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Abstract: Accurate PM2.5 concentration forecasting is crucial for protecting public health and
atmospheric environment. However, the intermittent and unstable nature of PM2.5 concentration
series makes its forecasting become a very difficult task. In order to improve the forecast accuracy
of PM2.5 concentration, this paper proposes a hybrid model based on wavelet transform (WT),
variational mode decomposition (VMD) and back propagation (BP) neural network optimized by
differential evolution (DE) algorithm. Firstly, WT is employed to disassemble the PM2.5 concentration
series into a number of subsets with different frequencies. Secondly, VMD is applied to decompose
each subset into a set of variational modes (VMs). Thirdly, DE-BP model is utilized to forecast all
the VMs. Fourthly, the forecast value of each subset is obtained through aggregating the forecast
results of all the VMs obtained from VMD decomposition of this subset. Finally, the final forecast
series of PM2.5 concentration is obtained by adding up the forecast values of all subsets. Two PM2.5

concentration series collected from Wuhan and Tianjin, respectively, located in China are used to
test the effectiveness of the proposed model. The results demonstrate that the proposed model
outperforms all the other considered models in this paper.

Keywords: PM2.5 concentration forecasting; wavelet transform; variational mode decomposition;
differential evolution; back propagation neural network

1. Introduction

Over the past few decades, with the rapid development of industrialization and urbanization,
the occurrence of haze pollution episodes has become more frequent and more severe in China [1,2].
According to the statistics of China’s National Development and Reform Commission, since early 2013,
many areas including the north China, Huanghuai, Jianghuai, Jianghan, south of the Yangtze River
and the north of southern China have suffered severe and continuous haze weather. Haze pollution
brings serious adverse effects on the environment, clime, ecological systems, economy and public
health, thus causes great harm to the human production and life on a global scale [3,4]. Even though
the mechanism of haze formation is still not clear [5], the high level concentrations of fine particles
with aerodynamic diameter of 2.5 µm or less (PM2.5) was inferred as the main reason of haze pollution
episodes, and thus attracted widespread public concerns [6,7]. Compared to the PM10 (particulate
matter with aerodynamic diameter below 10 µm), PM2.5 has smaller diameter and stronger adsorption
capacity of hazardous materials such as heavy metal and organic pollutants, and therefore has more
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serious adverse effects on human health and atmosphere quality [8]. With long-term exposure to
PM2.5, the incidence of associated diseases such as lung diseases, heart diseases and premature death
in human beings will be significantly increased [9,10]. The severity of adverse effects caused by PM2.5

makes it an urgent need for researchers to simulate and forecast its concentration. However, due
to the diverse sources, strong regional and long-range transport, multiple influencing factors, along
with complex formation mechanisms, the previous studies have illustrated the difficulty in accurate
prediction of PM2.5 concentration [11,12].

In the previous studies, many methods and tools have been proposed for predicting the
concentration of PM2.5 or other air pollutants. These methods can be generally divided into the
following three categories: (1) deterministic methods; (2) causal relationships forecasting methods;
and (3) time series based forecasting methods. Deterministic methods such as community multi-scale
air quality (CMAQ) model can simulate the process of discharge, accumulation, diffusion and transfer
of a pollutant by employing meteorological, emission and chemistry models, and are often used for
predicting the concentrations of air pollutants [13]. For instance, Djalalova et al. proposed a new
post-processing method based on the CMAQ model for surface PM2.5 predictions [14]. However,
the scale and quality of the emission data adopted make great influence on the forecast accuracy of
deterministic methods [15]. Moreover, the deterministic methods need much computational time
to accomplish the forecasting process [16]. Therefore, many researchers integrated the deterministic
methods with intelligent or statistical methods in order to enhance the forecast accuracy. For
instance, Konovalov et al. proposed a hybrid model for PM10 concentration forecasting based on
the deterministic model and statistical model, where the statistical model was utilized to correct
predictions made by the deterministic model [17]. Song et al. developed an adaptive neuro-fuzzy
model to implement deterministic forecasting of PM based on the data of hourly and 12 h averaged air
pollutants within Yangtze River Delta region of China [18]. Causal relationships forecasting methods
work on the causal relationships between independent variables and forecast values. For instance,
Sun and Sun developed a novel hybrid model based on principal component analysis (PCA) and
least squares support vector machine (LSSVM) optimized by cuckoo search (CS) for daily PM2.5

concentration prediction. In their proposed model, the PCA is firstly adopted to obtain the most
important influencing factors of PM2.5 concentration, then based on the selected influencing factors,
the PM2.5 concentration is predicted using CS-LSSVM model [19]. However, as mentioned before, since
the PM2.5 concentration is influenced by many complicated factors such as temperature, wind speed,
precipitation which are very difficult to be determined accurately and quantificationally in real-world
applications, thus, it is really a big challenge to build an accurate forecasting model using causal
relationships forecasting method. Therefore, many researchers turn to forecasting PM2.5 concentration
based upon the time series forecasting methods which rely on the historical series.

The most frequently used time series forecasting methods in this study area can be further
divided into the following two categories: statistical models and hybrid models. Statistical models
are easy, quick and efficient, and mainly involve autoregressive integrated moving average model
(ARIMA), multiple linear regression (MLR), generalized autoregressive conditional heteroskedasticity
(GARCH), grey model (GM), Markov models and artificial intelligence (AI) based models. For example,
Jian et al. utilized ARIMA model to investigate the effect of meteorological factors on submicron
particle concentrations under busy traffic conditions [20]. Stadlober et al. developed a MLR model
combining information of the present day with meteorological forecasts of the next day to forecast
daily PM10 concentrations for sites located in Bolzano, Klagenfurt and Graz [21]. Kumar and Ridder
developed a hybrid model integrated GARCH modeling technique and FFT-ARIMA to forecast daily
maximum O3 concentration, and to make probabilistic forecasts of ozone episodes at four urban
sites of two major European cities (London and Brussels); the results revealed the good forecasting
performance of the proposed model [22]. Pai et al. proposed seven types of first-order and one-variable
grey differential equation model to predict hourly PM concentrations in Banciao city of Taiwan, the
results showed that GM(1,1) is an efficient early-warning tool for providing PM information to the
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inhabitants [23]. Sun et al. utilized hidden Markov models (HMMs) to forecast daily average PM2.5

concentration, the comparisons between different distributions used in HMMs showed that the closer
the distribution employed in HMMs is to the observation sequence, the better the model prediction
performance [24]. Ordieres et al. compared the forecasting capability of three different neural networks
for PM2.5 concentration forecasting, including multilayer perceptron (MLP), radial basis function (RBF)
and square multilayer perceptron (SMLP) [25]. Voukantsis et al. constructed an ANN (multi-layer
perceptron) model to accomplish the forecasting of daily PM10 and PM2.5 concentrations [26].

In order to improve the forecast accuracy, hybrid models which combine some single models
have been widely used in air quality forecasting field. For example, Lin et al. forecasted concentrations
of air pollutants including PM10, NOx and NO2 by logarithm SVM with immune algorithms (IA) [27].
Perez developed a combination model of ANN and a nearest neighbor method to conduct PM10

forecasting [28]. Antanasijević et al. applied the artificial intelligence model combining the genetic
algorithm (GA) and ANN to forecast PM10 emission [29]. However, the multiple frequency components
existed in PM2.5 concentration series are always the challenging parts in forecasting, making the models
which work on the original time series cannot handle them appropriately. Thus, many decomposition
techniques such as WT, EMD, VMD and their variants have been applied for dealing with the multiple
frequency components before forecasting. For instance, Bai et al. utilized wavelet transform (WT)
technique and back propagation neural network (BPNN) to forecast daily air pollutants (PM10, SO2 and
NO2) concentrations, and experiment results showed that the WT-BPNN model has better forecasting
performance than BPNN model in terms of the forecast accuracy [30]. Zhou et al. developed a hybrid
model based on EEMD and a general regression neural network (GRNN) to predict PM2.5 concentration,
and obtained accurate results [2]. Liu et al. presented four different hybrid models by combining four
signal decomposing algorithms (e.g., wavelet decomposition (WD)/wavelet packet decomposition
(WPD)/EMD/fast ensemble empirical mode decomposition (FEEMD)) and ELM model to complete
the multi-step-ahead wind speed forecasting, and the experiments indicated that all the proposed
hybrid models have better performance than the single ELM model [31]. Wang et al. [32] proposed
a hybrid model based on two-layer decomposition method and BP neural network optimized by
firefly algorithm for multi-step electricity price forecasting, and the experimental results illustrated the
superior performance of the proposed model.

Although the hybrid models integrated single decomposition techniques can improve the
forecasting ability to some extent, while since all the single decomposition techniques have the
drawback of mode mixing with different levels, which makes the multiple frequency components
existed in the PM2.5 concentration series cannot be effectively extracted, and consequently leads to
an inferior forecasting performance. Therefore, this paper proposes a novel hybrid model based on
WT-VMD decomposition method and BP neural network optimized by DE algorithm for one day
ahead PM2.5 concentration forecasting. Firstly, WT is employed to decompose the PM2.5 concentration
series into a number of subsets with different frequencies. Since the problem of frequency aliasing
exists between the subsets may increase the forecasting difficulty, therefore, VMD is further applied to
conduct the secondary decomposition of each subset generated by WT, and a set of modes are obtained.
Next, BP model optimized by DE is utilized to forecast the modes generated by VMD. Finally, the
forecast value of each subset is obtained through aggregating the forecast values of all modes generated
from this subset by VMD, and the forecast series of PM2.5 concentration is obtained by adding up
the forecast values of all subsets. The proposed model is tested using two PM2.5 concentration series
collected respectively from Wuhan and Tianjin located in China. The results demonstrate that the
proposed model outperforms all the other considered models in this paper.

The rest of this paper is organized as follows. Section 2 describes in detail the methodology
adopted in the paper. Section 3 develops the proposed hybrid model. In Section 4, two PM2.5

concentration series collected from Wuhan and Tianjin, respectively, located in China are taken for
conducting the empirical study. Section 4 is the concluding remarks.
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2. Methodology

2.1. Wavelet Transform (WT)

WT is a powerful technique for processing the non-periodic, non-stationary and transient
signals [33]. WT decomposes a time series into different components at different frequency levels: one
low frequency approximation subset which shows the general trend of the signal and several high
frequency detail subsets which are related to the noise and disturbance [34]. As shown in Figure 1, the
process of m-level decomposition by WT for time series S(t) can be defined as follows:

S(t) = d1 + d2 + · · ·+ dm + am (1)

Compared to the original signal, these subsets generated by WT usually have some better
behaviors such as more stable variance and fewer outliers, which facilitates the prediction task and
therefore improves the overall prediction accuracy [35]. WTs can be divided into the following two
categories: (1) continuous wavelet transform (CWT); and (2) discrete wavelet transform (DWT).

The CWT of a signal f (t) is defined as follows:

CWT f (a, b) =
1√
|a |

∫ +∞

−∞
f (t)ψ∗

(
t− b

a

)
dt (2)

where a and b are the parameters of scale and translation, respectively; ∗ represents the complex
conjugate; and the mother wavelet ψ(t) denotes the transforming function.

The DWT of a signal f (t) is defined as follows:

DWT f (m, n) = 2−
m
2

T−1

∑
t=0

f (t)ψ∗
(

t− n2m

2m

)
(3)

where the integer m is the scale factor (decomposition level), the integer n is the sampling time, T is
the length of signal f (t), and t is the discrete time index.
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The number of decomposition levels and selection of the mother wavelet have considerable
effects on the characteristics of subsets and thus influence significantly the overall prediction error.
In the decomposition process of WT, more levels will result in more stationary subsets; however, large
number of levels might cause decomposition information loss and thus low prediction accuracy [34].
Based on the above considerations, this paper adopts a three-level DWT with mother wavelet of the
Daubechies wavelet of order 4 (Db4), which has the ability of providing a balance between wavelength
and smoothness [35].

2.2. Variational Mode Decomposition (VMD)

VMD is an effective signal decomposition method proposed by Dragomiretskiy and Zosso in
2014 [36]. VMD can decompose a real valued signal into a discrete set of band-limited modes (denoted
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by yk) which have specific sparsity properties when producing main signal. It is assumed that each
mode yk generated by VMD can be compressed around a center pulsation ωk which is determined
along with the decomposition process. In order to obtain the bandwidth of each mode, the following
procedures should be accomplished: (1) for each mode µk, compute the associated analytic signal with
the benefit of Hilbert transform to obtain a unilateral frequency spectrum; (2) mix with an exponential
tuned to the respective estimated center frequency in order to shift the mode’s frequency spectrum
to baseband; and (3) estimate the bandwidth of each model through Gaussian smoothness of the
demodulated signal. Then, the constrained variational problem can be provided as follows:

min
µk ,ωk

=

{
∑
k
‖∂t

[(
δ(t) +

j
πt

)
∗ µk(t)

]
e−jωkt‖

2

}
(4)

Subject to

∑
k

µk = f (5)

where f is the original signal, µ is its mode, ω is the frequency, δ is the Dirac distribution, t is time script,
k is the number of modes, and ∗ denotes convolution. Recall that, in the VMD framework, the original
signal f is decomposed into a set of modes denoted µ (see Equation (5)) each having a bandwidth
in Fourier domain (see Equation (4)) and compacted around a center pulsation ωk. The solution to
the original minimization problem (see Equation (4)) is the saddle point of the following augmented
Lagrangian (L) expression:

L(µk, ωk, λ) = α∑
k
‖∂t

[
δ(t) +

j
πt
∗ µk(t)

]
‖

2

2

+ ‖ f −∑ µk‖
2
2 +

〈
λ, f −∑ µk

〉
(6)

where λ is the Lagrange multiplier and α represents the balancing parameter of the data-fidelity
constraint. Consequently, the solutions for u and ω can be obtained based on the following
two equations:

µn+1
n =

(
f −∑

i 6=k
µi +

λ

2

)
1

1 + 2α(ω−ωk)
2 (7)

ωn+1
n =

∫ ∞
0 ω|µk(ω)|2dω∫ ∞

0 |µk(ω)|2dω
(8)

where n is the number of iterations.

2.3. The DE-BP Model

2.3.1. Back Propagation (BP) Neural Network

Artificial neural networks (ANNs) include a family of intelligent models that mimic the biological
neural networks. The BP neural network including one or more hidden layers is one of the ANN
models, which has a relative simple structure and thus can be realized easily. Since the distinguish
performance of the BP neural network, it has been popularly used in many practical fields such as
wind speed forecasting [37], plastic injection molding [38], natural gas load forecasting [39] and so
forth. The BP neural network used in this study has a three-layer network consisting of an input
layer, a hidden layer, and an output layer (see Figure 2). The BP neural network distinguishes itself by
the presence of hidden layers whose computation nodes are correspondingly called hidden neurons.
The function of hidden neurons is to connect the input and the network output. Given a training
set of input-output data, the most common learning rule for multi-layer perceptron (MLP) neural
networks is the back-propagation algorithm which involves two following phases: the first one is
a feed-forward phase in which the external input information at the input nodes is propagated forward
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to compute the output information signal at the output unit; the second one is a backward phase
in which modifications to the connection weights are made based on the differences between the
computed and observed information signals at the output units. In this study, a tangent sigmoid
function is used as the neuron transfer function.
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After determination of the network topology and initialization of the associated network
parameters, the BP neural network should be trained and tested through the following three steps:

Step 1: Calculate the output of the jth node in the hidden layer using the following equation.

Hj = f (
n

∑
i=1

ωijxi − aj) (9)

where i is the index of neuron in the input layer, n is the number of neurons in the input layer,
ωij is the connection weights between input layer and hidden layer, xi is the ith input value,
aj is threshold value, and Hj and f represent the output of hidden layer and the incentive
function of neurons, respectively.

Step 2: Calculate the fitted value or forecasting value of the kth node in the output layer using the
following equation.

Ok =
l

∑
j=1

Hjωjk − bk k = 1, 2, . . . , m (10)

where ωjk is the connection weights between the output layer and hidden layer, bk is threshold
value, and m is the number of neurons in the output layer.

Step 3: Calculate the fitting error ek based on the fitted value and expected output, and update the
weight factor and threshold value by the following formula.

ωij = ωij + ηHj(1− Hj)x(i)
m

∑
k=1

ωjkek i = 1, 2, . . . , n; j = 1, 2, . . . , l (11)

ωjk = ωjk + ηHjek j = 1, 2, . . . , l; k = 1, 2, . . . , m (12)

aj = aj + ηHj
(
1− Hj

)
x(i)

m

∑
k=1

ωjkek j = 1, 2, . . . , l (13)

bk = bk + ek k = 1, 2, . . . , m (14)

where η denotes the learning rate, x(i) is the ith input value.
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The training process of the BP neural network is stopped when one of the following two conditions
is satisfied: (1) the maximum number of iterations is reached; and (2) the fitting accuracy meets
the requirement.

2.3.2. Differential Evolution (DE) Algorithm

DE algorithm proposed by Storn and Price in 1997 is a stochastic, population-based and direct
search algorithm which has the characteristics of simple structure, less control parameters, fast
convergence, and strong robustness, and therefore has significant advantages for dealing with the
non differentiable, nonlinear and multimodal functions [40]. As shown in Figure 3, the standard DE
algorithm consists of four main operations: initialization, mutation, crossover and selection.

Int. J. Environ. Res. Public Health 2017, 14, 764  7 of 23 

 

( ) ( )
1

1 1,2,...,η ω
=

= + − =
m

j j j j jk k
k

a a H H x i e j l
 
 (13)

k k kb b e= + 1,2,...,k m=  (14)

where η  denotes the learning rate, ( )x i  is the ith input value.  
The training process of the BP neural network is stopped when one of the following two 

conditions is satisfied: (1) the maximum number of iterations is reached; and (2) the fitting accuracy 
meets the requirement. 

2.3.2. Differential Evolution (DE) Algorithm 

DE algorithm proposed by Storn and Price in 1997 is a stochastic, population-based and direct 
search algorithm which has the characteristics of simple structure, less control parameters, fast 
convergence, and strong robustness, and therefore has significant advantages for dealing with the 
non differentiable, nonlinear and multimodal functions [40]. As shown in Figure 3, the standard DE 
algorithm consists of four main operations: initialization, mutation, crossover and selection. 

 
Figure 3. The flowchart of DE algorithm. 

The basic steps of DE algorithm are illustrated as follows: 

Step 1: Population initialization. Initializing population of DE algorithm based on the following 
formula. 

( ) ( ), , ,min , ,max ,min0,1= + × −j i o j i j j jx x rand x x  (15)

where , ,j i ox  denotes the value of ith individual in the 0th generation and jth dimension. 

Step 2: Mutation. Based on the randomly selected three indices, ,m i  and j , m i j≠ ≠ , a mutant 
vector ,k GV  is generated based on the following formula.  

, , , ,( )= + −k G m G i G j GV X F X X  (16)

where k m i j≠ ≠ ≠ , F  is a scaling factor and [ ]0,2F ∈ , ,m GX  is the base vector. 

Step 3: Crossover. Crossover operation is introduced into DE algorithm in order to improve the 
multiplicity of the perturbed parameter vectors. The trial point , , 1j k GU +  is established from 

its parents , , 1j k GV +  and , ,j k GX  by the following formula. 

, , 1

, , 1
, ,

if ( ( ) ) or ( )
1,..., ,

if ( ( ) and ( ))

+
+

≤ == = > ≠

j k G R

j k G
j k G R

V rand b j C j rnbr i
U j D

X rand b j C j rnbr i
 (17)

where RC  is crossover probability and [ ]0,1RC ∈ , ( )rnbr i  is a randomly selected index in the set 

of { }1, 2,3,...,D , which ensures that , , 1j k GU + obtains at least one parameter from , , 1j k GV + . The trial 

vector is formed of both current parameter vectors and mutant vector parameters (see formula (17)). 

Step 4: Selection. The trial vector , 1i GX +  can be obtained by comparing the fitness value of the 
vector obtained through mutation and crossover, and the process can be denoted as follows: 

Figure 3. The flowchart of DE algorithm.

The basic steps of DE algorithm are illustrated as follows:

Step 1: Population initialization. Initializing population of DE algorithm based on the
following formula.

xj,i,o = xj,min + randi,j(0, 1)×
(

xj,max − xj,min
)

(15)

where xj,i,o denotes the value of ith individual in the 0th generation and jth dimension.

Step 2: Mutation. Based on the randomly selected three indices, m, i and j, m 6= i 6= j, a mutant
vector Vk,G is generated based on the following formula.

Vk,G = Xm,G + F(Xi,G − Xj,G) (16)

where k 6= m 6= i 6= j, F is a scaling factor and F ∈ [0, 2], Xm,G is the base vector.
Step 3: Crossover. Crossover operation is introduced into DE algorithm in order to improve the

multiplicity of the perturbed parameter vectors. The trial point Uj,k,G+1 is established from its
parents Vj,k,G+1 and Xj,k,G by the following formula.

Uj,k,G+1 =

{
Vj,k,G+1 if (rand b(j) ≤ CR) or j = rnbr(i)
Xj,k,G if (rand b(j) > CR and j 6= rnbr(i))

j = 1, . . . , D, (17)

where CR is crossover probability and CR ∈ [0, 1], rnbr(i) is a randomly selected index in the
set of {1, 2, 3, . . . , D}, which ensures that Uj,k,G+1 obtains at least one parameter from Vj,k,G+1.
The trial vector is formed of both current parameter vectors and mutant vector parameters
(see formula (17)).

Step 4: Selection. The trial vector Xi,G+1 can be obtained by comparing the fitness value of the vector
obtained through mutation and crossover, and the process can be denoted as follows:

Xi,G+1 =

{
Ui,G i f f (Ui,G) ≤ f (Xi,G)

Xi,G otherwise
(18)

Step 5: Iterative computing and stop the DE algorithm if the result satisfies the error requirement or
the maximum number of iterations is reached. Otherwise, return to Step 2.
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2.3.3. The DE-BP Model

In the BP neural network, the two kinds of training parameters of weight matrices (ωij and ωjk)
and thresholds (aj and bk) have significant influences on the prediction accuracy. In order to improve
the function approximation ability of the BP neural network, especially on the catastrophe points,
in this study, DE algorithm is utilized to optimize the weight matrices and thresholds, see Figure 4.
The fitness function of DE algorithm used in this study is the RMSE of forecast results, and is defined
as follows:

Ff itness =

√√√√ 1
N

N

∑
t=1

(
X̂(t)− X(t)

)2

(19)

where X̂(t) denotes the forecast value at time t, X(t) represents the actual value at time t, and N is the
total number of data. The individual owning the minimal fitness value is the global best point, which
can be used to determine the parameters of the BP neural network.

The steps of DE-BP model are described as follows:

Step 1: Initialization. Determine the network topology of the network and initialize the parameters of
DE algorithm including population size, maximum iteration number, probabilities of mutation
and crossover operators. The initial population is generated using Equation (15).

Step 2: Calculate the fitness value of each individual using Equation (19). The DE algorithm is stopped
when the stop criterion is satisfied, and go to Step 4.

Step 3: Update the population of DE algorithm based on mutation, crossover and selection operators.
Go to Step 2.

Step 4: The optimal individual obtained from DE algorithm is adopted as the initial connection
weights and thresholds of the BP neural network.

Step 5: Train and test the BP neural network based on the training and testing samples.
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2.3.4. Hybrid WT-VMD-DE-BP Forecasting Model

In this section, the proposed WT-VMD-DE-BP model is established for daily PM2.5 concentration
forecasting. As shown in Figure 5, the basic structure of the hybrid forecasting method includes the
following five steps:

Step 1: First decomposition. The WT decomposition technique is utilized to decompose the PM2.5

concentration series into one low frequency approximation subset and several high frequency
detail subsets.

Step 2: Second decomposition. In order to increase the forecasting accuracy, the VMD technique is
further employed to conduct the secondary decomposition of each subset generated by WT,
and consequently a number of VMs are obtained.

Step 3: Individual forecasting. Each VM generated by VMD is forecasted using DE-BP model.
Step 4: First summation. The forecast value of each subset generated by WT is obtained by adding up

all the forecast values of VMs generated by VMD decomposition of this subset.
Step 5: Second summation. The forecast series of PM2.5 concentration is obtained by aggregating the

forecast result of each subset.
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3. Empirical Study

3.1. Study Area and Data Description

In this paper, two PM2.5 concentration series respectively collected from Wuhan and Tianjin
located in China are adopted for testing the validity of the proposed model. The specific locations of
the two study areas are briefly depicted in Figure 6. Wuhan, situated in the middle-lower Yangtze Plain
and the eastern part of Jianghan Plain (30◦ N and 114◦ E), has been regarded as China’s important
industrial base, integrated transportation hub, and science and education base. The Yangtze River,
which is the third longest river in the world, and the largest tributary of the Han River meet at this
city, making Wuhan become a very important inland river port. Wuhan has a sub-tropical monsoon
humid climate with abundant rainfall, abundant sunshine and four distinct seasons. Tianjin, the largest
coastal city in northern China, is located along the west coast of the Bohai Gulf (39◦ N and 117◦ E).
Tianjin has become a new growth pole and a hub of advanced industry and financial activity in China.
Tianjin has a sub-humid warm temperate monsoon climate that characterized by significant winds
and four distinct seasons. With rapid development of urbanization in the past several decades, both
Wuhan and Tianjin become two megalopolises with a population of more than ten million people.
Simultaneously, because of the development of industrialization and increase of motor vehicles, the
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occurrence of haze weather in these two megalopolises becomes more frequent and more severe, which
makes it an urgent need for researchers and relevant government departments to simulate and forecast
the PM2.5 concentration in order to protect public health and atmospheric environment.
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In this paper, the two original daily PM2.5 concentration series from 1 January 2014 to 30 June 2016
with a total of 912 observations in Wuhan and Tianjin are collected from China’s online air quality
monitoring and analysis platform (http://www.aqistudy.cn/), as shown in Figure 7. In Figure 7,
it can be seen that the two PM2.5 concentration series share some common features, for example, both
Wuhan and Tianjin have high level of PM2.5 concentration in winter (roughly between November
and February of each year). However, since Wuhan and Tianjin have different geographical positions,
climatic characteristics and industrial structures, the PM2.5 concentration series associated with the
two megalopolises appear to be different, and therefore are suitable for testing the effectiveness and
practicability of the proposed forecasting model. Specifically, in each PM2.5 concentration series,
the 1st–882nd data (1 January 2014–31 May 2016) and 883rd–912th data (1 June 2016–30 June 2016)
are adopted as the training and testing samples, respectively. This study selects four accuracy
measures presented in Section 3.2 in order to evaluate the performance of the proposed forecasting
model. In addition, it should be noted that all considered models adopted in this paper are coded in
MATLAB R2010a.Int. J. Environ. Res. Public Health 2017, 14, 764  12 of 23 

 

 
Figure 7. The original PM2.5 concentration series of Wuhan and Tianjin.  

3.2. Performance Criteria of Forecasting Accuracy 

This study adopts the following four error metrics to testify the effectiveness and practicability 
of the proposed forecasting model: mean absolute error (MAE), root mean square error (RMSE), 
mean absolute percentage error (MAPE) and Theil’s inequality coefficient (TIC). The performance 
measures of MAE, RMSE and MAPE are utilized to quantify the errors of forecast values, and the 
smaller they are, the better the prediction accuracy is. TIC is employed to evaluate the predictive 
capability of different forecasting models, and the smaller it is, the better the forecasting capability 
that the model has. 

The computational formulas of these four performance measures are provided as follows: 

( ) ( )
1

1
ˆ

n

t

MAE x t x t
n =

= −  (20)

( ) ( )( )2

1

1
ˆ

n

t

RMSE x t x t
n =

= −  (21)

( ) ( )
( )1

ˆ1 n

t

x t x t
MAPE

n x t=

−
=   (22)

( ) ( )( )

( ) ( )

2

1

2 2

1 1

1
ˆ

1 1
ˆ

n

t

n n

t t

x t x t
n

TIC

x t x t
n n

=

= =

−
=

+



 
 (23)

where n  is the number of observed PM2.5 concentration values; and ( )x̂ t  and ( )x t  are the 
forecast and observed values of PM2.5 concentration at time t , respectively.  

3.3. PM2.5 Concentration Forecasting in Wuhan 

3.3.1. Analysis of Decomposition Results 

The multiple frequency components in PM2.5 concentration series are always the challenging 
parts in forecasting, making the models which work on the original time series cannot handle them 
appropriately. In order to improve the forecast accuracy, in this study, WT is firstly employed to 
divide the PM2.5 concentration series collected from Wuhan into four components including one low 

14/01/01 14/04/12 14/07/24 14/11/03 15/02/14 15/05/27 15/09/06 15/12/18 16/03/30 16/06/30
0

50

100

150

200

250

300

350

400

450

500

550

Time

P
M

2.
5/

ug
/m

3

 

 
Wuhan

Tianjin

Figure 7. The original PM2.5 concentration series of Wuhan and Tianjin.

http://www.aqistudy.cn/


Int. J. Environ. Res. Public Health 2017, 14, 764 12 of 22

3.2. Performance Criteria of Forecasting Accuracy

This study adopts the following four error metrics to testify the effectiveness and practicability of
the proposed forecasting model: mean absolute error (MAE), root mean square error (RMSE), mean
absolute percentage error (MAPE) and Theil’s inequality coefficient (TIC). The performance measures
of MAE, RMSE and MAPE are utilized to quantify the errors of forecast values, and the smaller they are,
the better the prediction accuracy is. TIC is employed to evaluate the predictive capability of different
forecasting models, and the smaller it is, the better the forecasting capability that the model has.

The computational formulas of these four performance measures are provided as follows:

MAE =
1
n

n

∑
t=1
|x̂(t)− x(t)| (20)

RMSE =

√
1
n

n

∑
t=1

(x̂(t)− x(t))2 (21)

MAPE =
1
n

n

∑
t=1

∣∣∣∣ x̂(t)− x(t)
x(t)

∣∣∣∣ (22)

TIC =

√
1
n

n
∑

t=1
(x̂(t)− x(t))2

√
1
n

n
∑

t=1
x(t)2 +

√
1
n

n
∑

t=1
x̂(t)2

(23)

where n is the number of observed PM2.5 concentration values; and x̂(t) and x(t) are the forecast and
observed values of PM2.5 concentration at time t, respectively.

3.3. PM2.5 Concentration Forecasting in Wuhan

3.3.1. Analysis of Decomposition Results

The multiple frequency components in PM2.5 concentration series are always the challenging
parts in forecasting, making the models which work on the original time series cannot handle them
appropriately. In order to improve the forecast accuracy, in this study, WT is firstly employed to
divide the PM2.5 concentration series collected from Wuhan into four components including one low
frequency approximation subset and three high frequency detail subsets (see Figure 8). The four
components are denoted respectively as d1, d2, d3 and a3, where a3 is the low frequency approximation
subset which illustrates the general trend of the PM2.5 concentration series, and d1,d2, and d3 indicate
the high frequency detail subsets, which are related to the noise and disturbance.
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Figure 8. Decomposition results of PM2.5 concentration series by WT (Wuhan).
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After decomposition of original PM2.5 concentration series by WT, DE-BP model is utilized to
forecast all the subsets. There is no doubt that the PM2.5 concentrations of previous several days
have a great influence on the latter ones. Therefore, in this study, a certain number of previous
PM2.5 concentration data are taken as the input of DE-BP model for forecasting the latter one. After
several simulations and predictions, the optimal length of predicted series is set as eight in DE-BP
model in order to obtain the higher accuracy. In DE algorithm, the parameter settings are listed
as follows: population size: Np = 100, scaling factor: F = 0.5, crossover probability: CR = 0.5,
max iterations:GM = 100. The above parameter settings and input determination method are used
in all tests throughout the paper in order to ensure fair and valid comparisons between different
forecasting models.

Based on the above parameter settings, each subset is forecasted using DE-BP model, and the
forecast results are illustrated in Figure 9. It is obvious that all the four subsets cannot be forecasted
with high accuracy, especially the subsets d1, d2, and d3, which are related to the noise and disturbance.
Therefore, it can be concluded that the single decomposition process by WT cannot effectively extract
the multiple frequency components existed in the PM2.5 concentration series, and therefore leads to
a relatively inferior forecasting performance.
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Figure 9. The forecast results of each subset by WT-DE-BP model (Wuhan).

Therefore, in order to solve the drawback of WT and further improve the forecast accuracy, VMD
is further applied to conduct the secondary decomposition of each subset generated by WT. In this
study, each subset is decomposed into eight VMs, and the decomposition results of d1, d2, d3 and a3 by
VMD are illustrated in Figure 10. Then, DE-BP model is employed to forecast all VMs based on the
rolling technology. Next, the forecasting value of each subset is obtained by aggregation of the forecast
values of all the VMs generated by VMD decomposition of this subset. Finally, the ultimate forecast
result of PM2.5 concentration series can be obtained by adding up the forecast values of each subset.
The ultimate forecast results and the corresponding MAE, RMSE, MAPE and TIC of WT-VMD-DE-BP
model for all the four subsets are presented in Figure 11 and Table 1. From Figure 11 and Table 1, it is
obvious that after secondary decomposition by VMD, the forecast accuracies of all the four subsets
are significantly improved, which confirms the effectiveness of the hybrid decomposition technology
proposed in this study.
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Figure 10. Decomposition results of each subset by VMD (Wuhan). 
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Figure 11. The forecast results of each subset using WT-VMD-DE-BP (Wuhan).

Table 1. Forecast errors of WT-DE-BP and WT-VMD-DE-BP for each subset.

Index
Forecast Errors of WT-DE-BP Forecast Errors of WT-VMD-DE-BP

d1 d2 d3 a3 d1 d2 d3 a3

MAE 4.97 1.83 0.45 1.38 0.85 1.08 0.17 0.95
RMSE 5.79 2.31 0.75 1.89 1.05 1.58 0.21 1.20
MAPE (%) 222.38 357.01 56.56 5.42 33.75 36.04 22.83 3.80
TIC 0.52 0.17 0.18 0.03 0.12 0.13 0.05 0.02
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3.3.2. Results and Discussions

In this section, to verify the superiority of the proposed WT-VMD-DE-BP model in forecasting
capability, forecasting models of BP, DE-BP, WT-DE-BP, VMD-DE-BP and WT-VMD-DE-BP are adopted
as the benchmark models. Four error measurements, MAE, RMSE, MAPE and TIC, are employed for
evaluating the performance of all the forecasting models.

The forecast results of all considered models are shown in Figure 12, and the forecast errors
including MAE, RMSE, MAPE and TIC of the proposed model and benchmark models are presented
in Table 2 where the smallest value of each row is marked in boldface. As shown in Table 2, the error
values of MAE, RMSE, MAPE and TIC of the proposed model are all smallest compared with all the
other benchmark models, which confirms that the proposed hybrid WT-VMD-DE-BP model based
on WT-VMD decomposition technique has the best forecasting performance. In order to present the
comparison more intuitively, the error figures MAE, RMSE, MAPE and TIC of different models are
also provided in Figure 13.Int. J. Environ. Res. Public Health 2017, 14, 764  16 of 23 
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Table 2. Comparison of prediction performances of different models (Wuhan).

Index BP DE-BP WT-DE-BP VMD-DE-BP WT-VMD-DE-BP

MAE 9.61 8.12 4.05 4.53 1.34
RMSE 11.68 10.08 4.83 5.54 1.79
MAPE (%) 39.50 31.94 13.84 17.88 5.95
TIC 0.16 0.14 0.07 0.08 0.03

Note: The smallest value of each row is marked in boldface.

In order to further analyze the effects of the decomposition technique and DE optimization
algorithm on the proposed model, the following three categories of comparisons are conducted in this
experiment. The first category of comparison (Comparison I), which is designed for testing the positive
effects of single decomposition techniques, is conducted between the forecasting models embedded
with single decomposition techniques (WT-DE-BP model and VMD-DE-BP model) and the forecasting
models without any decomposition techniques (DE-BP model). The second category of comparison
(Comparison II), which is designed for proving the advantages of hybrid WT-VMD decomposition
technique, is carried out between the proposed model and the forecasting models embedded with
single decomposition techniques (WT-DE-BP model and VMD-DE-BP model). The third category
of comparison (Comparison III), which is designed for confirming the contribution of DE algorithm
on the BP model, is conducted between the DE-BP model and BP model. The comparison results of
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Comparison I, Comparison II and Comparison III are all presented in Table 3. Based on the results
listed in Table 3, the following three categories of findings can be obtained.
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Table 3. The comparison results of Comparisons I, II and III (Wuhan).

Index

The Proportion of Reduction

WT-VMD-DE-BP WT-VMD-DE-BP WT-DE-BP VMD-DE-BP DE-BP
vs. vs. vs. vs. vs.

WT-DE-BP VMD-DE-BP DE-BP DE-BP BP

MAE (%) 66.91 70.42 50.12 44.21 15.50
RMSE (%) 62.94 67.69 51.08 45.04 13.69
MAPE (%) 57.01 66.72 56.67 44.02 19.14
TIC (%) 57.14 62.50 50.00 42.86 14.29

(1) Findings of Comparison I (WT-DE-BP vs. DE-BP and VMD-DE-BP vs. DE-BP)

In Table 3, it is obvious that the values of MAE, RMSE, MAPE and TIC of DE-BP model have been
reduced by 50.12%, 51.08%, 56.67% and 50.00%, respectively, via integrating the WT decomposition
technique into DE-BP model, and have been decreased by 44.21%, 45.04%, 44.02% and 42.86%,
respectively, through combining the VMD decomposition technique into DE-BP model. Based on the
above comparison results, it can be concluded that through decomposing the PM2.5 concentration series
into a set of subsets with different frequencies, the single decomposition technique (WT and VMD) can
decrease the characteristics of non-linearity and non-stability existed in the original PM2.5 concentration
series to some extent, and thus is benefit for improving the forecasting ability of DE-BP model.

(2) Findings of Comparison II (WT-VMD-DE-BP vs. WT-DE-BP and WT-VMD-DE-BP vs. VMD-DE-BP)

In Table 2, it can be found that the values of MAE, RMSE, MAPE and TIC of WT-VMD-DE-BP
model decrease by 66.91%, 62.94%, 57.01% and 57.14%, respectively, compared with those of
WT-DE-BP model, and 70.42%, 67.69%, 66.72% and 62.50%, respectively, compared with those of
VMD-DE-BP model. Therefore, based on the above analysis, it can be easily found that the proposed
WT-VMD-DE-BP model can significantly decrease the errors including MAE, RMSE, MAPE and
TIC of WT-DE-BP and VMD-DE-BP models. Thus, it can be concluded that the hybrid WT-VMD
decomposition technique proposed in this paper is very effective for improving the forecast accuracy.
The reason lies in that the single decomposition techniques (WT and VMD) have the drawback of
mode mixing problem with different levels, which makes the multiple frequency components existed
in the PM2.5 concentration series cannot be effectively extracted, and therefore leads to an inferior
forecasting performance.
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(3) Findings of Comparison III (DE-BP vs. BP)

In Table 2, it is obvious that the values of MAE, RMSE, MAPE and TIC of BP model has been
reduced by 15.50%, 13.69%, 19.14% and 14.29%, respectively, via integrating the DE algorithm into BP
model. Thus, it can be concluded that through optimizing weight matrices and thresholds using DE
algorithm, the BP model obtains stronger approximation ability. In addition, it can also be seen that the
DE algorithm cannot effectively decrease the forecast errors without decomposition techniques (WT
and VMD), which confirms that the multiple frequency components existed in the PM2.5 concentration
series have remarkable influence on the forecast accuracy.

3.3.3. PM2.5 Concentration Forecasting in Tianjin

In order to further systematically and comprehensively testify the validity and applicability of the
proposed WT-VMD-DE-BP model, the PM2.5 concentration series collected in Tianjin (see Figure 7) is
also taken as another study case. Similar to the case in Wuhan, the decomposition results of original
PM2.5 concentration series using WT decomposition method are shown in Figure 14. For each subset,
the forecast result of WT-DE-BP model is shown in Figure 15. The decomposition results of each
subset based on VMD decomposition method are depicted in Figure 16. In addition, for each subset,
the forecast result of WT-VMD-DE-BP model is provided in Figure 17. Finally, the ultimate PM2.5

concentration forecast results of different models are illustrated in Figure 18. The forecast errors, MAE,
RMSE, MAPE and TIC, of all the forecasting models are also calculated and displayed, respectively, in
Tables 4 and 5 and Figure 19.

Based on the simulation results, it is obvious that the similar conclusions to the case in Wuhan
can be obtained. As it is shown, the proposed WT-VMD-DE-BP model owns the best performance
compared with all the other considered models including BP, DE-BP, WT-DE-BP and VMD-DE-BP
in this paper once again, which further confirms that the proposed model is suitable for PM2.5

concentration forecasting, and owns a highly application ability. Similarly, it has been demonstrated
that the performance of the proposed model based on the hybrid decomposition technique
(WT-VMD-DE-BP model) is much better than the models embedded with single decomposition
technique (WT-DE-BP model and VMD-DE-BP model). It has also been verified that the decomposition
technique (WT and VMD) can improve the forecasting ability of DE-BP model, and the DE algorithm
has a positive effect on the BP model.
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Figure 14. Decomposition results of PM2.5 concentration series by WT (Tianjin).
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Table 4. Comparison of prediction performances of different models (Tianjin).

Index BP DE-BP WT-DE-BP VMD-DE-BP WT-VMD-DE-BP

MAE 22.52 19.45 7.53 5.54 4.05
RMSE 27.28 23.81 9.50 6.79 6.25
MAPE(%) 61.03 55.51 17.49 13.66 8.88
TIC 0.22 0.20 0.08 0.06 0.05

Note: The smallest value of each row is marked in boldface.

Table 5. The comparison results of Comparisons I, II and III (Tianjin).
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WT-VMD-DE-BP WT-VMD-DE-BP WT-DE-BP VMD-DE-BP DE-BP
vs. vs. vs. vs. vs.

WT-DE-BP VMD-DE-BP DE-BP DE-BP BP

MAE (%) 46.22 26.89 61.13 71.51 11.43
RMSE (%) 34.21 7.95 60.10 71.48 10.55
MAPE (%) 49.19 34.99 68.51 75.39 9.10
TIC (%) 37.50 16.67 60.00 70.00 9.09
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4. Conclusions

Accurate PM2.5 concentration forecasting is crucial for risk-analysis and decision-making in
environmental protection departments. However, the multiple frequency components that exist in
PM2.5 concentration series are always the challenging parts in forecasting, making models that work
on the original time series unable to handle them appropriately. Thus, many researchers have been
making efforts to solve this problem using different data decomposition techniques such as WT and
VMD before forecasting. Since all single decomposition techniques have the drawback of mode mixing
problem with different levels, which makes the multiple frequency components that exist in the
PM2.5 concentration series unable to be effectively extracted, and consequently leading to an inferior
forecasting performance. Therefore, in order to solve the mode mixing problem existed in the single
decomposition technique, this paper, through combing the advantages of WT and VMD, proposes
a novel hybrid WT-VMD decomposition technique, and then established a forecasting model based on
WT-VMD and DE-BP model to improve the forecast accuracy of PM2.5 concentration.

In order to demonstrate the effectiveness and applicability of the proposed model, two PM2.5

concentration series collected from Wuhan and Tianjin located in China are taken for conducting the
empirical study. Based on the experimental results, four main conclusions can be obtained as follows:
(1) The proposed WT-VMD-DE-BP model owns the best performance compared with all the other
considered benchmark models including BP, DE-BP, WT-DE-BP and VMD-DE-BP, which demonstrates
that the proposed model is highly suitable for the non-stationary PM2.5 concentration forecasting;
(2) The single decomposition techniques of WT and VMD cannot improve the forecasting ability of
DE-BP model significantly due to the drawback of mode mixing problemwith different levels existed
in WT and VMD; (3) The hybrid WT-VMD decomposition technique performs better than the single
decomposition methods of WT and VMD in extracting the multiple frequency components that exist
in the PM2.5 concentration series, thus leading to a good forecasting performance; (4) DE algorithm
has a positive effect on the BP model by optimizing the weights and thresholds between input layer
and hidden layer.

However, as mentioned above, the intermittent and unstable nature of PM2.5 concentration
series makes its forecasting become a very difficult task. Therefore, there are still several research
directions left for the future. For example, some meteorological factors such as atmospheric pressure,
temperature, and precipitation may be integrated into the forecasting model to improve the forecast
accuracy. Furthermore, since the PM2.5 concentration series have some similar characteristics as other
time series such as non-linearity and non-stability, the proposed model in this study can also be used
for other complex time series forecasting, such as forecasting of electricity load, wind speed and
stock price.
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using artificial neural networks and genetic algorithm input variable optimization. Sci. Total Environ. 2013,
443, 511–519. [CrossRef] [PubMed]

30. Bai, Y.; Li, Y.; Wang, X.X.; Xie, J.J.; Li, C. Air pollutants concentrations forecasting using back propagation
neural network based on wavelet decomposition with meteorological conditions. Atmos. Pollut. Res. 2016, 7,
557–566. [CrossRef]

31. Liu, H.; Tian, H.Q.; Li, Y.F. Four wind speed multi-step forecasting models using extreme learning machines
and signal decomposing algorithms. Energy Convers. Manag. 2015, 100, 16–22. [CrossRef]

32. Wang, D.Y.; Luo, H.Y.; Grunder, O.; Lin, Y.B.; Guo, H.X. Multi-step ahead electricity price forecasting using
a hybrid model based on two-layer decomposition technique and BP neural network optimized by firefly
algorithm. Appl. Energy 2017, 190, 390–407. [CrossRef]

33. Bilgin, S.; Çolak, O.H.; Koklukaya, E.; Niyazi, A. Efficient solution for frequency band decomposition
problem using wavelet packet in HRV. Digit. Signal Process. 2008, 18, 892–899. [CrossRef]

34. Tascikaraoglu, A.; Sanandaji, B.M.; Poolla, K.; Varaiya, P. Exploiting sparsity of interconnections in
spatio-temporal wind speed forecasting using Wavelet Transform. Appl. Energy 2016, 165, 735–747.
[CrossRef]

35. Amjady, N.; Keynia, F. Short-term load forecasting of power systems by combination of wavelet transform
and neuro-evolutionary algorithm. Energy. 2009, 34, 46–57. [CrossRef]

36. Dragomiretskiy, K.; Zosso, D. Variational Mode Decomposition. IEEE T. Signal. Proces. 2014, 62, 531–544.
[CrossRef]

37. Wang, S.; Zhang, N.; Wu, L.; Wang, Y. Wind speed forecasting based on the hybrid ensemble empirical mode
decomposition and GA-BP neural network method. Renew. Energy 2016, 94, 629–636. [CrossRef]

38. Wang, H.S.; Wang, Y.N.; Wang, Y.C. Cost estimation of plastic injection molding parts through integration of
PSO and BP neural network. Expert Syst. Appl. 2013, 40, 418–428. [CrossRef]

39. Yu, F.; Xu, X. A short-term load forecasting model of natural gas based on optimized genetic algorithm and
improved BP neural network. Appl. Energy 2014, 134, 102–113. [CrossRef]

40. Storn, R.; Price, K. Differential evolution—A simple and efficient heuristic for global optimization over
continuous spaces. J. Global Optim. 1997, 11, 341–359. [CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.scitotenv.2012.10.070
http://www.ncbi.nlm.nih.gov/pubmed/23178893
http://dx.doi.org/10.1016/j.envsoft.2004.03.010
http://dx.doi.org/10.1016/j.scitotenv.2010.12.039
http://www.ncbi.nlm.nih.gov/pubmed/21276603
http://dx.doi.org/10.1016/j.amc.2010.11.055
http://dx.doi.org/10.1016/j.atmosenv.2012.06.024
http://dx.doi.org/10.1016/j.scitotenv.2012.10.110
http://www.ncbi.nlm.nih.gov/pubmed/23220141
http://dx.doi.org/10.1016/j.apr.2016.01.004
http://dx.doi.org/10.1016/j.enconman.2015.04.057
http://dx.doi.org/10.1016/j.apenergy.2016.12.134
http://dx.doi.org/10.1016/j.dsp.2008.04.007
http://dx.doi.org/10.1016/j.apenergy.2015.12.082
http://dx.doi.org/10.1016/j.energy.2008.09.020
http://dx.doi.org/10.1109/TSP.2013.2288675
http://dx.doi.org/10.1016/j.renene.2016.03.103
http://dx.doi.org/10.1016/j.eswa.2012.01.166
http://dx.doi.org/10.1016/j.apenergy.2014.07.104
http://dx.doi.org/10.1023/A:1008202821328
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methodology 
	Wavelet Transform (WT) 
	Variational Mode Decomposition (VMD) 
	The DE-BP Model 
	Back Propagation (BP) Neural Network 
	Differential Evolution (DE) Algorithm 
	The DE-BP Model 
	Hybrid WT-VMD-DE-BP Forecasting Model 


	Empirical Study 
	Study Area and Data Description 
	Performance Criteria of Forecasting Accuracy 
	PM2.5 Concentration Forecasting in Wuhan 
	Analysis of Decomposition Results 
	Results and Discussions 
	PM2.5 Concentration Forecasting in Tianjin 


	Conclusions 

