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Abstract: Under future warming conditions, high ambient temperatures will have a significant
impact on population health in Europe. The aim of this paper is to quantify the possible future impact
of heat on population mortality in European countries, under different climate change scenarios.
We combined the heat-mortality function estimated from historical data with meteorological
projections for the future time laps 2035–2064 and 2071–2099, developed under the Representative
Concentration Pathways (RCP) 4.5 and 8.5. We calculated attributable deaths (AD) at the country
level. Overall, the expected impacts will be much larger than the impacts we would observe if
apparent temperatures would remain in the future at the observed historical levels. During the period
2071–2099, an overall excess of 46,690 and 117,333 AD per year is expected under the RCP 4.5 and
RCP 8.5 scenarios respectively, in addition to the 16,303 AD estimated under the historical scenario.
Mediterranean and Eastern European countries will be the most affected by heat, but a non-negligible
impact will be still registered in North-continental countries. Policies and plans for heat mitigation
and adaptation are needed and urgent in European countries in order to prevent the expected increase
of heat-related deaths in the coming decades.
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1. Introduction

Climate change is already contributing as one of the most relevant environmental risk factors
to 1.4 million premature deaths in World Health Organization European Region (WHO/Europe).
The direct and indirect impacts of emerging risks, such as climate change, need to be tackled urgently,
as they are set to become the most challenging risks populations will face in the coming decades [1].

The Paris Climate Agreement provides the framework for future international cooperation and
national action on climate change at the international level. Climate change and health is a central issue
in the actual political discussion and projecting its impact on environment, ecosystems and human
health is of great interest to inform policies and actions aimed to limit global warming and to contain
its effects [2].

High ambient temperatures have a significant impact on society and population health, including
a rise in morbidity and mortality [3]. In particular, episodes of heat lasting for several days, often
referred as heat waves, were the deadliest extreme weather events in the period 1991–2015 in the
European Region, causing tens of thousands of premature deaths. Under anticipated future warming
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conditions the length, frequency and intensity of heat waves are expected to increase and, taking in
consideration that the European population is projected to age, this can lead to an important increase
of heat-attributable deaths, unless effective adaptation measures are taken [4–6]. This raises the issue
that, in order to maintain an acceptable quality of life for the foreseeable future, urban areas have to
be properly managed and major actions regarding heat and heat waves and their impact on urban
population have to be adopted [7], e.g., health heat action plans or heat-health warning systems [8,9].

Countries are at different stages of preparing, developing and implementing climate change
and health adaptation strategies. Several Member States in WHO/Europe introduced heat wave
early warning systems with heat health action plans as an approach to reducing the human health
consequences of heat waves. Early warning systems predict possible health events by involving
forecasting of the heat wave outcomes, and consist in timely response heat health action plans which
targeting vulnerable populations [10]. Their development depends on the magnitude and nature of
the observed health effects, the assessment of current and future vulnerability, the capacity to adapt,
and the willingness to act [11].

In 2014, of 53 member states of the WHO European Region, 18 had developed heat-health action
plans. The plans were heterogeneous in terms of spatial coverage, measures taken and existence of
evaluation procedures In particular, only two of them included evaluation steps, so that detecting
measures which effectively reduce heat-related mortality and morbidity remains a challenge [9].
Boeckmann and Rohn [12], on the basis of a literature review including 30 articles investigating the
beneficial effect of implementing heat warning systems, concluded that these studies did not provide
evidence on the efficacy of planned adaptation measures. Toloo et al. [13], in a systematic review of
fifteen articles, claim for the need of further research in this field and the development of prospective
designs aimed to establish whether heat warning systems can produce the expected health benefits, in
particular on identified vulnerable groups.

Several studies focused on the impact of high ambient temperatures and exceptional episodes of
heat for intensity and duration on mortality and morbidity of urban populations [14–17]. Recently,
Sanchez et al. [18] estimated the actual and future impacts of heat on mortality in the urban area of
Skopje under different climate models by combining climate and population projections, while Hunt
et al. demonstrate that climate projections can be used to derive quantitative estimates of both the
costs and benefits of policies aimed to reduce climate-related risks [19].

Europe in particular emerges as an especially responsive area to temperature rise where the
warming will be larger than the projected global average increase. The strongest warming is projected
across North-Eastern Europe and Scandinavia in winter and across Southern Europe in summer [20,21].
The aim of this paper is to estimate the country-specific heat mortality in selected European countries
through their exposure to summertime heat under different climate change scenarios corresponding to
different levels of greenhouse gas (GHG) emissions.

2. Materials and Methods

Our analysis focused on the following European countries: Albania, Austria, Belarus, Belgium,
Bosnia and Herzegovina, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland,
France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxemburg, Montenegro,
Netherlands, Norway, Poland, Portugal, Republic of Moldova, Romania, Serbia, Slovakia, Slovenia,
Spain, Sweden, Switzerland, The former Yugoslav Republic of Macedonia, United Kingdom of Great
Britain and Northern Ireland, and Ukraine.

In our analysis we considered baseline climate (1971–2000) and meteorological projections for the
future time laps 2036–2064 and 2071–2099. We focused on the Representative Concentration Pathways
(RCP) 4.5 and 8.5, which stabilize radiative forcing in the year 2100 at 4.5 and 8.5 Watts per square
meter, respectively. While RCP 4.5 assumes that climate policies are invoked to achieve the goal of
limiting greenhouse gas (GHG) emissions, RCP 8.5 is characterized by future high energy demand
and GHG emissions in absence of climate change policies. Compared to the total set of RCPs, RCP 8.5
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corresponds to the pathway with the highest GHG emissions [22]. Projections were obtained according
to the SMHI RCA4/HadGEM2 ES r1 (MOHC) climate model (Table 1). Regarding the historical period,
we used meteorological data arising from RCP 4.5 and global climate model KNMI RACMO22E [23].

Meteorological projections spanned a 25 km × 25 km grid over the European domain and
consisted in daily time series (one for each grid cell) of several meteorological indicators. In this work,
we focused only on daily average dry bulb temperatures (T) and relative humidity (RH), that we
combined to obtain daily mean apparent temperatures (AT) according to the formula proposed by
Patricola and Cook [24].

Table 1. Study models *.

Scenario Climate Model Temperature/Precipitations Historical Period
(1971–2000) 2036–2064 2071–2099

RCP 8.5
SMHI

RCA4/HadGEM2 ES
r1 (MOHC)

Hottest/Wettest X X

RCP 4.5
SMHI

RCA4/HadGEM2 ES
r1 (MOHC)

Hottest/Wettest X X

RCP 4.5
KNMI

RACMO22E/EC
EARTH r1

Mid/Mid X

RCP: Representative Concentration Pathways; * All models we used were available for IMPACT2C partners [23].

2.1. Population and Mortality Rate Projections

Population was assumed to change over time according to the Shared Socioeconomic Pathway
SSP2, a median population growth scenario that combines for all countries medium fertility with
medium mortality, medium migration and some moderate expansion in education [25]. According
to this scenario, world population is expected to peak around 2070. For each country, the overall
population mortality during the two future time slices was obtained by using the overall crude
mortality rate projected under the assumption of median fertility [26].

2.2. Heat-Mortality Function

In order to estimate the heat-mortality relationship, we used the city-specific heat-mortality
functions estimated for the 15 European cities participating in the “Assessment and Prevention of
acute Health Effects of Weather conditions in Europe” (PHEWE) project [27]. These functions refer to
the effect of maximum apparent temperature on natural mortality (all ages) during the 90 s and are
summarized by a threshold, corresponding to the minimum of the heat-mortality curve, and a slope
above this threshold. In order to account for geographical heterogeneity, we performed a Bayesian
meta-analysis of these city-specific thresholds and slopes, separately for Mediterranean cities, Northern
continental cities and Eastern cities. While random effects models were specified for Mediterranean
and Northern continental cities, a fixed effects model was used for Eastern cities, because, being the
meta-analysis performed on only two results, a reliable and stable estimate of the between study
variance could not be obtained. In Table 2 the posterior distributions of the overall meta-analytic
slopes and thresholds are summarized in terms of means and 90% credibility intervals (5th and 95th
percentiles of the posterior distributions). Slopes are reported as percent change in mortality associated
to 1 ◦C increase of maximum apparent temperature above the threshold. We calculated also the I2 index
for each random effects meta-analysis, which expresses the percentage of total variance explained by
differences among cities.
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Table 2. Summaries of the posterior distributions of threshold, % variation associated to 1 ◦C
increase in maximum apparent temperature above the threshold and I2 index for Mediterranean,
Northern-continental and Eastern countries.

Region Threshold (◦C) (Posterior
Mean and 90% CrI)

I2 (Posterior Median
and 90% CrI)

% Variation (Posterior
Mean and 90% CrI)

I2 (Posterior Median
and 90% CrI)

Mediterranean
countries 29.4 (26.5, 31.8) 75% (43%, 94%) 3.09 (1.09, 5.07) 97% (94%, 99%)

Northern Continental
countries 23.8 (23.2, 24.4) 0% (0%, 28%) 1.79 (−0.34, 3.94) 80% (60%, 94%)

Eastern countries 22.6 (21.9, 23.3) 1.77 (1.57, 1.97)

I2: percentage of total variance explained by differences among cities; CrI: Credible interval.

Due to the PHEWE results used in our meta-analyses refer to maximum apparent temperatures,
we applied ad hoc conversion terms to adapt them to mean apparent temperature. In order to estimate
the conversion terms, we specified a simple regression model to compare daily maximum apparent
temperature (outcome variable) and daily mean apparent temperature (explanatory variable) in each
of the 15 cities enrolled in the PHEWE project. All the regression slopes resulted to be approximately
equal to 1, suggesting that adjustment for the slope above the threshold was not needed. On the
contrary, the estimated intercepts were different from 0; thus, we averaged them separately by region
to obtain conversion constants to be subtracted from the maximum apparent temperature thresholds.
Table A1 reports the constant terms arising from this procedure as well as the initial thresholds and the
final mean apparent temperature thresholds.

2.3. Attributable Fraction at the Cell Level

For each grid cell i and each day d belonging to the “warm season” of the year y (April–September,
for a total of 183 days), the daily attributable fraction (AFidy) (i.e., the fraction of deaths attributable to
mean apparent temperature above the threshold) was calculated according to the following equations:

AFidy = 1 − 1/exp(bi(ATidy − hi)) if ATidy > hi
AFidy = 0 if ATidy ≤ hi

(1)

where ATidy was the mean apparent temperature, hi was the threshold (Table 3), and bi was the slope
above the threshold for the cell i (reported in terms of % variation in Table 2). Then, we calculated the
average AF during each warm season y for each cell of the map:

AFiy = ∑
d∈y

AFidy/183 (2)

This value was used as a relative measure of the “overall” impact of heat on mortality during y to
allow comparisons among cells/areas. For simplicity, in the formulas we suppressed the reference
to the RCP scenario, even if each indicator was calculated for each of the different combinations
in Table 1.
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Table 3. Expected fractions of deaths attributable to mean apparent temperatures above the comfort
threshold, evaluated over the historical period 1971–2000 and over the future time slices 2036–2064 and
2071–2099 under the RCP 4.5 and RCP 8.5 scenarios.

Country 1971–2000 2036–2064 2071–2099

Historical AF (%) RCP 4.5 AF (%) RCP 8.5 AF (%) RCP 4.5 AF (%) RCP 8.5 AF (%)

Albania 0.15 1.25 1.84 1.81 5.15
Austria 0.14 0.56 0.70 0.78 1.96
Belarus 0.50 0.89 1.55 1.64 3.02
Belgium 0.14 0.43 0.58 0.70 1.70

Bosnia and Herzegovina 0.04 0.47 0.73 0.74 2.65
Bulgaria 2.02 4.49 5.55 5.44 8.82
Croatia 0.10 0.56 0.81 0.86 2.66
Cyprus 2.11 7.11 9.21 9.39 15.44

Czech Republic 0.44 1.18 1.48 1.62 3.39
Denmark 0.05 0.19 0.29 0.34 0.88
Estonia 0.05 0.18 0.33 0.45 1.23
Finland 0.03 0.12 0.19 0.28 0.90
France 0.42 1.35 1.53 1.70 3.84

Germany 0.19 0.58 0.73 0.83 1.89
Greece 0.40 2.72 4.10 3.96 8.76

Hungary 1.65 3.06 3.72 3.65 6.15
Iceland 0 0 0 0 0
Ireland 0 0.05 0.08 0.09 0.37

Italy 0.23 1.41 1.84 2.07 5.24
Latvia 0.07 0.18 0.36 0.48 1.16

Lithuania 0.10 0.24 0.48 0.60 1.32
Luxembourg 0.17 0.58 0.76 0.91 2.23
Montenegro 0.05 0.41 0.65 0.65 2.39
Netherlands 0.13 0.31 0.42 0.51 1.15

Norway 0 0.03 0.06 0.09 0.34
Poland 0.46 0.96 1.35 1.40 2.74

Portugal 0.31 1.34 1.73 1.68 4.35
Republic of Moldova 1.72 3.05 4.19 3.70 6.57

Romania 1.42 2.85 3.72 3.46 6.11
Serbia 0.09 0.74 1.19 1.12 3.44

Slovakia 0.60 1.37 1.81 1.84 3.66
Slovenia 0.01 0.11 0.19 0.22 1.02

Spain 0.47 2.12 2.50 2.80 6.12
Sweden 0.01 0.06 0.11 0.17 0.59

Switzerland 0.05 0.39 0.51 0.58 1.74
The former Yugoslav Republic

of Macedonia 0.09 1.29 2.03 1.89 5.25

United Kingdom of Great
Britain and Northern Ireland 0.01 0.07 0.12 0.13 0.38

Ukraine 1.32 2.40 3.43 3.21 5.49

AF: Attributable fraction; RCP: Representative Concentration Pathways.

2.4. Country-Level AF

In order to estimate AFs at the country level, we averaged AFiy over the nc cells belonging to
the same country c. We did it separately for each year so that we got annual time series of AFs for
each country:

AFcy = ∑
i∈c

AFiy/nc (3)

In order to represent the annual variability of the impact, the minimum, maximum and average
AFs over each time slice were calculated for each country. Finally, we averaged AFcy over years within
each time slice p to calculate the average AF for country c during time slice p AFcp:

AFcp = ∑
y∈p

AFcy/np (4)

where np was the number of years in p.
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2.5. Expected Attributable Deaths (AD)

For the future time slices 2036–2064 and 2071–2099, we estimated the number of deaths
attributable to daily apparent temperatures above the comfort threshold (AD) according to the
following approximated formula:

ADcp = AFcp × popcp × rcp × λ (5)

where popcp was the average population of country c during time slice p from SPP2 [21]; rcp was the
average annual crude mortality rate for c during p; λ was an estimate of the proportion of annual
deaths observed during the warm season, estimated from the original PHEWE data sets (λ = 0.45).

For each country, time slice and RCP scenario, the attributable community rate (ACR), corresponding
to the ratio between AD and population size, was also calculated (Table A2). We also evaluated the impact
of climate change taking as reference the historical meteorological conditions observed during the
period 1971–2001. In order to do this, we estimated counterfactual ADs by introducing in Equation (5)
the historical AFs instead of the projected ones. These counterfactual ADs measured the impact that
we would observe during the future time slices if apparent temperatures would remain unchanged
at the levels measured during the reference period. Then, we compared these impact estimates with
those obtained under RCP 4.5 and RCP 8.5 scenarios, thus quantifying the number of deaths that could
be prevented maintaining apparent temperatures at their past levels.

3. Results

The country-specific attributable fractions (AFs) estimated for the historical period and projected
for the future time slices under the two Representative Concentration Pathways are reported in Table 3.
According to these results, the percentage of deaths attributable to heat is expected to increase over time.

The estimated AFs are heterogeneous across the selected European countries, in particular when
considering the time period 2071–2099 and the RCP 8.5 scenario.

According to our results, the inter-quartile range (IQR) of the country-specific percent AFs is
expected to be (0.20; 1.36) in 2039–2064 and (0.38; 1.84) in 2071–2099 under RCP 4.5. The same IQRs
under RCP 8.5 are expected to be even wider: (0.49; 1.88) in 2039–2064 and (1.18; 5.22) in 2071–2099. These
values should be compared with the IQR of the historical AFs which range between 0.05% and 0.46%.

In Figure 1 the average AFs are reported for the years 2050 and 2085 (AFc2050; AFc2085) by country,
under both scenarios.
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Figure 1. Attributable fraction (AF) of heat-related deaths during summer by country in European
sub-region in 2050: (a) Using MOHC model in RCP 4.5; (b) Using MOHC model in RCP 8.5, and in
2085: (c) Using MOHC model in RCP 4.5; (d) Using MOHC model in RCP 8.5.

The map, which focuses on the central years of the time laps, clearly shows that the average AFs
during summer are expected to be higher in Mediterranean and Eastern European countries than in
the rest of Europe. However, there will be still heat-related deaths in the North-Continental region in
particular under RCP 8.5.

The inter-annual variability of AFs is summarized in Table A3, where the minimum, maximum
and average AFs over each time slice are reported for each country under RCP 4.5 and RCP 8.5.

Table 4 shows the Attributable deaths (AD) calculated assuming as counterfactual the impact that
we would observe in the future time slices assuming that the AFs would remain at the levels observed
during the historical period 1971–2000.

Table 4. Attributable deaths per warm season expected for the future time slices 2036–2064 and
2071–2099 under the reference scenario (apparent temperatures at the historical levels observed during
the period 1971–2001) and additional attributable deaths in respect to this counterfactual as expected
under the RCP 4.5 and RCP 8.5 scenarios, by country.

Country

2036–2064 2071–2099

ADref
Additional AD in
Respect to ADref

ADref
Additional AD in
Respect to ADref

No Change RCP 4.5 RCP 8.5 No Change RCP 4.5 RCP 8.5

Albania 24 185 283 26 303 910
Austria 71 212 285 69 317 901
Belarus 345 269 725 288 656 1452
Belgium 93 188 287 93 358 1007

Bosnia and Herzegovina 9 99 162 9 171 634
Bulgaria 1150 1401 2008 1031 1742 3463
Croatia 28 132 205 26 206 690
Cyprus 211 499 708 160 551 1009

Czech Republic 312 531 739 327 879 2199
Denmark 16 46 77 17 101 291
Estonia 4 11 24 4 32 94
Finland 8 30 54 9 84 291
France 1499 3264 3900 1572 4739 12675

Germany 1044 2142 2949 973 3286 8693
Greece 277 1631 2595 260 2346 5502

Hungary 1043 886 1305 953 1148 2587
Iceland 0 0 0 0 0 0
Ireland 0 12 20 1 27 110

Italy 857 4454 6099 808 6551 17860
Latvia 10 16 42 8 48 126

Lithuania 21 29 78 18 89 218
Luxembourg 6 14 21 9 39 108
Montenegro 2 15 26 2 26 100
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Table 4. Cont.

Country

2036–2064 2071–2099

ADref
Additional AD in
Respect to ADref

ADref
Additional AD in
Respect to ADref

No Change RCP 4.5 RCP 8.5 No Change RCP 4.5 RCP 8.5

Netherlands 136 190 303 134 396 1052
Norway 1 8 18 1 31 121
Poland 1148 1252 2230 1132 2308 5611

Portugal 224 748 1029 249 1095 3235
Republic of Moldova 329 253 470 193 221 544

Romania 1959 1972 3177 1639 2363 5432
Serbia 63 478 809 69 830 2684

Slovakia 237 305 479 249 517 1276
Slovenia 1 15 26 1 30 144

Spain 1474 5207 6398 1599 7987 19330
Sweden 6 25 53 6 94 345

Switzerland 21 132 180 24 246 790
The former Yugoslav Republic

of Macedonia 13 176 285 14 305 871

United Kingdom of Great
Britain and Northern Ireland 46 221 377 52 466 1498

Ukraine 4696 3819 7504 4278 6102 13480
Overall 17384 30867 45930 16303 46690 117333

AD: Attributable deaths; ADref: Attributable deaths under the reference scenario.

Overall, 30,867 more AD per year are expected during the period 2036–2064 under RCP 4.5 and
45,930 under RCP 8.5, taking as reference the impact that we would observe if the apparent temperatures
would remain at the historical levels observed during the time slice 1971–2001 (17,384 AD). The estimated
impacts are much larger for the period 2071–2099: 46,690 and 117,333 AD per year under RCP 4.5 and
RCP 8.5, respectively, in addition to the 16,303 AD expected under the reference.

Figure 2 shows the overall ACRs per 10,000 inhabitants estimated for the two future time slices
under the historical scenarios and the RCP 4.5 and RCP 8.5 scenarios, separately by macro-region.
While in Northern-Continental countries ACR is expected to remain under 1 AD per year per
10,000 inhabitants, warming will have major consequences in Mediterranean and Eastern Europe
where ACRs could exceed 3 ADs per 10,000 during the period 2071–2099 under RCP 8.5.
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With reference to Table 4, Table A2 and Figure 2, it is worth noticing that under the reference
scenario, which assumes stable climate conditions in respect to the past, impact variations over time
only reflect changes in mortality rate and population size.

4. Discussion

Current high summer ambient temperatures have an important impact on the European
population health and increase of heat-related mortality and morbidity are identified as being a
potentially significant consequence of climate change in Europe [28,29]. This impact is expected to
increase in the future, according to the projected increase of mean ambient temperatures [30]. Several
studies estimated the future heat-related mortality in European Union countries arriving at largely
comparable results: Projection of Economic impacts of climate change in Sectors of the European
Union based on bottom-up Analysis (PESETA), ClimateCost and PESETA II [31–34].

In this paper we provide an overall picture of the possible future impact of heat on population
mortality in Europe, under different climate change scenarios corresponding to different levels of
greenhouse gas emissions. We considered selected climate model RCP 8.5 and RCP 4.5. In our study
summer temperatures (April-September) are shown to influence daily mortality across Europe due to
climate change impacts. We found that heat impacts will dramatically increase over time, in particular
under the RCP 8.5 scenario and in Mediterranean and Eastern European countries. These regions are
in fact expected to face the continent's most adverse effects from climate change as heatwaves and
droughts become more intense and frequent [20,21].This result is in line with the literature (see for
example the PESETA II study [33] and with the estimates produced by the World Health Organization
(WHO) for the WHO European Region [35]. The impact of heat, although lower, will not be negligible
for the citizens in North-Western European countries too.

It is worth to notice that our results do not account for harvesting phenomena acting by
anticipating deaths in frail subpopulation. This does not invalidate our estimates, but it should
be stressed that studying the mechanisms underlying heat effects and impacts on health is a priority to
provide useful evidence to inform policies and interventions on the population [14].

Our study has several limitations that should be accounted for in interpreting the reported results.
According to several studies conducted in Europe and elsewhere, in the last 20 years population
susceptibility to heat and heatwaves decreased. Improvements in infrastructures and health care
services, together with the implementation of heat-adaptation measures and heat health watch
warning systems, likely contributed to improve population adaptation, reducing the impact of heat on
mortality and morbidity [36–41]. However, few studies attempt to quantitatively attribute changes
in susceptibility to specific adaptive measures, and estimating the effect of specific heat adaptation
plans on population health remains a challenge, as well as characterizing and predicting how the
relationship between heat and health outcomes varies over time [9,10]. A further difficulty is related to
the heterogeneity of the susceptibility decrease across locations. For example, De’ Donato et al. [42]
compared the mortality risk associated to heat in nine European cities before and after summer 2003,
finding a reduction of susceptibility only in Athens, Rome and Paris. For these reasons, despite the
relevance that a decrease of heat-related susceptibility may have in predictions, we use the historical
heat-mortality functions to estimate future impacts, without considering possible acclimatization or
adaptation mechanisms that could mitigate the effect of heat in the future.

We do not consider the additional effect of heat waves [16], possibly underestimating the impact
of warming. Moreover, our results are obtained assuming that a uniform population distribution
within each country. Considering that urban areas are more densely populated than rural ones and
usually characterized by higher ambient temperatures, even this assumption could have brought
to underestimating future impacts, especially for those countries where urbanization is expected to
increase over time.

We adopt an ad hoc approach, which allows us to use the slope estimated for maximum apparent
temperature as a surrogate of the slope above the threshold for mean apparent temperature. This
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procedure, that appears to be appropriate in our specific context, could in general introduce a certain
amount of bias in the results and should not be applied without careful check of daily data.

Despite population is ageing in many European cities, thus potentially inflating the pool of subjects
vulnerable to heat [43,44], our analyses are conducted without accounting for the age distribution
of the population, possibly underestimating the number of attributable deaths in the future. Finally,
due to the complexity of the data set, we did not account for uncertainties related to heat-mortality
functions, population projections and mortality rates. A partial evaluation of the uncertainty of the
phenomenon can be obtained by considering the inter-annual variability of climate projections.

5. Conclusions

Advocating for further development and implementation of heatwave planning, preparedness,
and response in European countries would lead to a reduction in heat-related mortality. Strong
inter-sectoral coordination and cooperation as well as surveillance and evaluation measures in place
through an effective early warning and health system response mechanisms are desirable targets [9].
Long-term regulatory planning, including urban planning, infrastructure and housing, becomes even
more relevant than before.

The direct and indirect impacts of emerging risks, such as heat waves due to climate change,
need to be tackled urgently, as they are set to become the most challenging risks populations in
Europe will face in the coming decades. It should be continuing regional support and coordination for
health components of national adaptation planning processes and adaptation actions, and through
prioritizing mitigation actions that also improve health. This article presented and discussed the
future impact of heat on population mortality in Europe, by country, under different climate change
scenarios. Both, citizens from Mediterranean and Eastern European countries will be most affected
by heat. This is an important opportunity to enhance the effective use of health projections by public
health professionals, to plan policies and actions and state intervention priorities.
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Appendix A

Table A1. Conversion terms and mean apparent temperature thresholds by European region.

Region Maximum Apparent
Temperature Threshold (◦C)

Conversion
Constant (◦C)

Mean Apparent Temperature
Threshold (◦C)

Mediterranean countries 29.4 3.7 25.7
Northern-Continental countries 23.8 2.8 21.1

Eastern countries 22.6 3.3 19.3
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Table A2. Attributable community rate by countries estimated under RCP 4.5 and RCP 8.5 for the
future time laps 2036–2064 and 2071–2099.

Country 2036–2064 2071–2099

RCP 4.5 ACR
(per 10,000

Inhabitants)

RCP 8.5 ACR
(per 10,000

Inhabitants)

RCP 4.5 ACR
(per 10,000

Inhabitants)

RCP 8.5 ACR
(per 10,000

Inhabitants)

Albania 0.6 1.69 1.3 3.6
Austria 0.3 0.56 0.4 1.1
Belarus 0.7 1.05 1.4 2.6
Belgium 0.2 0.44 0.3 0.8

Bosnia and Herzegovina 0.3 0.69 0.7 2.6
Bulgaria 4 3.53 5.1 8.2
Croatia 0.4 0.71 0.7 2
Cyprus 4.7 7.1 4.4 7.2

Czech Republic 0.7 1.04 1.1 2.2
Denmark 0.1 0.24 0.2 0.4
Estonia 0.1 0.28 0.3 0.8
Finland 0.1 0.16 0.1 0.4
France 0.6 1.11 0.8 1.7

Germany 0.4 0.54 0.6 1.4
Greece 1.7 3.7 2.6 5.7

Hungary 2.1 2.07 2.8 4.7
Iceland 0 0 0 0
Ireland 0 0.08 0 0.2

Italy 0.9 1.61 1.3 3.4
Latvia 0.1 0.29 0.4 0.9

Lithuania 0.2 0.38 0.5 1.1
Luxembourg 0.3 0.59 0.5 1.2
Montenegro 0.3 0.6 0.4 1.6
Netherlands 0.2 0.29 0.3 0.6

Norway 0 0.06 0 0.1
Poland 0.7 0.89 1.2 2.3

Portugal 0.9 1.42 1.3 3.3
Republic of Moldova 2.5 2.47 3.1 5.5

Romania 2.2 2.3 3.1 5.5
Serbia 0.6 1.1 1.1 3.2

Slovakia 1 1.21 1.6 3.2
Slovenia 0.1 0.18 0.1 0.7

Spain 1.3 2.03 1.9 4.2
Sweden 0 0.1 0.1 0.2

Switzerland 0.2 0.46 0.3 0.9
The former Yugoslav Republic of Macedonia 0.8 1.94 1.5 4.1

United Kingdom of Great Britain and Northern Ireland 0 0.11 0.1 0.2
Ukraine 2.2 2.11 3 5.1
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Table A3. Average, maximum and minimum attributable fractions evaluated over the future time slices 2036–2064 and 2071–2099 under the RCP 4.5 and RCP 8.5 scenarios.

Country
2036–2064 2071–2099

RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5

Average AF (%) min max Average AF (%) min max Average AF (%) min max Average AF (%) min max

Albania 1.25 0.10 3.61 1.84 0.25 3.87 1.81 0.44 4.37 5.15 1.94 8.36

Austria 0.56 0.05 2.32 0.70 0.01 2.28 0.78 0.13 2.38 1.96 0.68 3.63

Belarus 0.89 0.18 2.21 1.55 0.37 3.26 1.64 0.27 3.64 3.02 0.85 4.37

Belgium 0.43 0.00 1.27 0.58 0.00 1.89 0.70 0.02 2.12 1.70 0.59 3.28

Bosnia and Herzegovina 0.47 0.00 2.62 0.73 0.00 2.18 0.74 0.04 2.86 2.65 0.35 5.75

Bulgaria 4.49 2.66 6.48 5.55 2.84 8.91 5.44 2.92 6.95 8.82 6.27 12.48

Croatia 0.56 0.03 2.62 0.81 0.01 2.72 0.86 0.07 2.95 2.66 0.60 6.20

Cyprus 7.11 5.01 9.08 9.21 6.21 13.33 9.39 7.59 11.01 15.44 12.08 18.37

Czech Republic 1.18 0.13 3.45 1.48 0.05 4.10 1.62 0.48 4.21 3.39 1.18 5.86

Denmark 0.19 0.01 0.70 0.29 0.00 0.92 0.34 0.01 0.80 0.88 0.21 2.09

Estonia 0.18 0.01 0.38 0.33 0.04 0.85 0.45 0.01 1.32 1.23 0.30 2.25

Finland 0.12 0.00 0.28 0.19 0.03 0.64 0.28 0.02 0.79 0.90 0.27 2.13

France 1.35 0.17 3.28 1.53 0.30 3.50 1.70 0.34 3.67 3.84 1.73 5.86

Germany 0.58 0.03 1.97 0.73 0.02 2.53 0.83 0.14 2.71 1.89 0.65 3.98

Greece 2.72 1.21 4.79 4.10 1.73 7.15 3.96 1.76 5.65 8.76 6.03 11.87

Hungary 3.06 1.20 5.83 3.72 0.80 7.52 3.65 1.66 6.95 6.15 3.53 9.12

Iceland 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Ireland 0.05 0.00 0.30 0.08 0.00 0.29 0.09 0.00 0.46 0.37 0.06 0.93

Italy 1.41 0.50 4.05 1.84 0.27 4.09 2.07 1.02 4.16 5.24 2.63 8.48

Latvia 0.18 0.01 0.49 0.36 0.05 0.93 0.48 0.04 1.45 1.16 0.13 2.25

Lithuania 0.24 0.02 0.75 0.48 0.07 1.26 0.60 0.03 1.78 1.32 0.20 2.93

Luxembourg 0.58 0.00 2.08 0.76 0.00 2.38 0.91 0.05 2.91 2.23 0.54 4.40

Montenegro 0.41 0.02 1.97 0.65 0.02 1.67 0.65 0.07 2.49 2.39 0.41 4.52

Netherlands 0.31 0.01 0.87 0.42 0.00 1.33 0.51 0.00 1.60 1.15 0.37 2.32

Norway 0.03 0.00 0.09 0.06 0.01 0.34 0.09 0.02 0.22 0.34 0.15 0.88
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Table A3. Cont.

Country
2036–2064 2071–2099

RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5

Average AF (%) min max Average AF (%) min max Average AF (%) min max Average AF (%) min max

Poland 0.96 0.18 2.55 1.35 0.11 3.66 1.40 0.36 3.85 2.74 0.87 4.54

Portugal 1.34 0.36 3.24 1.73 0.67 3.28 1.68 0.78 3.47 4.35 2.35 6.43

Republic of Moldova 3.05 0.97 5.02 4.19 1.34 7.95 3.70 1.11 6.46 6.57 3.70 10.03

Romania 2.85 1.44 4.59 3.72 1.35 7.13 3.46 1.49 5.61 6.11 3.64 9.05

Serbia 0.74 0.01 2.69 1.19 0.03 3.14 1.12 0.13 3.28 3.44 0.87 6.69

Slovakia 1.37 0.29 3.32 1.81 0.13 4.67 1.84 0.56 4.59 3.66 1.54 5.45

Slovenia 0.11 0.00 1.10 0.19 0.00 1.03 0.22 0.00 1.01 1.02 0.18 2.81

Spain 2.12 0.93 3.69 2.50 1.39 4.00 2.80 1.53 4.09 6.12 3.68 7.91

Sweden 0.06 0.00 0.13 0.11 0.02 0.34 0.17 0.02 0.45 0.59 0.24 1.30

Switzerland 0.39 0.01 1.91 0.51 0.00 1.96 0.58 0.02 1.84 1.74 0.47 3.42

The former Yugoslav Republic of Macedonia 1.29 0.15 3.17 2.03 0.39 4.34 1.89 0.32 3.29 5.25 2.58 8.04

United Kingdom of Great Britain and Northern Ireland 0.07 0.00 0.27 0.12 0.00 0.52 0.13 0.00 0.43 0.38 0.04 0.83

Ukraine 2.40 1.07 4.49 3.43 1.18 5.74 3.21 1.31 5.49 5.49 2.59 8.21
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