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Abstract: Under rapid urban sprawl in Northeast China, land conversions are not only encroaching
on the quantity of cultivated lands, but also posing a great threat to black soil conservation and food
security. This study’s aim is to explore the spatial relationship between comprehensive cultivated soil
heavy metal pollution and peri-urban land use patterns in the black soil region. We applied spatial
lag regression to analyze the relationship between PLI (pollution load index) and influencing factors
of land use by taking suburban cultivated land of Changchun Kuancheng District as an empirical
case. The results indicate the following: (1) Similar spatial distribution characteristics are detected
between Pb, Cu, and Zn, between Cr and Ni, and between Hg and Cd. The Yitong River catchment in
the central region, and the residential community of Lanjia County in the west, are the main hotspots
for eight heavy metals and PLIL Beihu Wetland Park, with a larger-area distribution of ecological
land in the southeast, has low level for both heavy metal concentrations and PLI values. Spatial
distribution characteristics of cultivated heavy metals are related to types of surrounding land use and
industry; (2) Spatial lag regression has a better fit for PLI than the ordinary least squares regression.
The regression results indicate the inverse relationship between heavy metal pollution degree and
distance from long-standing residential land and surface water. Following rapid urban land expansion
and a longer accumulation period, residential land sprawl is going to threaten cultivated land with
heavy metal pollution in the suburban black soil region, and cultivated land irrigated with urban
river water in the suburbs will have a higher tendency for heavy metal pollution.

Keywords: heavy metal pollution; spatial regression; cultivated land; black soil region

1. Introduction

Suburbs are the conjunction between urban and rural settlements and are characterized by
integration of agricultural production in miniature, disordered industrial manufacturing, and flowing
residential settlements [1,2]. As the urban boundary rapidly sprawls, land conversions, along with the
change in production, are not only encroaching on the quantity of cultivated lands, but also posing a
threat to soil quality and food security [3,4]. Anthropogenic activities carried by different land use
types are reported to release varying volumes of heavy metals [5-7]. Therefore, spatial variations in
land use pattern will constitute one of the major artificial influences on the spatial redistribution of
soil heavy metals. In addition, heavy metal pollution of cultivated land surrounded by different land
use types is more likely to be gravely disturbed by local land use [8,9], particularly for cultivated land
in the suburbs. Compared with the removal of heavy metal pollution, soil heavy metal prevention is
always preferred. Only on the basis of understanding spatial relationships between land use patterns
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and soil heavy metal accumulation of cultivated land can we generate strategies and practices to
alleviate negative effects caused by land use.

Traditional studies on heavy metal pollution of cultivated soils combined with land use includes
investigating and evaluating heavy metal concentrations, analyzing potential sources by principal
component analysis, and isotopic tracing of heavy metal outputs from potential sources [10-14].
However, location accuracy from potential sources or preliminary analysis of the relationship between
soil heavy metal pollution and land use remain insufficient for reflecting the general spatial pollution
pattern under the impacts of land use and supporting regional land management policy for soil
protection. Kriging interpolation and spatial regression models are the proper methods for analyzing
spatial patterns of heavy metal pollution and relationships between spatial data given the spatial
association of research data are not neglected because soil heavy metal concentrations are related
to their neighbors rather than being independent of each other [15,16]. Kriging is an interpolation
method that gives the best linear unbiased prediction of the intermediate values and is broadly applied
in the field of soil heavy metal pollution [6,17]. Spatial error models and geographically-weighted
regressions have been performed to analyze the relationship between heavy metal concentrations and
possible influencing factors, and they are considered to be more powerful tools for exploring spatial
heterogeneity and have a better goodness-of-fit than conventional linear regression models [9,16].
However, apart from the lack of consideration for the soil background values, the results from single
heavy metal regression with land use information are used for source apportionment and pollution
management rather than evaluating pollutant release based on differing land use types [9,16,18].
Heavy metal pollution is triggered by wastewater irrigation, applying fertilizer, household refuse
disposal, and other practices carried out on or around the cultivated land. Therefore, it is generally a
combined pollution [19] and a comprehensive indicator representing the average releasing level of
heavy metals is more practical for study.

Black soil is named according to the standard classification and codes for Chinese soil and is
analogous to Mollisol. The black soil region of Northeast China is one of few black soil resources in
the world that provides high soil fertility and massive grain production [20]. However, rapid urban
sprawl in Northeast China is seriously challenging environmental conditions [21,22]. With the aim of
analyzing the spatial relationship between comprehensive cultivated soil pollution and peri-urban
land use patterns in the black soil region, a suburb of Kuancheng District in Changchun city (one of
the major metropolis in the northeast black soil region) was taken as an empirical case. We performed
the spatial regression for PLI (pollution load index) of heavy metals with influencing land use factors.
The research results serve as a theoretical basis for land management policy that prevents heavy metal
pollution in cultivated soil in the black soil region.

2. Materials and Methods

2.1. Study Area

The study was carried out in a suburb of Changchun Kuancheng District (Figure 1), one of the
typical rural-urban interfaces located in the black soil region of northeast China. The total area of
the Kuancheng District is 23,800 ha, and the population is approximately 0.6 million. Kuancheng
District is an old industrial area in Changchun City with the Yitong River flowing through; many
boiler factories, electrical machinery plants, and pharmaceutical factories have been located in this
district since the early 1950s. In addition, it belongs to the Jilin golden corn production belt, and there
is a cluster of superior agricultural resources in this area. The contrast between industrial development
and agricultural production is exceptional in this area. Moreover, land use in the study area changed
significantly in recent years (see Supplementary Materials Table S1). The distribution of the narrow
black soil region was mapped from an earlier paper [23], and the distribution of soil types in the study
area was obtained from the results of the first soil general survey in China.
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Figure 1. Distribution of the black soil region in Northeast China and a map of soil sampling points
and soil types in a suburb of the Kuancheng District.

2.2. Soil Sampling and Chemical Analysis

A total of 137 soil samples (Figure 1) were collected from cultivated lands in a suburb of
Kuancheng District. Sampling points were randomly distributed throughout the study area. Topsoil
(0-20 cm) samples were collected with a stainless steel shovel and placed in cloth bags after
litter removal. Each soil sample was composed of 3-5 sub-samples collected within 100 m of the
corresponding sampling point, and all the sampling coordinates were recorded by portable GPS.
Soil sampling was conducted in September 2015.

Soil samples were air-dried in the shade, ground, passed through a 2-mm plastic sieve and stored
in sealed plastic bags prior to analysis. Total concentrations of Pb, Zn, Cu, Cr, and Ni were analyzed
via X-ray fluorescence (XRF) after soil samples were pressed into pellets. The total concentration of Cd
was analyzed via inductively-coupled plasma mass spectrometry (ICP-MS) method after a four-acid
digestion (HNOs3, HCI, HF, and HClO,). Total concentrations of As and Hg were analyzed via the
atomic fluorescence spectrometry (AFS) method; soil was digested with chloroazotic acid and reduced
by KBHy solution prior to analysis. Thirteen certified reference material samples were processed and
measured to assess analysis quality. Soil chemical analysis methods were conducted according to
the specifications for national multi-purpose regional geochemical survey (NMPRGS) by the China
Geological Survey, and analysis results are consistent with the analytical requirements developed in
the NMPRGS (see Supplementary Materials Tables S2 and S3).

2.3. Statistical Analysis and Background Values

Descriptive statistics of soil heavy metal concentrations are presented in Table 1, background
values for As, Hg, Cd, Pb, Cr, Ni, Cu, and Zn of different soil types are provided by the Study on
Background Values of Soil Elements in Jilin Province [24]. As presented in Table 1, arithmetic mean
values of heavy metal concentration exceed the background for the most part, which indicates potential
for soil heavy metal accumulation. The coefficients of variation of Hg and Cd are 51.91% and 38.69%,
respectively, and they are of greater spatial variability than the other elements.
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Table 1. Statistics of soil heavy metal concentrations and their background values (mg/kg) for different soil types.

40f 14

Background Values for Heavy Metals in Jilin Province

Heavy Metals Minimum Maximum Mean CV % Skewness Kurtosis
Black Soil Chernozem Meadow Soil Paddy Soil
As 8.40 15.97 11.65 9.97 0.389 1.650 11.08 9.30 9.71 7.13
Hg 0.009 0.108 0.041 51.91 0.946 1.165 0.035 0.027 0.029 0.040
Cd 0.041 0.415 0.126 38.69 3.114 16.872 0.083 0.091 0.075 0.082
Pb 17.70 34.70 23.16 10.76 1.216 3.631 22.14 20.20 17.88 23.60
Cr 54.50 80.00 67.87 5.98 0.108 1.040 52.94 30.86 41.31 50.10
Ni 23.10 36.70 29.96 8.36 —0.253 0.499 25.19 15.24 17.53 24.87
Cu 19.20 39.50 25.02 12.44 1.716 5.065 18.38 13.84 13.26 24.42
Zn 52.60 185.50 70.83 18.58 5.386 43.018 64.80 35.80 40.53 52.74

Note: CV, coefficient of variation. Soil types were named according to standard classification and codes for Chinese soil; Black soil belongs to the order of semi-luvisols; Chernozem

belongs to the order of pedocal; Meadow soil belongs to the order of semi-hydromorphic soil; Paddy soil belongs to the order of anthrosols.
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2.4. Soil Pollution Assessment and Interpolation Methods

The PLI (pollution load index) for As, Hg, Cd, Pb, Cr, Ni, Cu, and Zn were applied to determine
the pollution status of cultivated soil:

c}:ci/ci,Pleq/c}xc}xc;x...xc; 1)

In Equation (1), where C} is the concentration factor; C; is the concentration of heavy metal; CZ is
the element background value; and PLI is the pollution load index. To eliminate the effects of soil type
on heavy metal concentration, the background value (Table 1) applied is in accord with the soil type
for each sample. PLI is the combined characterization for soil heavy metal combined pollution. It is a
concise way to evaluate the status of soil heavy metal pollution [25].

To map the spatial distribution of soil heavy metal concentration and PLI, an ordinary Kriging
interpolation was applied in this paper. Kriging interpolation is one of the best linear unbiased
estimator methods for mapping soil properties [6]. It is adopted on the basis of the normal distribution
test and semi-variogram fitting for regionalized variables. If the original data or the logarithmic
transformed data had a normal distribution, ordinary Kriging was applied for interpolation maps.
Otherwise, inverse distance weighted interpolation was applied. The spatial distribution maps of
heavy metal concentrations and PLI were plotted using the ArcGIS (10.1, Environmental Systems
Research Institute Inc., Redlands, CA, USA) Geostatistical Analyst module.

2.5. Information Extracted for Land Use and Spatial Regression Model

2.5.1. Land Use Information Extracted

The spatial distribution of land use types in the study area was interpreted from high-resolution
remote sensing images (IKONOS) in 2014 using ArcGIS (10.1, Environmental Systems Research
Institute Inc.) along with a field survey. Land uses were classified into seven types: cultivated
land (dry land, paddy land, and agricultural greenhouses), industrial land (land for warehousing,
industrial manufacture and mining), residential land (urban and rural settlements), transportation land
(highway and railway), ecological land (garden plot, grassland, and forest land for city greening or
wind sheltering), unutilized land (bare land surface without covering of vegetation or constructions),
and surface water (river and irrigation reservoirs). In consideration of the accumulative characteristics
of soil heavy metals, two potential pollution sources and unstable land use types, industrial land and
residential land, were both divided into two groups: land developed before 2009 and land developed
after 2009 (Figure 2).
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B Residential land developed after 2009, /‘/ :
> - -

>z
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Figure 2. Spatial distribution map of land use types in the study area.
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With the aim of gathering land use information for ecological land and providing spatial analysis,
Thiessen polygons were constructed according to locations of sampling points. Spatial autocorrelation
analysis and spatial auto-regression were performed on the basis of Thiessen polygons.

2.5.2. Spatial Regression Model

Soil heavy metal pollution degree has certain spatial dependencies, including spatial
autocorrelation. Therefore, simulation deviations will be created owing to spatial data autocorrelation
for traditional regression analysis. To simulate the relationship between PLI and land use influencing
factors preferentially, a spatial auto-regression model was adopted (Equation (2)). Among the four
variant forms of spatial auto-regression models, spatial lag model and spatial error model are the most
widely used, and they are the models discussed here in this paper:

y=pwiy+xp+pu
p=Awp +e )
e ~ N(0,0%I)

In Equation (2), y is the dependent variable; x is the explanatory variable; p is the coefficient of
spatial lag variable, wyy; B is the parameter vector related to x; y is the stochastic error term vector;
A is the coefficient of spatial error variable, woy; I is the unit matrix; and w; and w; are the weight
matrices reflecting the spatial trend of the dependent variable and residual, respectively.

The spatial lag model shows that the dependent variable is under the influence of explanatory
variables, locally, along with dependent variables in the neighborhood. The spatial error model shows
that the dependent variable is under the common influence of local explanatory variables, dependent
variables, and explanatory variables in the neighborhood [15,16].

Spatial model selection depends on the significance test results of the Lagrange multiplier for
ordinary least squares (OLS) regression. There are four indicators of Lagrange multiplier statistics,
Lagrange multiplier (lag), robust Lagrange multiplier (lag), Lagrange multiplier (error), and robust
Lagrange multiplier (error). If the Lagrange multiplier (lag) and Lagrange multiplier (error) are both
non-significant (p-value > 0.05), the results of OLS regression are retained. If only one of them is
significant (p-value < 0.05), the model applied will correspond to the significant Lagrange multiplier,
lag or error. If they are both significant, the one with lower p-value between the robust Lagrange
multiplier (lag) and robust Lagrange multiplier (error) will determine the application of the spatial lag
model or spatial error model [15]. Variables for spatial regression model are listed in Table 2.

Table 2. Description of variables for the spatial regression model.

Variable Name Variable Type Units Definition

Pollution load index, geometric mean value of heavy

PLI dependent variable B metal concentration factors

Distance from the sampling point to the nearest

IL_DB0Y explanatory variable m industrial land developed before 2009
. Distance from the sampling point to the nearest
IL_DA09 explanatory variable m industrial land developed after 2009
. Distance from the sampling point to the nearest
RL_DB09 explanatory variable m residential land developed before 2009
. Distance from the sampling point to the nearest
RL_DA09 explanatory variable m residential land developed after 2009
TL D explanatory variable m Distance fr(?m the sampling point to the nearest
transportation land.
SW D explanatory variable m Distance from the sampling point to the nearest river or

irrigation reservoir

Proportion of ecological land area to the total land area
EL_R explanatory variable % in every Thiessen polygon created according to the
location of each sampling
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3. Results

3.1. Spatial Structure and Distribution of Heavy Metals

As, Hg, Pb, Cr, Ni, and PLI data are all normally distributed, Cu data are normally distributed
after a logarithmic transformation, and the remaining heavy metals do not conform to a normal
distribution (see Supplementary Materials Table S4). However, the semi-variogram fitting for Pb was
unsatisfactory; thus, inverse distance-weighted (IDW) interpolation was applied for Cd, Pb, and Zn.
Concentrations of As, Hg, and logarithmic transformed Cu were fitted with an exponential model and
Cr, Ni, and PLI were fitted with a spherical model (see Supplementary Materials Table S5 and Figure
S1). R? and residual sum of squares (RSS) indicate the logical fitting for heavy metals and the fitted
semi-variogram models reflect their spatial structures (Table 3).

Table 3. Parameters of semi-variogram fitting for heavy metals and validation results.

Element Model Co Cy+C Range RSS R? Co/(Cp + )
As Exponential 0.227 1.441 2790 2.14 x 107! 0.679 15.75%
Hg Exponential 0.000239 0.000518 15,210 8.20 x 10~? 0.893 46.14%
Cd Inverse distance weighted interpolation for concentration mapping
Pb Inverse distance weighted interpolation for concentration mapping
Cr Spherical 1.54 17.44 1640 20.2 0.706 8.83%
Ni Spherical 0.16 6.231 1580 4.36 0.600 2.57%
Cu Exponential 0.000404 0.002628 1380 9.88 x 1077 0.176 15.37%
Zn Inverse distance weighted interpolation for concentration mapping
PLI Spherical 0.025 0.0738 6150 5.10 x 1074 0.843 33.88%

Note: RSS, residual sum of squares; Cp, nugget variance; C + Cy, sill variance; the ratio of Cy/(C + Cp) can reflect
the spatial correlation degree of a regionalized variable: strong spatial correlation, Cy/(C + Cp) < 25%; moderate
spatial correlation, 25% < Cy/(C + Cp) < 75%; and weak spatial correlation, Cy/(C + Cp) > 75%.

As shown in Table 3, Cy/(C + Cy) for As, Cr, Ni, Cu are all below 25%, which indicates
strong spatial correlation and structural factors are the dominant influence on spatial variation.
Cy/(C + Cp) for Hg and PLI are between 25% and 75%, which indicates moderate spatial correlation
and the influence on spatial variation by structural factors and random factors are similar.

To increase the spatial differentiation for heavy metal concentrations, quantiles were used to
classify each concentration range. Spatial interpolation maps for concentrations of As, Hg, Cd, Pb, Cr,
Ni, Cu, and Zn are presented in Figure 3. As shown, similar spatial distribution characteristics could
be detected between Pb, Cu, and Zn, between Cr and Ni, and between Hg and Cd. By comparing
the heavy metal data to the map of land use types, we observe that the Yitong River catchment in the
central region, and Lanjia County residential community in the west, are the main hotspots for eight
heavy metals. Beihu Wetland Park, with a larger area distribution of ecological land in the southeast,
has the lowest concentrations of heavy metals.
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Figure 3. Spatial interpolation maps for heavy metals and PLIL.

3.2. Effects of Land Use Pattern on Heavy Metal Pollution of Cultivated Land

8 of 14

To quantify the effects of land use pattern on heavy metal pollution of cultivated land, a
spatial regression model was applied to analyze the relationship between heavy metal pollution

and influencing land use factors.

Before spatial regression, OLS regression for PLI was performed for primary analysis and
determination of spatial regression model type (Table 4). The OLS regression results indicate that
RL_DB09 and SW_D are the only significant variables (p-value < 0.05), and coefficients show negative
relationships. With the spatial autocorrelation analysis of all variables for spatial regression and
residuals of OLS regression for PLI (Table 5), we determined a relatively distinct spatial autocorrelation
for the variables, especially for the industrial land, residential land, ecological land, and surface water
factors. Spatial autocorrelation of residuals by OLS regression for PLI indicates that spatial regression
analysis needs to be conducted to eliminate the impacts.
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Table 4. Parameter statistics of ordinary least squares regression for PLI and significance test.

Regression Model Variable Coefficient Std. Error t-Value p-Value
Constant 1.4961 0.0562 26.6017 0.0000

IL_DB09 —218 x 107 1.17 x 107> —0.0850 0.0649

Ordinary least squares IL_DA09 —1.59 x 10~° 1.87 x 107> 0.4854 0.9324
regression (R 0.3244 RL_DB09 —7.02 x 1073 1.79 x 1075 —3.9274 0.0001
Log likelihood: 14.8794) RL_DA09 1.70 x 107° 148 x 107° 1.1463 0.2538
TL_D —2.08 x 107> 6.25 x 107> —0.3335 0.7393

SW_D —1.28 x 10~* 4.65 x 107> —2.7494 0.0068

EL_R —0.0003 0.0018 —0.1909 0.8489

Table 5. Univariate Moran’s I for influencing land use factors and residuals of OLS regression for PLI.

Variable n Moran’s 1
PLI 137 0.4340
IL_DB09 137 0.8863
IL_DA09 137 0.7554
RL_DB09 137 0.9229
RL_DAO09 137 0.8352
TL_D 137 0.4274
SW_D 137 0.5498
EL_R 137 0.7456
Residuals of OLS regression for PLI 137 0.1899

To decide which spatial regression model should be applied, a Lagrange multiplier test was
carried out for the OLS regression results (Table 6). As shown, the Lagrange multiplier (lag) and
Lagrange multiplier (error) are both significant (p-value < 0.05). In addition, the robust Lagrange
multiplier (lag) is of relatively higher significance than the robust Lagrange multiplier (error), thus, the
spatial lag model should be applied for the PLI spatial regression.

Table 6. Lagrange multiplier test statistics of OLS regression for PLL

Lagrange Multiplier Test n t-Value p-Value
Lagrange Multiplier (lag) 137 13.7457 0.0002
Robust Lagrange Multiplier (lag) 137 1.9309 0.1647
Lagrange Multiplier (error) 137 12.0476 0.0005
Robust Lagrange Multiplier (error) 137 0.2328 0.6295

With the higher R? and log likelihood values (Table 7), we conclude that the spatial lag model
regression is better fitted for PLI than the ordinary least squares regression. In addition, the univariate
Moran’s 1 for residuals of spatial lag regression is —0.0072, which indicates the loss of spatial
autocorrelation. Without the spatial autocorrelation impact of residuals, as calculated, the coefficients
and p-values of explanatory variables from spatial lag regression vary from those of ordinary least
squares regression. Under such assumptions of spatial lag regression, the local PLI is under the
influence of influencing land use factors in local along with the PLI in the neighborhood.

According to the significance test (Table 7), among all explanatory variables, only RL_DB09
(distance from the sampling point to the nearest residential land developed before 2009) and
SW_D (distance from the sampling point to the nearest river or irrigation reservoir) are significant
(p-value < 0.05). This relationship indicates that long-standing residential land and agricultural
irrigation pollution by surface water are the major influencing factors driving soil heavy metal
pollution of suburban cultivated land. The regression coefficients (—4.08 x 1075 and —9.30 x 107?)
represent the inverse relationship between heavy metal pollution degree and distance from long
standing residential land and sources of surface irrigation water, respectively. To model a better fitting
regression relationship, all non-significant redundant variables were removed; this model is hereafter
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known as spatial lag model B. All explanatory variables of spatial lag model B are significant, which
indicates that it has a better fit for the regression than spatial lag model A.

Table 7. Parameter statistics of spatial lag model regression models for the PLI and significance test.

Regression Model Variable Coefficient Std. Error z-Value p-Value
W_PLI 0.4024 0.1032 3.9003 0.0001

Constant 0.9128 0.1594 5.7276 0.0000

IL_DB09 —125x107° 1.09 x 107> —1.1414 0.2537

Spatial lag model A IL_DA09 —1.85 x 10°° 1.71 x 107> —0.1086 0.9135
regression (R%: 0.4049; RL_DB09 —4.08 x 107> 1.76 x 1075 —2.3128 0.0207
log likelihood: 21.0812) RL_DA09 1.06 x 1075 1.36 x 1075 0.7822 0.4341
TL_D —352x107° 5.69 x 107> —0.6175 0.5369

SW_D —9.30 x 1072 428 x 1075 —2.1716 0.0299

EL_R —0.0008 0.0016 —0.4882 0.6254

Spatial lag model B W_PLI 0.4253 0.1013 42004 0.0000
regression (R2: 0.3957; Constant 0.8532 0.1483 5.7538 0.0000
log likelihood: 19.7126) RL_DB09 —4.66 x 107> 1.42 x 1075 —3.2670 0.0011
SW_D —8.66 x 107° 414 x 1075 —2.0945 0.0362

Note: W_PLI, spatial lag variable of PLL

4. Discussion

4.1. Spatial Distribution Characteristics of Heavy Metal Pollution in a Rural-Urban Fringe

Types and density of anthropogenic activities carried by different land use types are diverse; soil
heavy metal concentrations vary with the land use type on account of the discrepant output of heavy
metals [7,26]. Suburbs are the outer circles of urban expansion with dramatic land use change. Due to
urban sprawl, a great area of cultivated land has been converted to urban construction land. Along
a rural-urban gradient, distributions of industrial manufacturing, traffic networks, and population
density are more scattered and more scarce from suburb to exurb [27,28]. Moreover, along with
industry transformation and upgrading, an increasing number of secondary industry units emigrate
from urban built-up areas and move to suburbs at the expense of cultivated land loss. Thus, not only
the quantity of cultivated land has been reduced, but also the agricultural production activities have
changed form, and human activities will continue to modify cultivated land [29]. Pollutant variation
indicates different heavy metal output environments for cultivated soil, which will potentially prompt
the distribution of cultivated land heavy metals into certain spatial variation patterns. It has been
proved by previous studies that soil heavy metal concentration generally varies with the rural-urban
gradient [30-32].

As shown in Figure 3, it can be observed that the Yitong River catchment in the central and
Lanjia County residential community in the west are the main hotspots for eight heavy metals and
PLI A cluster of long-standing residential land and heavy industrial land in Lanjia County residential
community appears to possess added volumes of pollutant release, and polluted water from the
Yitong River is another determinant of cultivated soil pollution. However, the central area, where a
large industrial area is located, has a lower value of PLL The abnormity may be attributed to the fact
that most industrial lands in this area are used for warehousing and agricultural product packaging,
which have lower pollutant release than heavy industries. The construction project of Beihu Wetland
Park started in 2010 has resulted in a surge of ecological land and local environmental improvement.
It is prominent that Beihu Wetland Park, with a larger area distribution of ecological land in the
southeast, has low levels for both heavy metal concentrations and PLI values. In addition, distribution
characteristics of concentrations of As, Cr, Ni, Pb, Zn, and Cu in the southeast are different from
Hg and Cd. Utilization and improper discarding of paint, cement, and other building materials for
residential land developed in this area after 2009 may be the major anthropogenic sources of these
elements [5]. However, low PLI value indicates that general accumulation of heavy metals in this area
is not critical. To sum up, spatial distribution characteristics of cultivated heavy metals are related to
types of surrounding land use and industry, and land use along a rural-urban gradient will prompt
the distribution of cultivated land heavy metals into certain spatial variation patterns.
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4.2. Impacts from Land Use Pattern on Cultivated Soil Heavy Metal Pollution

According to spatial regression results (Table 7), residential land developed before 2009 and
surface water are the major influencing factors of land use increasing soil heavy metal pollution
of suburban cultivated land. Compared to newly-developed residential land, long-standing rural
settlement areas in Northeast China are short of resources and management for refuse disposal.
Without the buffering effects of artificial ecological land, cultivated land surrounding rural settlements
is more likely to be exposed to the direct pollution sources. Beyond that, according to our field survey,
there is more potential for the cultivated lands near newly-collected cultivated land for development or
future development to be incorporated shortly. That leads directly to the abandonment of cultivation
by the landowner, and they are more inclined to outsource these cultivated lands at low rent to mitigate
the risk of land loss and crop removal prior to harvest. In addition, these ‘cultivated lands at risk” are
generally absent tillage practices, such as applying compound fertilizer after seeding and frequent
agricultural machinery practices, which will certainly block heavy metal inputs from agricultural
sources. More importantly, heavy metal emission into long-standing residential land has a longer
period for the soil accumulation. Newly-developed residential land, in contrast, is primarily converted
from collected cultivated land. Thus, although newly-developed residential land is bearing a higher
density population and traffic, in the short term, the PLI of cultivated land closer to long-standing
residential land exceeds that of the newly-developed land. However, following rapid urban land
expansion and a longer accumulation period, the residential land sprawl will threaten the cultivated
land with heavy metal pollution in suburban black soil regions.

In addition, according to the spatial distribution characteristics of heavy metal pollution, we
conclude that the heavy metal pollution of cultivated land in the Yitong River catchment and its
branches are more severe than other areas. The Changchun section of the Yitong River has been
reported on several times for poor water quality and potential heavy metal pollution [33]. There
are many paddy lands along the riverbanks, which are primarily irrigated by water from the Yitong
River or irrigation reservoirs directly replenished by the Yitong River. Since untreated domestic
and industrial waste are discharged into water bodies, urban river systems are generally confronted
with the risk of more heavy metal absorption [34,35]. In addition, many urban sections of rivers
flowing through the black soil region of Northeast China have been reported as polluted by heavy
metals [33,36-38]. Unlike exurban cultivated land, suburban cultivated land shares a greater proportion
of urban river irrigation, which is more likely to be polluted by heavy metals due to shortages of
irrigation and drainage facilities. As urbanization continues, heavy metals will drain into the river
system in the black soil region and suburban cultivated land irrigated with urban river water will be a
hot spot for heavy metal pollution.

5. Conclusions

This study analyzed the relationship between spatial distribution characteristics of heavy metal
pollution and land use patterns of suburbs in a black soil region using spatial lag regression.
The empirical case study area was cultivated land of suburban Kuancheng District, north of Changchun,
China. Heavy metal pollution shows spatial characteristics in a rural-urban fringe. Similar spatial
distribution characteristics are detected between Pb, Cu, and Zn, between Cr and Ni, and between
Hg and Cd. In a comparison with the map of land use types, the Yitong River catchment in the
central region and Lanjia County residential community in the west are the main hotspots for eight
heavy metals and PLI. Beihu Wetland Park, with a larger area distribution of ecological land in
the southeast, has the lowest concentrations of heavy metals. Spatial distribution characteristics
of cultivated heavy metals are related to types of surrounding land use and industry. Moreover,
spatial lag model regression provides better fitting for PLI than the ordinary least squares regression,
and removes the spatial autocorrelation impact of residuals. Regression results indicate an inverse
relationship between heavy metal pollution and the distance from long-standing residential land and
surface water. Following rapid urban land expansion and longer accumulation periods, residential
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land sprawl is going to threaten cultivated land with heavy metal pollution in the suburban black
soil region; suburban cultivated land irrigated with urban river water is more likely to be polluted by
heavy metals.

Supplementary Materials: The following are available online at www.mdpi.com/1660-4601/14/3/336/s1,
Figure S1: Semi-variograms for elements and PLI interpolation, Table S1: Land use area and percentage changes
of study area from 2009 to 2014, Table S2: Statistics of chemical analysis for certified reference materials and
qualification rate, Table S3: Statistics of chemical analysis for repeatedly-analyzed samples and qualification rate,
Table S4: Statistics of Kolmogorov-Smirnov test for data of elements and PLI, Table S5: Statistics of semi-variogram
fitting results for elements and PLI.
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