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Abstract: Diurnal temperature range (DTR) is an important meteorological indicator associated with
global climate change, and has been linked with mortality and morbidity in previous studies. To date,
however, little evidence has been available regarding the association of DTR with years of life lost
(YLL). This study aimed to evaluate the DTR-related burden on both YLL and mortality. We collected
individual records of all registered deaths and daily meteorological data in Wuhan, central China,
between 2009 and 2012. For the whole population, every 1 ◦C increase in DTR at a lag of 0–1 days was
associated with an increase of 0.65% (95% CI: 0.08–1.23) and 1.42 years (−0.88–3.72) for mortality and
YLL due to non-accidental deaths, respectively. Relatively stronger DTR-mortality/YLL associations
were found for cardiovascular deaths. Subgroup analyses (stratified by gender, age, and education
level) showed that females, the elderly (75+ years old), and those with higher education attainment
(7+ years) suffered more significantly from both increased YLL and mortality due to large DTR.
Our study added additional evidence that short-term exposure to large DTR was associated with
increased burden of premature death using both mortality incidence and YLL.
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1. Introduction

During the last few decades, the association of daily mortality with ambient temperature has been
extensively investigated throughout the world, using time-series or case-crossover designs [1–4].
According to a recent multi-country study [5], non-optimum temperatures (i.e., cold and heat)
contributed to 7.71% (95% CI: 7.43–7.91) of daily total mortality incidence between 1985 and 2012.
Also, there is increasing evidence that an aging population could substantially enhance the heat-related
mortality burden [6,7]. In the context of global climate change and population aging, burden
assessment from temperature extremes and other unstable weather events would be of great
significance from the public health perspective [8].

As another important meteorological indicator associated with global climate change [9],
diurnal temperature range (DTR) is defined as the difference between daily maximum and
minimum temperature, which describes the within-day temperature variability and reflects weather
stability [10–12]. During the past decade, DTR-mortality association assessment has received increasing
interest in environmental epidemiology, linking large DTR with increased mortality risk in geographical
locations with different climate characteristics [13–16]. However, DTR-related evidence focusing on
vulnerable subgroups and seasonal patterns, as well as cause-specific differences, is still relatively
limited compared with available findings from cold- and heat-related studies [17].
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As an alternative estimate for mortality incidence in quantifying premature deaths [18],
years of life lost (YLL) is an emerging health endpoint when assessing the burden of ambient
temperature [19,20]. Furthermore, both of these studies, and several air pollution-YLL investigations,
have recommended YLL as a supplementary assessment for mortality because of more informative
and accurate estimate through taking both death counts and the differences in death ages into
account [21–23]. Additionally, estimation of YLL combined with the number of deaths could
contribute a lot to outlining a more comprehensive understanding when evaluating the global, regional,
and national mortality burden due to premature deaths [24,25]. To date, little epidemiologic evidence
has been available worldwide regarding the relation between DTR and YLL, which may have limited
more comprehensive understanding in the health burden associated with DTR, thus hampering the
decision-making process of public health authority in coping with global climate change. Hence,
we performed this time series study in Wuhan, central China, and aimed to examine the burden of
DTR on both mortality and YLL. Subgroup analyses were also conducted stratified by individual
characteristics (e.g., gender and age), so as to identify the vulnerable subjects to ambient DTR.

2. Materials and Methods

2.1. Study Area and Population

This study was conducted in the capital city of Hubei Province, central China—Wuhan. Known as
the largest city in central China, Wuhan is located in the middle of the Yangzi River and has a typical
subtropical monsoon climate [26,27]. Two urban districts, namely Jiang’an and Qiaokou, were selected
as the study area, with a total of about 1.22 million permanent residents in 2010 and an urban area
of 111.7 km2.

2.2. Data Collection

2.2.1. Mortality and YLL Data

Daily mortality data from 1 January 2009 to 31 December 2012 were obtained from the Hubei
Provincial Center for Disease Control and Prevention. Causes of death were coded in accordance with
ICD-10 (the Tenth Revision of the International Classification of Diseases). Daily non-accidental death
cases (ICD-10: A00-R99) were included in our databases, and were divided into several mortality
categories [28]: cardiorespiratory (I00–I99 and J00–J99), cardiovascular (I00–I99), respiratory (J00–J99),
stroke (I60–I69), and ischemic heart disease (IHD: I20–I25). Non-accidental mortality data were further
classified into several subgroups stratified by gender, age (0–74 years, 75+ years), and education level
(EL: 0–6 years, 7+ years).

YLL calculation in the present study was based on the Chinese national life table for the year
2012 (Supplementary Material Table S1), which was obtained from Global Health Observatory (GHO)
data on the WHO website (http://www.who.int/gho/countries/chn/en/). As illustrated in previous
studies [21,29], we first obtained YLL for each death by matching age and sex to the reference life table,
and summed the YLL of all death cases on each day into a time series of daily YLLs. Corresponding to
mortality data, we also calculated daily YLLs for various mortality categories and subgroups.

2.2.2. Ambient Meteorological Data

Daily meteorological data between 2009 and 2012, including maximum, mean, and minimum
temperature (◦C), DTR(◦C), mean relative humidity (%), mean wind speed (m/s), sunshine duration
(h), and mean atmospheric pressure (hPa), were collected from the China Meteorological Data Network
(http://data.cma.cn), which is run by the China Meteorological Administration and provides a publicly
available data sharing service.

http://www.who.int/gho/countries/chn/en/
http://data.cma.cn
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2.3. Data Analysis

A standard time-series generalized linear model (GLM) [30] was used to conduct the data
analysis. We applied a quasi-Poisson regression allowing for overdispersed daily death counts when
assessing DTR-mortality relations and specified a Gaussian process for YLL, since daily YLLs generally
followed a normal distribution [21,23]. Our preliminary analyses identified approximately linear
exposure-response associations of ambient DTR with mortality and YLL (Supplementary Material
Figure S1), which was in accordance with previous epidemiologic evidence [10,31,32]. Therefore,
a linear term for DTR was included in our final GLM regression analysis.

According to previous studies, a natural cubic spline with 7 degrees of freedom (df ) per
year for calendar time was used to adjust for the long-term trends and seasonality. A flexible
“cross-basis” function for daily mean temperature (MeanT) created by distributed lag non-linear model
(DLNM) [33,34] was incorporated into the GLM regression to control for the lagged and nonlinear
effects of ambient temperatures. Specifically, MeanT was defined by a combination of a natural cubic
spline with 3 internal knots at equally spaced percentiles (25th, 50th, and 75th) for temperature space
and a natural cubic spline with 2 internal knots at equally spaced log-values (approximately 1.4 and
5.5 days) for lag space. We chose 21 days as the maximum lag to completely capture the overall
temperature effect and adjust for any potential harvesting. These modeling choices were motivated by
a previous multi-country time-series study [35].

To further eliminate the confounding effects of other meteorological variables, the current
day’s mean relative humidity (MeanRh), sunshine duration (Sunshine), mean wind speed (WS),
and atmospheric pressure (AP) were also introduced in the GLM as covariates using a natural cubic
spline with 3 df [12]. Additionally, day of the week (DOW) and public holiday (PH) were also controlled
as indicator variables [36,37]. Hence, the core models are given as following:

Log[E(deathi)] = α + βDTR + NS(Timei, d f = 4 × 7) + γMeanTt,l

+ NS(MeanRhi, d f = 3) + NS(Sunshinei, d f = 3)

+ NS(WSi, d f = 3) + NS(APi, d f = 3) + δDOWi + εPHi

and

E(YLLi) = α + βDTR + NS(Timei, d f = 4 × 7) + γMeanTt,l + NS(MeanRhi, d f = 3)

+ NS(Sunshinei, d f = 3) + NS(WSi, d f = 3) + NS(APi, d f = 3)

+ δDOWi + εPHi

where i is the day of observation (i = 1, 2, 3 . . . 1461), and deathi and YLLi are the observed daily death
counts and years of life lost, respectively; α is the intercept, and β is the regression coefficient for DTR;
MeanTt,l is the cross-basis matrix of mean temperature (t) and lag pattern (l) produced by DLNM, γ is
the vector of coefficients for MeanTt,l; NS is the natural cubic spline function; δ and ε are the regression
coefficients for DOW and PH, respectively.

All the analyses were performed using R software version 3.3.2 (R Development Core Team 2016,
Vienna, Austria, http://www.R-project.org), with the “dlnm” package to create the DLNM for mean
temperature. The results were expressed as changes (estimates and 95% confidence intervals, CI)
in daily mortality (%) and YLL (years) associated with a 1 ◦C increase in DTR. Two-sided statistical
tests were conducted, and effects of p < 0.05 were considered statistically significant. To check the
robustness of the results, some sensitivity analyses were performed by changing df (4–6 per year)
in the smoothness of time and df (4–6) of natural cubic spline for MeanRh, Sunshine, WS, and AP
(Supplementary Materials Tables S2 and S3).

http://www.R-project.org
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3. Results

3.1. Data Description

Table 1 describes the distribution characteristics of daily meteorological variables in Wuhan,
China, between 2009 and 2012. The average daily mean temperature and relative humidity were
16.8 ◦C (range: −2.9–35.3 ◦C), and 76.6% (range: 24–100%), respectively. During the study period,
daily DTR varied greatly from 0.9 ◦C to 19.5 ◦C, with the mean value of 8.4 ◦C.

Table 1. Distribution characteristics of daily meteorological variables in Wuhan, China, 2009–2012.

Meteorological Variables Mean ± SD Range Percentile

P1 P25 P50 P75 P99

Mean temperature (◦C) 16.8 ± 9.6 −2.9–35.3 −0.6 8.2 18.1 25.0 32.8
Minimum temperature (◦C) 13.2 ± 9.8 −7.8–31.4 −4.7 4.8 14.1 21.7 29.6
Maximum temperature (◦C) 21.6 ± 9.7 0.7–39.1 2.2 13.2 23.1 29.8 37.3

DTR (◦C) 8.4 ± 3.9 0.9–19.5 1.5 5.4 8.3 11.0 16.9
Mean relative humidity (%) 76.6 ± 12.4 24–100 39 70 78 86 97

Mean wind speed (m/s) 1.9 ± 1.0 0.2–6.8 0.6 1.2 1.7 2.3 5.2
Sunshine duration (h) 4.5 ± 4.1 0.0–13.2 0.0 0.0 4.5 8.3 11.9

Atmospheric pressure (hPa) 1012.7 ± 9.5 992.7–1037.6 996.7 1004.6 1013.0 1019.7 1033.2

Table 2 summarizes the descriptive statistics of cause-specific and subgroup-specific daily death
counts and years of life lost. Daily mean cases from non-accidental, cardiovascular, and respiratory
deaths were 21.4, 9.7, and 2.1, respectively, correspondingly contributing to 317.8, 110.4, and 19.7 person
years in daily YLL. We observed more deaths and higher YLL among males than females, low-educated
persons than those with higher education level. Compared with the elderly (aged over 75 years), the
younger group suffered relatively fewer death cases, but much greater YLL. For non-accidental
mortality, annual mean deaths changed little between 2009 and 2012, while annual mean YLL
decreased gradually from 330.1 in 2009 to 305.4 in 2012 (Supplementary Material Table S4). As
illustrated in Supplementary Materials Figure S2, both death cases and YLL peaked in cold months
(e.g., December and January) and reached their trough in hot months (e.g., May to August).

Table 2. Descriptive statistics of daily mortality and YLL due to non-accidental deaths, stratified by
causes, gender, age, and education level, in Wuhan, China, 2009–2012.

Variables Mean ± SD Minimum P25 P50 P75 Maximum

Death Counts

Non-accidental 21.4 ± 5.9 9 17 21 25 47
Cardiorespiratory 11.8 ± 4.5 1 9 11 15 36

Cardiovascular 9.7 ± 3.8 1 7 9 12 29
Respiratory 2.1 ± 1.6 0 1 2 3 9

Stroke 5.4 ± 2.6 0 4 5 7 14
IHD 3.3 ± 2.0 0 2 3 4 13

Gender

Male 11.9 ± 3.9 2 9 12 14 29
Female 9.5 ± 3.5 1 7 9 12 24
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Table 2. Cont.

Variables Mean ± SD Minimum P25 P50 P75 Maximum

Age (years)

0–74 9.3 ± 3.3 0 7 9 11 22
75+ 12.0 ± 4.3 2 9 12 15 29

Education level (years)

0–6 10.7 ± 3.6 2 8 11 13 29
7+ 10.2 ± 3.9 2 7 10 13 27

YLL (years)

Non-accidental 317.8 ± 97.2 97.9 246.8 308.3 378.9 730.8
Cardiorespiratory 130.1 ± 54.6 9.9 90.6 123.6 163.8 356.8

Cardiovascular 110.4 ± 48.4 5.4 74.8 105.5 140.8 298.1
Respiratory 19.7 ± 19.4 0 6.6 14.5 27.9 131.7

Stroke 61.4 ± 33.7 0 36.9 57.4 81.4 216.3
IHD 36.6 ± 25.8 0 16.6 32.4 51.7 155.5

Gender

Male 189.4 ± 73.6 30.4 135.3 179.1 235 489.8
Female 128.4 ± 55.7 9.9 87.6 121.8 160.2 403.7

Age (years)

0–74 229.4 ± 88.5 0 165.1 218.4 286.1 648.2
75 + 88.4 ± 31.3 8.6 65 86 107.5 205

Education level (years)

0–6 197.1 ± 73.4 21.6 145.2 189.1 241.5 498.8
7+ 104.6 ± 45.2 15.2 71.7 98.6 131.7 331.7

Note: IHD indicates ischemic heart disease.

3.2. Lag Patterns of DTR-Associated Effects

Figure 1 and Supplementary Materials Figure S3 show the lag patterns of mortality and YLL
effects associated with per 1 ◦C increase in DTR, stratified by different mortality categories, gender,
age, and education level. Generally, few effects of DTR on mortality and YLL were observed after days
of lag 1. Hence, we used exposure days of lag 0–1 to subsequently estimate the burden of mortality
and YLL due to daily changes in DTR.
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High EL: 7+ years’ education level.
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3.3. DTR Effects on Cause-Specific Mortality and YLL

Table 3 calculates the estimated effects of a 1 ◦C increase in DTR at lag 0–1 days on cause-specific
mortality and YLL. For the whole population, higher DTR significantly increased daily non-accidental
mortality, especially cardiovascular mortality, with corresponding increases of 0.65% (95% CI:
0.08–1.23) and 1.12% (0.28–1.97) associated with 1 ◦C increase in DTR. Compared with daily mortality,
YLL showed less significant increases in association with DTR.

Table 3. Associations of 1 ◦C increase in DTR at lag 0–1 days with cause-specific mortality and YLL
in Wuhan, China during 2009–2012.

Cause
Mortality (%) YLL (Years)

Estimate (95% CI) p-Value Estimate (95% CI) p-Value

Non-accidental 0.65 (0.08, 1.23) 0.026 1.42 (−0.88, 3.72) 0.226
Cardiorespiratory 0.73 (−0.03, 1.50) 0.061 0.65 (−0.56, 1.87) 0.294

Cardiovascular 1.12 (0.28, 1.97) 0.009 0.92 (−0.19, 2.02) 0.104
Respiratory −1.01 (−2.73, 0.73) 0.253 −0.27 (−0.74, 0.21) 0.272

Stroke 0.84 (−0.27, 1.97) 0.139 0.14 (−0.65, 0.94) 0.724
IHD 1.35 (−0.07, 2.79) 0.062 0.47 (−0.16, 1.11) 0.145

Note: The bold results are statistically significant (p < 0.05).

3.4. Subgroup Analysis Stratified by Gender, Age, and Education Level

Table 4 demonstrates the estimated DTR effects on mortality and YLL due to non-accidental and
cardiovascular deaths, stratified by subgroups (i.e., gender, age, and education level). Compared with
males and younger persons, females and the elderly suffered more significantly and substantially
from both increased mortality and YLL in relation to high DTR. The low-educated group, rather than
those with higher education attainment, was more strongly affected by the DTR-associated burden on
mortality and YLL.

Table 4. Subgroup-specific effects of DTR at lag 0–1 days on mortality and YLL due to non-accidental
and cardiovascular deaths in Wuhan, China during 2009–2012.

Cause/Subgroups Mortality (%) YLL (Years)

Estimate (95% CI) p-Value Estimate (95% CI) p-Value

Non-accidental deaths

Male 0.17 (−0.58, 0.93) 0.651 −0.04 (−1.84, 1.77) 0.969
Female 1.26 (0.42, 2.11) 0.003 1.46 (0.10, 2.82) 0.036
Youth 0.57 (−0.30, 1.44) 0.201 0.70 (−1.49, 2.88) 0.531

Elderly 0.71 (−0.03, 1.46) 0.059 0.72 (0.05, 1.39) 0.034
Low EL 0.26 (−0.52, 1.05) 0.513 0.62 (−1.18, 2.42) 0.502
High EL 1.18 (0.36, 2.00) 0.005 1.25 (0.19, 2.32) 0.021

Cardiovascular deaths

Male 0.53 (−0.65, 1.71) 0.38 0.02 (−0.88, 0.92) 0.963
Female 1.74 (0.56, 2.92) 0.004 0.90 (0.24, 1.56) 0.008
Youth 0.89 (−0.50, 2.30) 0.212 0.31 (−0.68, 1.30) 0.536

Elderly 1.22 (0.20, 2.26) 0.019 0.60 (0.14, 1.07) 0.011
Low EL 1.07 (−0.17, 2.32) 0.091 0.29 (−0.61, 1.20) 0.525
High EL 1.27 (0.14, 2.41) 0.027 0.56 (−0.04, 1.16) 0.069

Note: The bold results are statistically significant (p < 0.05). Youth: 0–74 years old; Elderly: 75+ years old; Low EL:
0–6 years’ education level; High EL: 7+ years’ education level.
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4. Discussion

In this ecological study, we examined the burden of both YLL and mortality in relation to
short-term DTR exposure in urban China. High DTR was identified as an independent risk factor for
YLL and mortality, with some vulnerable subgroups in DTR-associated effects. Our findings could
have some important implications for better decision-making and health resource allocation in coping
with global climate change in China.

Consistent with most previous evidence [17], our study identified the adverse effects of high DTR
on short-term mortality in a humid subtropical city of central China. Using data from the National
Morbidity Mortality Air Pollution Study (NMMAPS), a nationwide investigation covering 95 large
US communities linked an increase of 0.27% (95% CI: 0.24–0.30%) in non-accidental mortality with
a 1 ◦C increase in DTR [14]. Additionally, another two multi-city time series studies reported the
pooled DTR effects of 0.5% (0.3–0.7%) in six Korean cities [38] and 0.18% (0.09–0.28%) in 8 large
Chinese cities [32]. In the present study, we observed relatively greater mortality effects associated
with DTR, but still much lower than the estimated magnitude in Shanghai between 2001 and 2004 [31].
The regional differences in DTR-associated health effects have been comprehensively demonstrated
using multinational data between 1979 and 2010 from 30 cities in East Asia [16], and could be related
to several factors, such as climate conditions, population vulnerability, and socioeconomic status of the
study population [14,17,38].

As the top leading causes of death in China [39], cardiovascular disease has been previously
identified as a mortality category susceptible to several environmental risk factors (e.g., air pollution
and temperature extremes). Also, a number of DTR-morbidity/mortality studies found greater
effects on cardiovascular deaths [10,31], since greater DTR could cause the increase in heart rate,
blood pressure, and oxygen uptake, and further aggravate the workload and burden of the previously
harmed heart. Using both YLL and mortality as quantitative estimates for premature deaths,
our seasonal and subgroup analyses strengthened the great cardiovascular burden associated with
large DTR (Tables 3 and 4). Additionally, this study revealed strong DTR effects on IHD mortality and
YLL, which was in accordance with the previous evidence that DTR was an independent risk factor
for coronary heart disease death [40]. For stroke and respiratory mortality/morbidity, while many
investigations demonstrated adverse DTR-related impacts [17], insignificant associations were reported
in the present study, as well as two prior studies for stroke hospital admission in Northern Portugal [41]
and respiratory mortality in Guangzhou, China [10]. Given the potential ecological bias induced by
the study design and exposure assignment, more well-designed investigations should be conducted
to better understand the differences of health effects between cause-specific outcomes in relation
to DTR. Furthermore, to more comprehensively evaluate DTR-related burden on premature death,
more research interests should be focused on using YLL as the outcome measurement, in addition
to mortality.

Large bodies of previous investigations have differentiated the potential vulnerability differences
from subgroups stratified by individual characteristics when assessing temperature-related mortality
impact [42–46]. In accordance with most epidemiologic findings, our study demonstrated more
significant associations of DTR with mortality and YLL among females and the elderly. Between-gender
heterogeneity could be possibly induced by the great differences in biological heredity and social
roles [32,38], while the high susceptibility of elder persons could be largely attributable to the
continuing deterioration of physical function, sharp decrease in organism immunity, and some
certain pre-existing chronic diseases [3,28]. Given the rapid aging process of human population,
worldwide cooperation in taking some preventive measures would be of great significance and
urgency, so as to minimize the health burden due to inevitable climate change. Compared with gender
and age, the potential effect modification of education level (an important indicator of one’s overall
socioeconomic status) in DTR-health associations has been less frequently examined by previous
studies [17]. Our study found that those with higher education attainment suffered greater burden of
morality and YLL, which was contrary to the finding of a prior time-series study in six Korean cities [38].
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Furthermore, no significant EL modification between DTR-mortality association was identified in
another recent Chinese investigation in Yuxi City, with risk ratio at lag 0–2 of 0.96 (0.88–1.03) for
highly-educated persons relative to those with low EL [47]. Since the available evidence is relatively
sparse and lacks consistency, large-scale investigations are needed worldwide in more diverse climate
zones to further clarify the inconclusiveness in the future.

The present study had some limitations. Firstly, our assessment of temperature exposure across
a relatively large urban area was based on only one fixed monitoring site, and failed to account
for the intra-urban variation (e.g., spatial distribution), which could potentially introduce some
inevitable measurement bias and limit model predictability in the actual effects of temperature on
mortality [48]. Future evidence should focus on more tenuous exposure-response patterns using
spatiotemporal models. Secondly, we did not adjust for the effects of air pollutants in our main analyses
due to data unavailability. However, the results of our study would not be substantially affected,
since very close effect estimates were obtained in previous DTR/temperature-mortality studies with
and without controlling for air pollutants [14,49,50]. Additionally, the findings of this single-city
study should be cautious of directly generalizing to other locations because of the great differences in
climate conditions, population vulnerability, and life expectancy.

5. Conclusions

In summary, our study added additional evidence that short-term exposure to large DTR was
associated with increased burden of premature death using both mortality incidence and years of
life lost. Females, the elderly, and highly-educated persons were found to suffer greater DTR-related
burden of mortality and YLL. These findings would contribute to public health policy-making and
resources allocation in China, so as to reduce the health burden associated with unstable weather
patterns, especially for those susceptible subpopulations.

Supplementary Materials: The following are available online at www.mdpi.com/1660-4601/14/8/891/s1,
Table S1: Age-specific life expectancy for Chinese females and males for the year 2012. Figure S1: Dose-response
relationships of DTR at lag 0–1 days (smoothing by a natural cubic spline with df = 3) with daily mortality and YLL
due to non-accidental and cardiorespiratory deaths in Wuhan, China, 2009-2012. Figure S2: Boxplots for monthly
death number and YLL due to non-accidental mortality in Wuhan, China, 2009–2012. Figure S3: The estimated
effects of DTR on cause-specific mortality and YLL at different exposure days. Table S2: Sensitivity analyses for
DTR-associated effects on YLL and mortality among females, by changing df (4–6 per year) in the smoothness
of calendar time and df (4–6) of natural cubic spline for mean humidity, mean wind speed, sunshine duration,
and atmospheric pressure. Table S3: Sensitivity analyses for DTR-associated effects on YLL and mortality among
the elderly (75+ years old), by changing df (4–6 per year) in the smoothness of calendar time and df (4–6) of
natural cubic spline for mean humidity, mean wind speed, sunshine duration, and atmospheric pressure. Table S4:
Yearly summary distributions of daily death number and YLL during 2009–2012.
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