertain [94]. Amongst the encountered exposure methods, these
two methods are favorable in terms of their spatial and temporal resolution and their specificity
to traffic (Table 2). The preferred method for exposure assessment is not so obvious and depends
on available resources, the quality of the input data, expertise, place of study and transferability
considerations. For example, de Hoogh, et al. [95] found that the median Pearson R (range) correlation
coefficients between LUR and air dispersion model estimates for the annual average concentrations
of NO2, PM10 and PM2.5 were 0.75 (0.19–0.89), 0.39 (0.23–0.66) and 0.29 (0.22–0.81) for 112,971
(13 study areas), 69,591 (7) and 28,519 (4) addresses respectively, suggesting a much better agreement
for NO2 than for PM, probably because the main source for NO2 is traffic and PM has other sources.
The median Pearson R correlation coefficients (range) between air dispersion model estimates and
measurements were 0.74 (0.09–0.86) for NO2; 0.58 (0.36–0.88) for PM10 and 0.58 (0.39–0.66) for PM2.5.
Wang et al. [96] compared both methods in a study of children’s lung function and found that exposure
estimates from LUR and dispersion models correlated very well for PM2.5, NO2, and black carbon, but
not for PM10. Health effect estimates did not depend on the type of model used in their population of
Dutch children. Yet, with a very limited number of comparison studies, the extent to which estimates
of air pollution effects are affected by the choice of exposure model remains unclear. A combination
of the LUR and dispersion models may further improve the exposure assessment estimates, possibly
accounting for some of the imperfections in the emission databases [97].

Compared to estimates from routine monitoring stations LUR and air dispersion model have the
advantage that they provide a better spatial resolution, but also require more effort and are costlier.
The better spatial resolution may be quite important when the study area is small and clear exposure
differences can be observed by detailed exposure assessment. At least, all three methods provide some
level of pollutants which may be important for policy reasons, while surrogate measures like distance
from roads do not. A relatively new method, remote sensing [85] has the advantage that air pollution
estimates can be obtained where there are no or fewer monitors or less resources and expertise is
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available i.e., medium- and low-income countries, but still needs some further refinement in terms of
spatial resolution and the number of pollutants for which good estimation methods are available.

We attempted to evaluate the effects of the exposure assessment method on the health risk
estimates observed in the included studies, for example with meta-regression, but the number of
studies available are still too small to conduct such analyses. Even for NO2 exposure, there were only
20 studies entering the meta-analysis, 12 of which used LUR models and 1 used dispersion modelling.
The meta-analyses though suggested considerable heterogeneity, especially in the case of NO2 where
most studies where available, and part of this heterogeneity could be caused by different exposure
assessment methods. Given the rapid increase in the number of studies in this field, it may become
possible to conduct such analysis in the near future.

4.3. Exposure Assessment Places and Time Windows

Only a small number of studies considered children’s mobility at ages when exposure at the
residential address becomes less relevant and assigned time-weighted TRAP exposures at day
care centres and schools and other locations where the child spends significant time alongside
residence. Children may spend only around 50%–60% of their time at home, and the rest elsewhere
e.g., at school [98]. TRAP exposure levels such as black carbon can be considerably higher when
commuting compared to being at home [98], and therefore residential estimates may underestimate
the true exposure and bias the exposure-response functions. New tracking technology and portable
sensors have now made it possible obtain information on TRAP exposure levels over the day, even
though it requires considerable effort and may only feasible for smaller samples [98]. New approaches
such as indicating the home and school address and commuting route in geographical information
system packages and overlaying this with time adjusted air pollution maps may provide estimates
for larger study samples and can be an area of further inquiry. Considering the significant amount
of time spent indoors, it may also be beneficial to investigate indoor air pollution exposures and the
impact of specifically incorporating these on the exposure–response functions. Currently, all available
exposure models, except personal monitors (which have not been used in any of the included studies),
estimate outdoor air pollution only and use this as a surrogate for the indoor levels without taking
into account indoor-outdoor penetration factors. However, outdoor and indoor TRAP are correlated
as there is considerable penetration of outdoor sources to indoor environments. These correlations are
may be one rapid and practical method to assign indoor exposures. One study which characterized
the indoor–outdoor relationship of PM2.5 in Beijing found that there is a strong correlation between
indoor and outdoor PM2.5 mass concentrations, and that the ambient data explained ≥ 84% variance
of the indoor data [99]. Another study similarly showed that PM2.5 levels in an Australian primary
school were mainly affected by the outdoor PM2.5 (r = 0.68, p < 0.01) [100]. Another study in Germany
found that over 75% of the daily indoor PM2.5 and black smoke variation could be explained by daily
outdoor variation for those pollutants [101].

Further, investigating different exposure time windows may highlight other relevant exposure
windows beyond the birth year and early-life that are commonly studied. The differences between
effects of early exposure versus later exposures or exposures with greater duration is yet unclear and
is difficult to detangle due to the limited number of studies investigating different time windows.
Some authors have suggested that exposures of longer duration at elevated TRAP levels may be
necessary to generate pathophysiological changes leading to asthma development and therefore may
be behind the observed effects [46].

4.4. Outlook and Recommendations

Novel approaches to exposure assessment are underway including the use of OMICS technologies
that measure biological molecules and/or activity in the body (e.g., transcriptomics, proteomics,
metabolomics or methylation) to identify fingerprints of air pollution [89,102]. Although still in their
infancy, such approaches may provide a good way of characterising air pollution exposures inside the
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body and on existing biological samples (that have been stored for a while). Furthermore, they may
provide further insight in the underlying mechanisms by which air pollution cause health effects in
children and others.

Although there appear to be statistical significant associations between TRAP and the
development of childhood asthma, there is a further need to improve the exposure estimates,
and therefore improve the exposure–response functions and the consistency of the study findings.
This is important for example when these exposure–response functions are used for burden of disease
and health impact assessment studies, and for better understanding the underlying mechanisms of
TRAP and childhood asthma and the potential differential pollutant effects and drivers of heterogeneity.
Over the past few years, there has been an epidemic increase in the number of studies in the field,
and there are likely to be more studies over the next few years given the importance of the topic.
Improvements in exposure assessments, as we discuss in this paper, may well increase the scientific
value of these new studies. More refined exposure models are needed, and will arguably produce
the most robust associations when investigating the potential health effects of TRAP. Furthermore,
we also emphasize the need to incorporate mobility patterns in the exposure estimates and to undertake
personal exposure monitoring to cross validate modelling estimates.

5. Conclusions

Although our previous meta-analysis found statistically significant associations for various TRAP
exposures and childhood asthma, further refinement of the exposure assessment may improve the risk
estimates and shed light on critical exposure time windows, putative agents, underlying mechanisms
and drivers of heterogeneity.

Supplementary Materials: The following are available online at www.mdpi.com/1660-4601/14/3/312/s1,
Table S1: Exposure assessment place, time and validation in the Included Studies.
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